Data and Text Mining Introduction to Data Mining 2024 / 2025

Nada Lavrač, Blaž Škrlj

Department of Knowledge Technologies Jožef Stefan Institute Ljubljana, Slovenia

Introduction to Data Mining

6-11-2024

Nada Lavrač: Lesson 1 - Introduction

- Basics of Machine Learning
- Standard learning tasks
- Three generations of machine learning
- Advanced learning tasks

Nada Lavrač: Lesson 2 - Decision Tree Learning

- Basic decision tree learning algorithm
- Entropy and information gain heuristics
- Decision tree pruning
- Selected decision tree learning algorithms
- Regression tree learning

Introduction to Data Mining

6-11-2024

Nada Lavrač or Blaž Škrlj: Lesson 3 – Rule Learning

- Transforming decision trees to rules
- Classification rule learning
- Covering algorithm
- Association rule learning

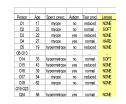
Lesson 1: Introduction to Data Mining

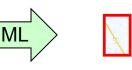
- Basics of Machine Learning
- Standard learning tasks
- Three generations of machine learning
- Advanced learning tasks

- What is Machine Learning (ML)
 - Area of computer science, concerned with the development of computer algorithms that learn from data

Input: Data

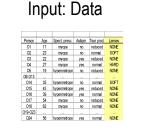
Output: Model





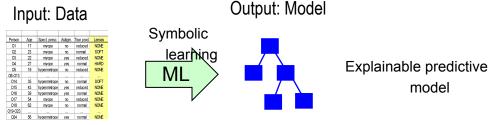
- Origins of terms
 - Term Machine learning comes from early AI research in 1960s and 1970s: Perception of learning algorithms as "machines", able to learn (generalize) from data automatically, without human intervention
 - Term Inductive learning refers to the capability of learners to generalize – to automatically induce models from data
 - Term Symbolic learning refers to the capability of learners to induce explainable knowledge from data - XAI

ML

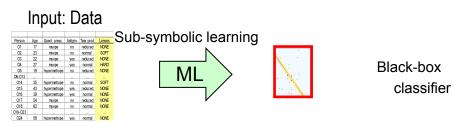


Output: Explainable knowledge

- Two basic learning settings
 - Symbolic learning inducing explainable predictive models, such as decision trees or classification rules



 Sub-symbolic (neural) learning – inducing black-box classifiers, such as neural networks



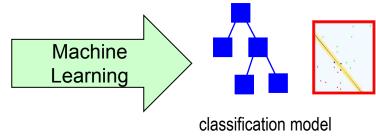
7

- Early history of symbolic learning algorithms:
 - Early rule learning algorithms: AQ (Michalski 1969), ...
 - Early decision tree learning algorithms since 1970s: ID3 (Quinlan 1979), ...
 - Early regression tree learners CART (Breiman et al. 1984), ...
 - Advantage: explainable models, but less accurate classifiers
- Sub-symbolic (neural) learning algorithms
 - Early perceptron (Rosenblatt 1962), backpropagation neural networks (Rumelhart et al. 1986), ...
 - Modern deep neural networks (Hinton & Salakhutdinov 2006, Goodfellow et al. 2016), ...
 - Advantage: more accurate classifiers, but black-box models

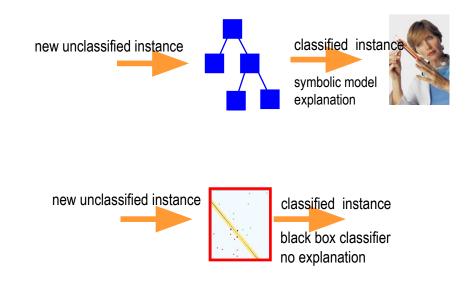
- Learning tasks depend on the type of input data and the goal of learning
 - tabular data prediction and classification, clustering, ...
 - relational databases relational learning, inductive logic programming, …
 - graphs network analysis, social network analysis, link prediction, node classification, network completion, …
 - texts text mining, sentiment analysis, hate speech detection, …
 - Web pages Web page recommendation, ...
 - heterogeneous data and heterogeneous information networks – classification of data instances, node classification, link prediction, …

- Definition of a standard machine learning task
 - **Given**: class-labeled data set (e.g., transaction data table, relational database, text documents, Web pages, ...)
 - Find: a classification model, able to predict new instances

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
04	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
O6-O13					
014	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
O24	56	hypermetrope	yes	normal	NONE



- Standard machine learning scenario
 - 1. Use a ML algorithm to learn a predictive model from class-labeled data
 - 2. Use the induced model to predict the class of new (unlabeled) data instances

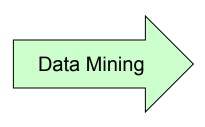


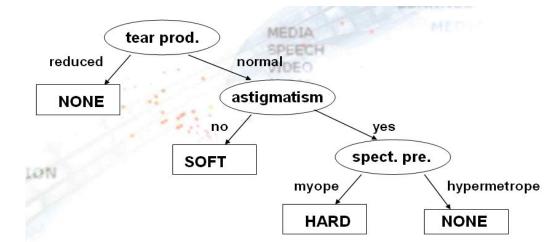
Illustrative example: Contact lens data set

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
04	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					••••
014	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
024	56	hypermetrope	yes	normal	NONE

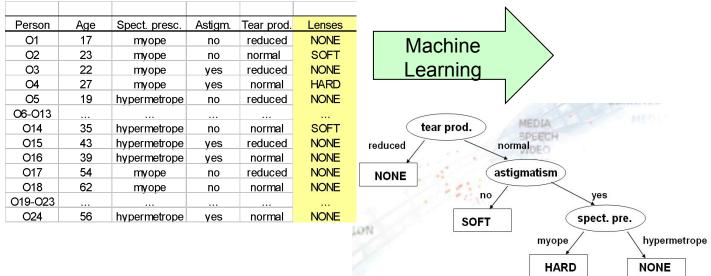
Basics of Machine Learning Decision tree learning from Contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
02	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
O4	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
06-013					
O14	ore-presby	hypermetrope	no	normal	SOFT
O15	ore-presby	hypermetrope	yes	reduced	NONE
O16	pre-presby	hypermetrope	yes	normal	NONE
017	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
O24	presbyopic	hypermetrope	yes	normal	NONE





Basics of Machine Learning Rule learning from Contact lens data



lenses=NONE ← tear production=reduced
lenses=NONE ← tear production=normal AND astigmatism=yes AND
 spect. presc.=hypermetrope
lenses=SOFT ← tear production=normal AND astigmatism=no
lenses=HARD ← tear production=normal AND astigmatism=yes AND
 spect. presc.=myope
lenses=NONE ←

Basics of Machine Learning Data Mining

dat

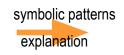
						a
knowledge discovery	Lenses	Tear prod.	Astigm.	Spect. presc.	Age	Person
• •	NONE	reduced	no	myope	17	01
from data	SOFT	normal	no	myope	23	02
	NONE	reduced	yes	myope	22	O3
	HARD	normal	yes	myope	27	04
	NONE	reduced	no	hypermetrope	19	O5
Data Mining						06-013
Data Mining	SOFT	normal	no	hypermetrope	35	014
	NONE	reduced	yes	hypermetrope	43	O15
	NONE	normal	yes	hypermetrope	39	O16
	NONE	reduced	no	myope	54	017
	NONE	normal	no	myope	62	O18
						019-023
	NONE	normal	yes	hypermetrope	56	O24
			-		1	i i

data

Given: class labeled or non-labeled data **Find:** a set of interesting patterns, explaining the data

IF Tear prod. = reduced

THEN Lenses = NONE



patterns

Basics of Machine Learning Pattern discovery from Contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	PATTERN
01	17	myope	no	reduced	NONE	
02	23	myope	no	normal	SOFT	
O3	22	myope	yes	reduced	NONE	Rule:
O4	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	IF
O6-O13						Tear prod. =
014	35	hypermetrope	no	normal	SOFT	reduced
O15	43	hypermetrope	yes	reduced	NONE	
O16	39	hypermetrope	yes	normal	NONE	THEN
017	54	myope	no	reduced	NONE	Lenses =
O18	62	myope	no	normal	NONE	
019-023						NONE
O24	56	hypermetrope	yes	normal	NONE	

Basics of Machine Learning Summary

17

- Basic definition of Machine Learning
 - Computer algorithms/machines that learn predictive models from class-labeled data
- Extended definition of Machine Learning Used interchangeably with the term Data Mining
 - computer algorithms/machines that learn patterns or models from class-labeled or non-labeled data
 - sometimes used to denote the practical use of ML techniques applied to solving real-life data analysis problems
- Deep Learning Used in popular literature interchangeably with the term AI ??

Introduction to Data Mining

- Basics of Machine Learning
 - Standard learning tasks
- Three generations of machine learning
- Advanced learning tasks

Binary Classification

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
02	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
04	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
O6-O13					
014	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

Binary classes

positive vs. negative examples of Target class

- Concept learning binary classification and class description
 - for Subgroup discovery exploring patterns characterizing groups of instances of target class

Multi-class Learning Task

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
O17	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023			no		
O24	56	hypermetrope	no	normal	NONE

Several class labels of training examples of a single Target attribute

Multi-target Classification

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	Pilot
01	17	myope	no	reduced	NO	NO
02	23	myope	no	normal	YES	NO
O3	22	myope	yes	reduced	NO	NO
04	27	myope	yes	normal	YES	NO
O5	19	hypermetrope	no	reduced	NO	NO
O6-O13						
014	35	hypermetrope	no	normal	YES	YES
O15	43	hypermetrope	yes	reduced	NO	NO
O16	39	hypermetrope	yes	normal	NO	NO
017	54	myope	no	reduced	NO	NO
O18	62	myope	no	normal	NO	YES
019-023						
024	56	hypermetrope	yes	normal	NO	NO

Multi target classification

each example belongs to several Target classes

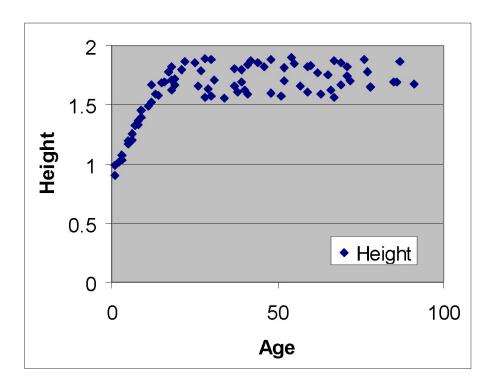
Learning from Numeric Class Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	LensPrice
O1	17	myope	no	reduced	0
02	23	myope	no	normal	8
O3	22	myope	yes	reduced	0
O4	27	туоре	yes	normal	5
O5	19	hypermetrope	no	reduced	0
O6-O13					
014	35	hypermetrope	no	normal	5
O15	43	hypermetrope	yes	reduced	0
O16	39	hypermetrope	yes	normal	0
017	54	myope	no	reduced	0
O18	62	myope	no	normal	0
019-023					
024	56	hypermetrope	yes	normal	0

Numeric class values – regression analysis

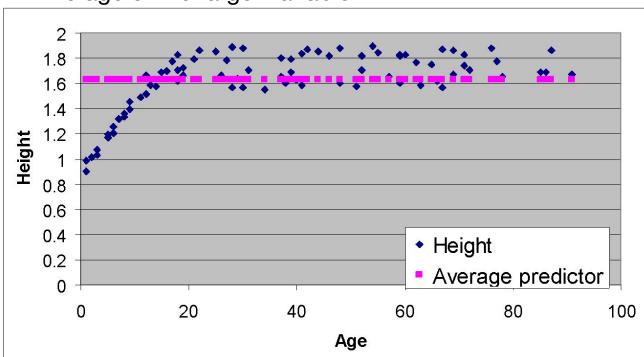
Example regression problem

• data about 80 people: Age and Height



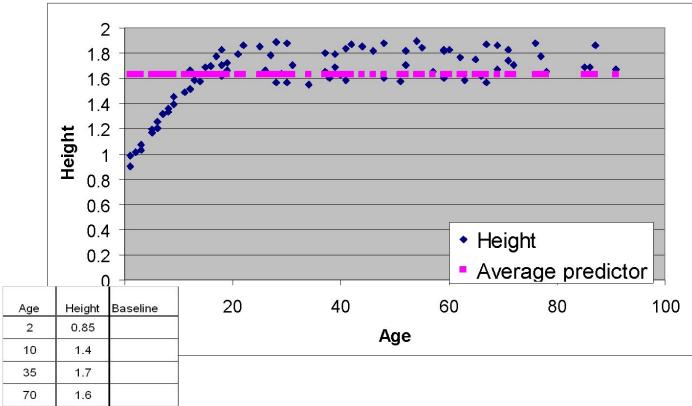
Age	Height
3	1.03
5	1.19
6	1.26
9	1.39
15	1.69
19	1.67
22	1.86
<u>22</u> 25	1.85
41	1.59
48	1.60
54	1.90
71	1.82
1997	1972

Baseline numeric model



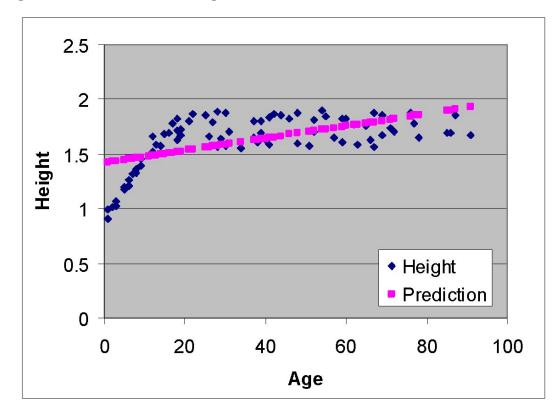
• Average of the target variable

Baseline numeric predictor

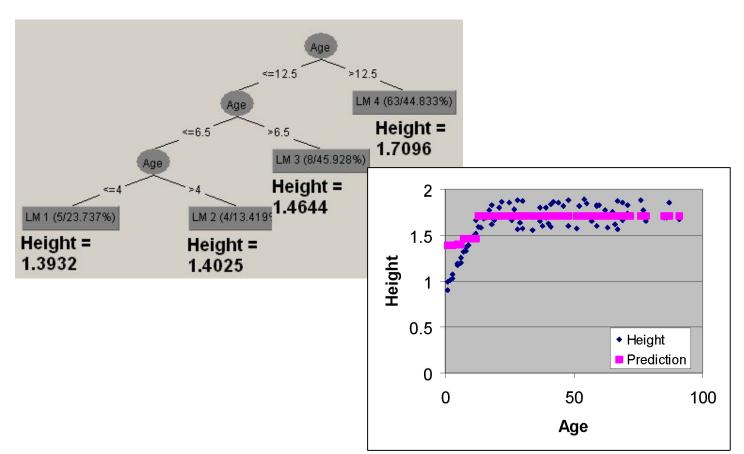


Linear Regression Model

Height = 0.0056 * Age + 1.4181

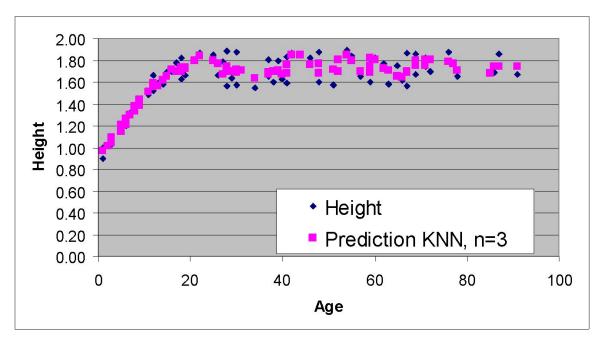


Regression tree



Simple sub-symbolic classifier: K nearest neighbors (kNN)

- Looks at K closest examples (by age) and predicts the average of their target variable
- K=3



Lesson 1: Introduction to Data Mining

- Basics of Machine Learning
- Standard learning tasks
- Three generations of machine learning
- Advanced learning tasks

First Generation Machine Learning

- First machine learning algorithms for
 - Decision tree and rule learning in 1970s and early 1980s
 by Quinlan, Michalski et al., Breiman et al., ...
- Characterized by
 - Learning from data stored in a single data table
 - Relatively small set of instances and attributes

• Lots of ML research followed in 1980s

- Numerous conferences ICML, ECML, ... and ML sessions at AI conferences IJCAI, ECAI, AAAI, ...
- Extended set of learning tasks and algorithms addressed

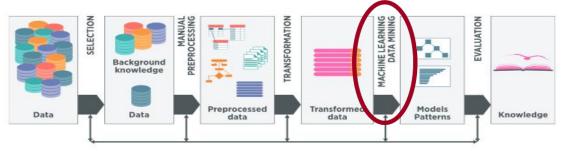
Second Generation Machine Learning

- Developed since 1990s:
 - Focused on data mining tasks characterized by large datasets described by large numbers of attributes
 - Addressing the entire process of Knowledge Discovery in Databases (KDD): process understandable models or patterns in data

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

- CRISP-DM methodology
- KDD buzzword since 1996

Second Generation Machine Learning KDD Process



- KDD process (CRISP-DM methodology) involves several phases:
 - data preparation
 - machine learning, data mining, statistics, …
 - evaluation and use of discovered patterns
- Machine Learning / Data Mining is the key step in the process
 - performed using machine learning or pattern mining techniques for extracting classification models or interesting patterns in data
 - this key step represents only 15%-25% of entire KDD process

32

Second Generation Machine Learning

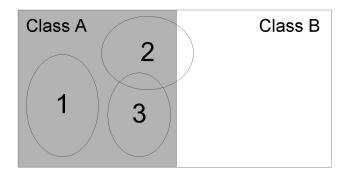
- Industrial KDD standard: CRISP-DM methodology (1997)

- New conferences on practical aspects of data mining and knowledge discovery: KDD, PKDD, ...
- New learning tasks and efficient learning algorithms:
 - Learning descriptive patterns: association rule learning, subgroup discovery, ...
 - Learning predictive models: Bayesian network learning, Support Vector Machines, relational data mining, ...

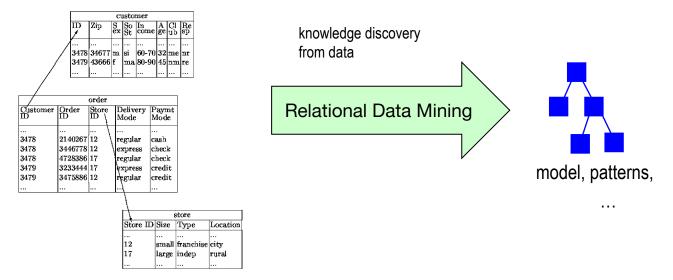
Second Generation Machine Learning ³⁴ Subgroup Discovery learning task

- Data transformation:
 - binary class values
 (positive vs. negative
 examples of Target class)
- Subgroup discovery:
 - a task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
02	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
04	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
O19-O23					
O24	56	hypermetrope	yes	normal	NO



Second Generation Machine Learning Relational Data Mining task



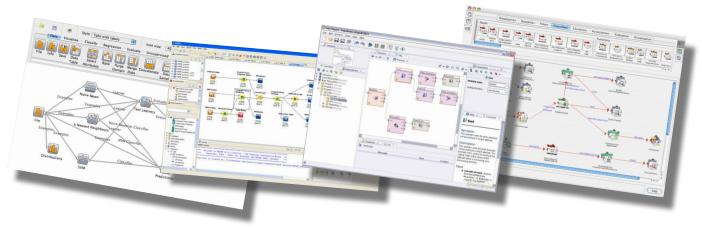
Relational representation of customers, orders and stores.

Given: a relational database, a set of tables, sets of logical facts, a graph, ...

Find: a classification model, a set of patterns

Second Generation Data Mining Platforms

Orange, WEKA, KNIME, RapidMiner, ...



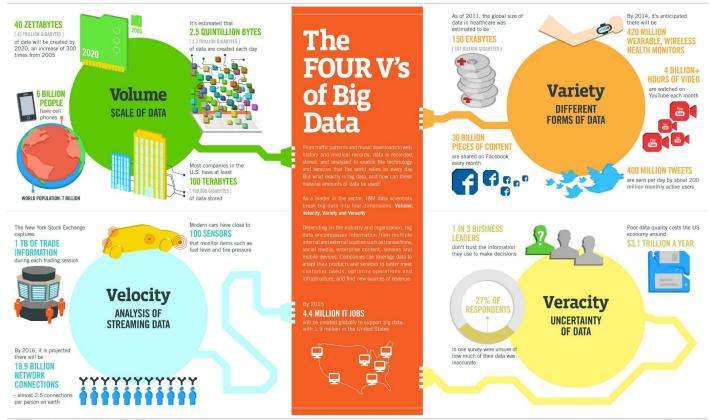
- include numerous data mining algorithms
- enable data and model visualization
- like Orange, Taverna, WEKA, KNIME, RapidMiner, also enable complex workflow construction

Second Generation Machine Learning Big Data

37

- Big Data Buzzword since 2008 (special issue of Nature on Big Data)
 - data and techniques for dealing with very large volumes of data, possibly dynamic data streams
 - requiring large data storage resources, special algorithms for parallel computing architectures.

Second Generation Machine Learning The 4 Vs of Big Data



38

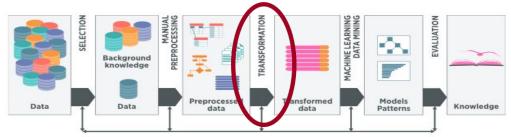
Second Generation Machine Learning Data Science

- Data Science buzzword since 2012 when Harvard Business Review called it "The Sexiest Job of the 21st Century"
 - an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, similar to data mining.
 - used interchangeably with earlier concepts like business analytics, business intelligence, predictive modeling, and statistics.

Third Generation Machine Learning

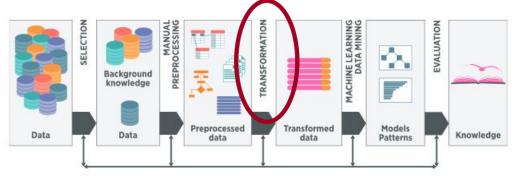
• Developed since 2010s:

- Focused on big data analytics
- Addressing complex data mining tasks and scenarios
- New conferences on data science and big data analytics; e.g., IEEE Big Data, Complex networks, …
- New learning tasks and efficient learning algorithms:
 - Analysis of dynamic data streams, Network analysis, Semantic data mining, Text mining, ...
- Lots of emphasis on automated data transformation,
 i.e. representation learning



Third Generation Machine Learning

• Representation learning in the KDD process



- Representation learning = Automated data transformation, performed on manually preprocessed data
- Data transformation requires handling heterogeneous data
 - Data (feature vectors, documents, pictures, data streams, ...)
 - Background knowledge (multi-relational data tables, networks, text corpora, ...)

Current Generation Machine Learning

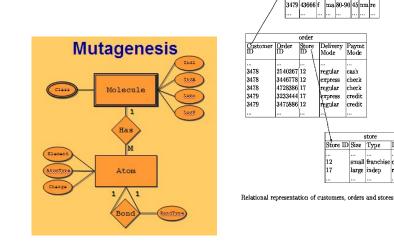
- Automated representation learning without manual data preprocessing
- Using pre-trained deep neural networks for handling heterogeneous data
 - Data (feature vectors, documents, picture
 - Using pre-trained deep neural networks for handling heterogeneous data
- Transformer architectures allowing to adapt deep learning models to new tasks
- Using open source Large Language Models for handling text data
- Machine Learning = AI ?

Lesson 1: Introduction to Data Mining

- Basics of Machine Learning
- Standard learning tasks
- Three generations of machine learning

Advanced learning tasks

- Relational data mining: Learning from complex relational databases
- Inductive logic programming: Learning from complex structured data, e.g. molecules and their biochemical properties



customer S So In

come 3478 34677 m si 60-70 32 me

check

check

credit

credit

store

large indep

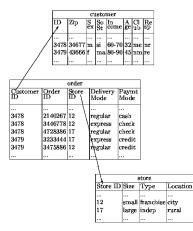
small franchise city

Location

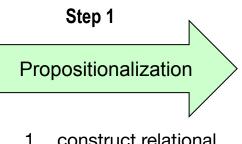
rural

- Representation learning in a relational learning setting:
 - automated transformation of multi-relational data

- Two main approaches:
 - Traditional approach: Propositionalization of relational databases, heterogeneous information networks, ...
 - Recent approach: Embedding of knowledge graphs, network node embeddings, entity embeddings, …

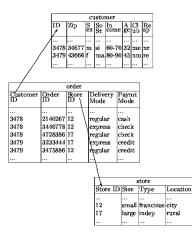


Relational representation of customers, orders and stores.

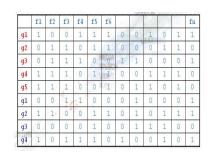


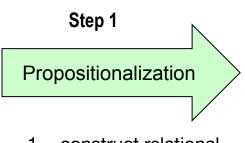
- 1. construct relational features
- 2. construct a propositional table

	f1	f2	f3	f4	f5	f6	24	1			12	fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	Ò	1	1	0	0	0	1
g4	1	1	1	0	1	ofor	0	0	1	1	1	0
g5	1	1	1	0	0	1	0	1	1	Q	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

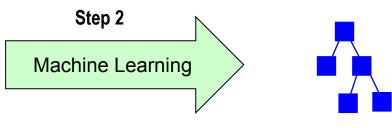


Relational representation of customers, orders and stores.



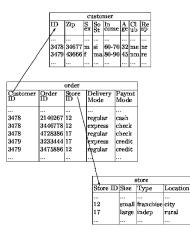


- 1. construct relational features
- 2. construct a propositional table



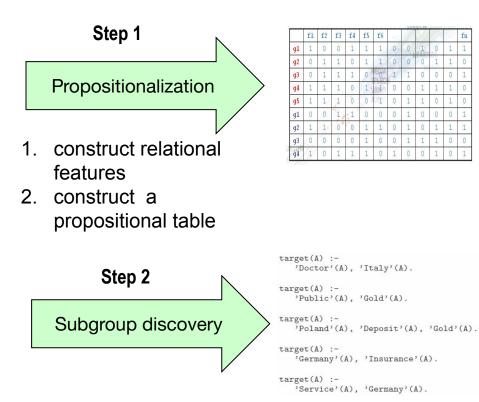
	f1	f2	f3	f4	f5	f6		1			120	fn
g 1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	Û	1	1	0	0	0	1
g4	1	1	1	0	1	ofan	0	0	1	1	1	0
g5	1	1	1	0	0	1	0	1	1	Q	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

classification model



Relational representation of customers, orders and stores.

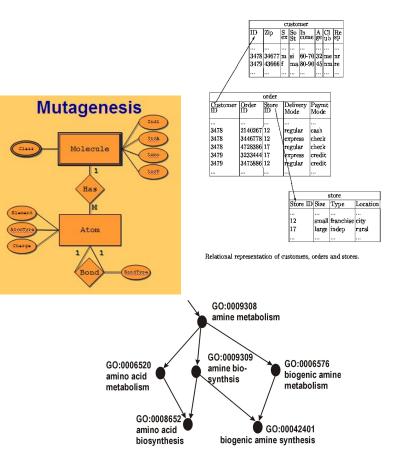
	f1	f2	f3	f4	f5	f6		1			12	fn
g 1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	Û.	1	1	0	0	0	1
g4	1	1	1	0	1	neto.	0	0	1	1	1	0
g5	1	1	1	0	0	1	0	1	1	Q	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	D	1	1	1	0	1	0	0	1	0	1



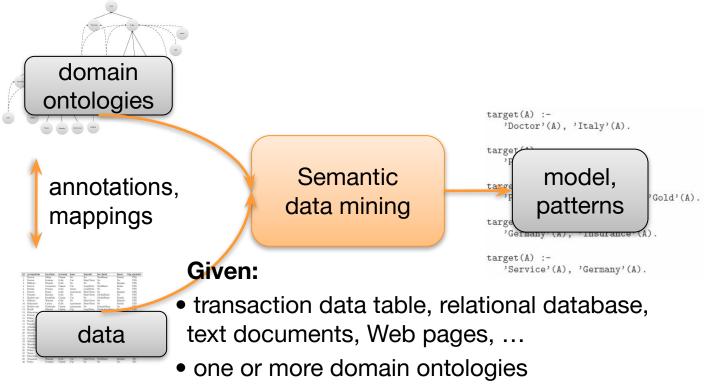
patterns (set of rules)

Relational and Semantic Data Mining

- Relational data mining: Learning from complex relational databases
- Inductive logic programming: Learning from complex structured data, e.g. molecules and their biochemical properties
- Semantic data mining: Learning by using domain knowledge in the form of ontologies



Semantic Data Mining: Using ontologies as background knowledge in RDM



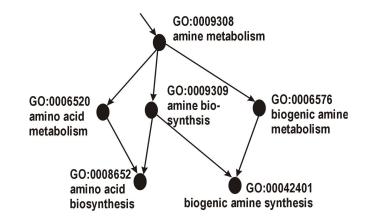
Find: a classification model, a set of patterns

Using domain ontologies

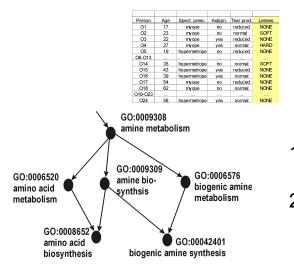
Using domain ontologies as background knowledge, e.g., using the Gene Ontology (GO)

• GO is a database of terms, describing gene sets in terms of their

- functions
- processes
- components
- Genes are annotated
 to GO terms
- Terms are connected (is_a, part_of)
- Levels represent terms generality

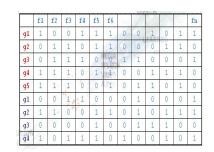


Representation Learning Semantic Data Mining



Step 1 Propositionalization

- constructing relational features
- 2. constructing a propositional table



Approach:

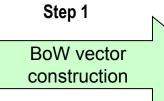
Using relational learning in the SDM context, using a propositionalization approach

Sample application:

 Semantic data mining in a biomedical application by using the Gene Ontology as background knowledge in analyzing microarray data

52

Text mining: Viewed in propositionalization context: BoW data transformation

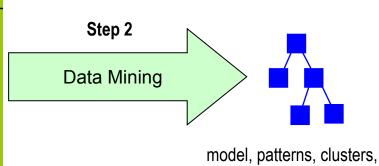


- 1. BoW features construction
- 2. Table of BoW vectors

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO
	d1 d2 d3 d4 d5 d6-d13 d14 d15 d16 d17 d18 d19-d23	d1 1 d2 1 d3 1 d4 1 d5 1 d6-d13 d14 0 d15 0 d16 0 d17 0 d18 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

...

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

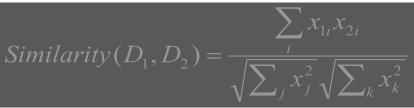


BoW construction: Feature weights and Cosine similarity between document vectors

• Each document D is represented as a vector of TF-IDF weights

$$tfidf(w) = tf.\log(\frac{N}{df(w)})$$

 Similarity between two vectors is estimated by the similarity between their vector representations (cosine of the angle between the two vectors):



 Similarity between BoW vectors can be used for document clustering, i.e. for finding natural groups of documents in an unsupervised way (no class labels pre-assigned to documents)

Embeddings-based Data Transformation for Text mining

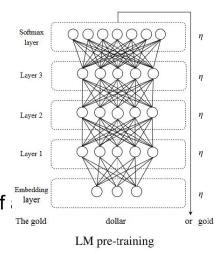
- Corpus embedding,
 Document embedding,
 Sentence embedding,
 word embedding (e.g.,
 word2vec)
 - Transforming documents by projecting documents into vectors (rows of a data table)

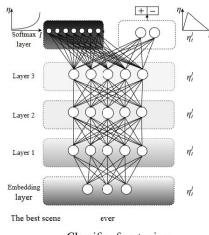
Document	Dim1	Dim2		DimN	Class
d1	0.378	0.222	0.333	0.95	NO
d2					YES
d3					NO
d4					YES
d5					NO
d6-d13					222
d14					YES
d15					NO
d16					NO
d17					NO
d18					NO
d19-d23					
d24	0.198	0.523	0.715	0.263	NO

Embeddings-based Data Transformation for Text mining

- Corpus embedding, Document embedding, Sentence embedding, word embedding (e.g., word2vec)
 - Transforming documents by projecting documents into vectors (rows of a data table)
 - Table values correspond to weights in the embedding layer of neural network

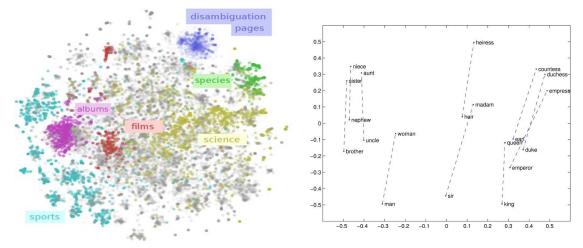
Document	Dim1	Dim2		DimN	Class
d1	0.378	0.222	0.333	0.95	NO
d2					YES
d3					NO
d4					YES
d5					NO
d6-d13					
d14					YES
d15					NO
d16					NO
d17					NO
d18					NO
d19-d23					
d24	0.198	0.523	0.715	0.263	NO





Embedding-based Data Transformation for Text mining

- Corpus embedding, Document embedding, Sentence embedding, word embedding, ...
 - Representations of word meaning obtained from corpus statistics
 - Spatial relationships correspond to linguistic relationships



Data Mining Lesson 1: Summary and Take away messages

- Motivation for studying Machine Learning
 - ML is highly relevant, as motivated by two epidemiology spreading case studies

58

- Course outline should motivate for studying this modern ML approach to become a skilled data scientist
- Introduction to Machine Learning
 - ML basics and illustrative examples were presented for elementary classification and regression learning tasks
 - Three generations of machine learning and data mining methods were outlined
- Representation Learning
 - Representation learning is a highly relevant contemporary ML problem
 - ML basics and illustrative examples were presented for advanced relational, semantic and text mining tasks

Selected literature

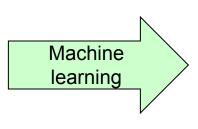
- James G, Witten D, Hastie T and Tibshirani R (1st Edition 2013, 2nd Edition 2021) An Introduction to Statistical Learning with Applications in R. Springer, New York. Available at https://statlearning.com/. Chapters 1 and 2.
- Bramer M (2007) Principles of Data Mining. Springer, Berlin. <u>DOI:10.1007/978-1-84628-766-4</u>. An introductory textbook for refreshing your knowledge on basics of data mining. The first edition of the textbook is also available at<u>ResearchGate</u>, <u>https://www.researchgate.net/publication/220688376</u> Principles <u>of Data Mining</u>
- Lavrač N, Podpečan V and Robnik-Šikonja M (2021) Representation Learning: Propositionalization and Embeddings. Springer, Berlin. Chapters 1 and 2.

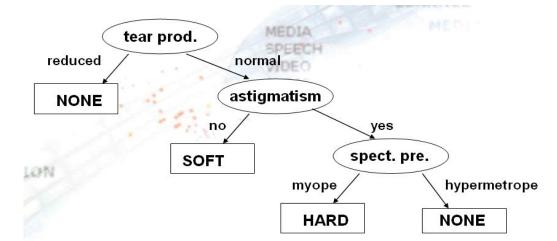
Lesson 2 Decision tree learning

- Basic decision tree learning algorithm
- Classifier evaluation and decision tree pruning
- Selected decision tree learning algorithms
- Regression tree learning

Decision tree learning: an illustrative example

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
02	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
04	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
O6-O13					
O14	ore-presby	hypermetrope	no	normal	SOFT
O15	ore-presby	hypermetrope	yes	reduced	NONE
O16	ore-presby	hypermetrope	yes	normal	NONE
017	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
O24	presbyopic	hypermetrope	yes	normal	NONE





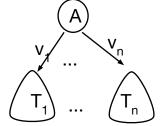
Predictive DM task: Basic notions

- Data are objects, characterized with attributes
 A_i and class-labels C_i
- Objects (data instances, training examples)
 are described with attribute values
- Attributes can be discrete, nominal or numeric
- Classes can be discrete (binary classification) or nominal (multi-class learning) or numeric (regression)
- Classification learning task is to induce a model capable to predict the class-label for a new (unclassified) instance

TDIDT - Decision tree learning algorithm

Elementary decision tree learning algorithm ID3 (Quinlan 1979)

- create the root node of the tree
- if all examples from S belong to the same class C_i
 - then label the root with C_i
- else
 - select the 'most informative' attribute A with values $v_{_1}, v_{_2}, \, \ldots \, v_{_n}$
 - divide training set S into S_1, \dots, S_n according to values V_1, V_2, \dots, V_n
 - recursively build sub-trees T_1, \dots, T_n for S_1, \dots, S_n



Decision tree search heuristics

- Central choice in decision tree algorithms: Which attribute to test at each node in the tree ? The attribute that is most useful for classifying examples.
- Define a statistical property, called **information gain**, measuring how well a given attribute separates the training examples w.r.t their target classification.
- First define a measure commonly used in information theory, called **entropy**, to characterize the (im)purity of an arbitrary collection of examples.

Entropy

- Entropy E(S) measure of impurity of training set S
- In concept learning (binary classification) problems, with training set S labeled by two classes C₁ and C₂

$$E(S) = -p_{+}\log_2 p_{+} - p_{-}\log_2 p_{-}$$

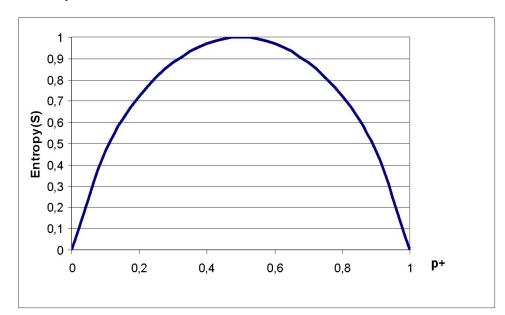
- p₁ prior probability of class C₁ (relative frequency of C₁ in S)
 p₁ prior probability of class C₁
- In **multi-class** learning problems, with training set S labeled by N classes $C_1, C_2, ..., C_N$

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

 $\mathbf{p_c}$ - prior probability of class $\mathbf{C_c}$ (relative frequency of $\mathbf{C_c}$ in \mathbf{S})

Entropy

- $E(S) = -p_{+}\log_2 p_{+} p_{-}\log_2 p_{-}$
- The entropy function relative to a Boolean classification, as the proportion p₁ of positive examples varies between 0 and 1



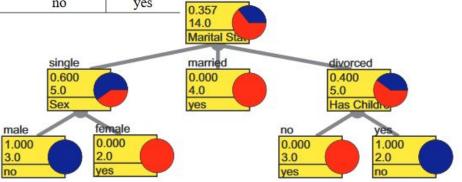
Entropy – why ?

- Entropy E(S) = expected amount of information (in bits) needed to assign a class to a randomly drawn object in S (under the optimal, shortest-length code)
- Why?
- Information theory: optimal length code assigns
 - $\log_2 p$ bits to a message having probability p
- So, in binary classification problems, the expected number of bits to encode + or – of a random member of S is:

$$p_{+}(-\log_2 p_{+}) + p_{-}(-\log_2 p_{-}) = -p_{+}\log_2 p_{+} - p_{-}\log_2 p_{-}$$

Binary classification problem: Survey data

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes



Entropy – example calculation

- Training set S: 14 examples (9 pos., 5 neg.)
- Notation: S = [9+, 5-]
- $E(S) = -p_{+} \log_2 p_{+} p_{-} \log_2 p_{-}$
- Computing entropy, if probability is estimated by relative frequency

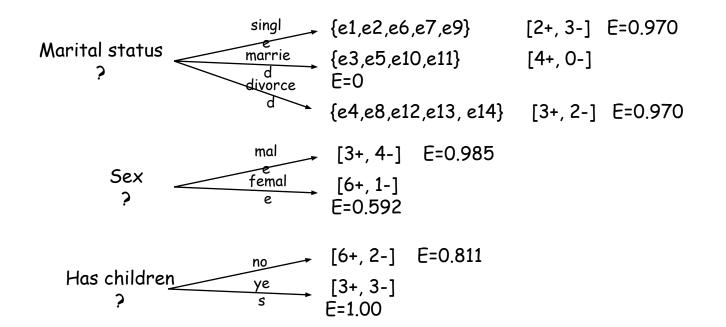
$$E(S) = -\left(\frac{|S_+|}{|S|} \cdot \log\frac{|S_+|}{|S|}\right) - \left(\frac{|S_-|}{|S|} \cdot \log\frac{|S_-|}{|S|}\right)$$

• $E([9+,5-]) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$

= 0.940

Survey data: Entropy

- $E(S) = -p_{+} \log_2 p_{+} p_{-} \log_2 p_{-}$
- $E([9+,5-]) = -(9/14) \log_2(9/14) (5/14) \log_2(5/14) = 0.940$



Information gain search heuristic

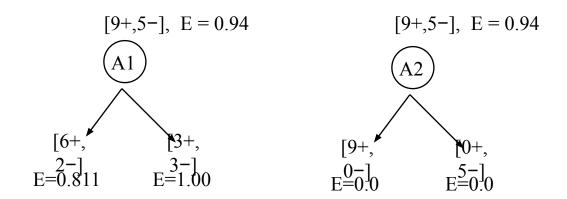
- Information gain measure is aimed to minimize the number of tests needed for the classification of a new object
- Gain(S,A) expected reduction in entropy of S due to sorting on A

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

Most informative attribute: max Gain(S,A)

Information gain search heuristic

• Which attribute is more informative, A1 or A2 ?



- $Gain(S,A1) = 0.94 (8/14 \times 0.811 + 6/14 \times 1.00) = 0.048$
- Gain(S,A2) = 0.94 0 = 0.94
 A2 has max Gain

Survey data: Information gain

$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

• Values(Has children) = {no, yes}

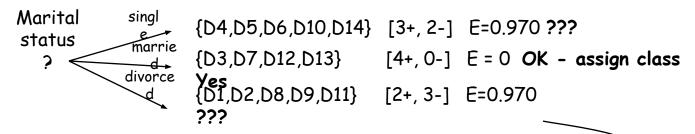
Has children

$$ye$$
 [6+, 2-] E=0.811
 $(3+, 3-]$
 $S = [9+,5-], E(S) = 0.940$
 $S_{no} = [6+,2-], E(S_{no}) = 0.811$
 $S_{yes} = [3+,3-], E(S_{yes}) = 1.0$
Gain(S, Has children) = E(S) - (8/14)E(S_{no}) - (6/14)E(S_{yes}) = 0.940 - (8/14)x0.811 - (6/14)x1.0=0.048

Survey data: Information gain

- Which attribute is the best?
 - Gain(S, Marital status)=0.246 MAX !
 - Gain(S, Sex)=0.151
 - Gain(S, Has children)=0.048
 - Gain(S, Education)=0.029

Survey data: Information gain



• Which attribute should be tested here?

-
$$Gain(S_{divorced}, Sex) = 0.97 - (3/5)0 - (2/5)0 = 0.970$$
 MAX !

- $Gain(S_{divorced}, Has children) = 0.97 (2/5)0 (2/5)1 (1/5)0 = 0.570$
- $Gain(S_{divorced}, Education) = 0.97 (2/5)1 (3/5)0.918 = 0.019$

Alternative probability estimates

Relative frequency :

- Computed as |S+ | / |S|
- problems with small samples

[6+,1-](7) = 6/7[2+,0-](2) = 2/2 = 1

• Laplace estimate :

- assumes uniform prior distribution of k classes
- For k=2, Computed as (|S+|+1) / (|S|+2)

 $\begin{bmatrix} 6+,1- \end{bmatrix} (7) = (6+1) / (7+2) = 7/9$ $\begin{bmatrix} 2+,0- \end{bmatrix} (2) = (2+1) / (2+2) = 3/4$

Heuristic search in ID3

- Search bias: Search the space of decision trees from simplest to increasingly complex (top-down greedy search, no backtracking, prefer small trees)
- Search heuristics: At a node, select the attribute that is most useful for classifying examples, split the node accordingly
- Stopping criteria: A node becomes a leaf
 - if all examples belong to same class C_j, label the leaf with C_i
 - if all attributes were used, label the leaf with the most common value C_k of examples in the node
- Extension to ID3: handling noise tree pruning

Decision tree learning

- Basic decision tree learning algorithm
- Classifier evaluation and decision tree pruning
- Selected decision tree learning algorithms
- Regression tree learning

Classifier evaluation

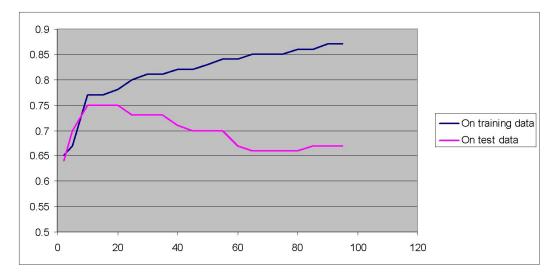
- Evaluation of learned models
 - discovery of new patterns, new knowledge
 - explainability and compactness XAI
 - information contents (information score) significance
 - classification of new objects accuracy
- Evaluating the accuracy of learned models
 - Accuracy, Error = 1 Accuracy
 - high accuracy on testing examples = high percentage of correctly classified unseen instances – high predictive power
 - high accuracy on training examples possible data overfitting

Classifier evaluation

- Evaluation methodology
 - split the example set into training set (e.g. 70%) to induce a concept, and test set (e.g. 30%) to test its accuracy
 - more elaborate strategies: 10-fold cross validation, leave-one-out, ...
- N-fold cross-validation method for accuracy estimation of classifiers
 - Partition set D into n disjoint, almost equally-sized folds T_i where $U_i T_i = D$
 - for i = 1, ..., n do
 - form a training set out of n-1 folds: $Di = D \setminus T_i$
 - induce classifier H_i from examples in Di
 - use fold T_i for testing the accuracy of H_i
 - Estimate the accuracy of the classifier by averaging accuracies over 10 folds T_{i}

Overfitting and accuracy

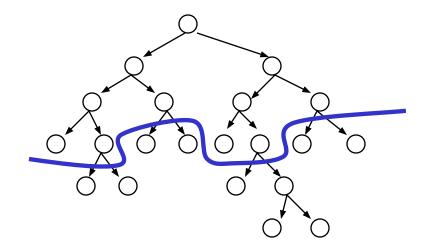
• Typical relation between tree size and accuracy



• Question: how to prune optimally?

Pruning of decision trees

- Avoid overfitting the data by tree pruning
- Pruned trees are
 - less accurate on training data
 - more accurate when classifying unseen data



Handling noise – Tree pruning

Sources of imperfection

- 1. Random errors (noise) in training examples
 - erroneous attribute values
 - erroneous classification
- 2. Too sparse training examples (incompleteness)
- 3. Inappropriate/insufficient set of attributes (inexactness)
- 4. Missing attribute values in training examples

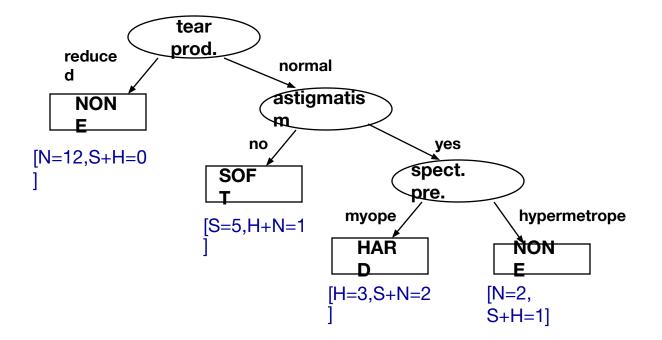
Handling noise – Tree pruning

- Handling imperfect data
 - handling imperfections of type 1-3
 - pre-pruning (stopping criteria)
 - post-pruning / rule truncation
 - handling missing values
- Pruning avoids perfectly fitting noisy data: relaxing the completeness (fitting all +) and consistency (not fitting all -) criteria in ID3

Prediction of breast cancer recurrence: Tree pruning Degree_of_mali ≥ Involved node Tumor_siz S \geq \geq < 15 15 no_recur 125 no_rećur 30 no recur 27 Ag recurrence recurrence recurrence 39 18 10 < ≥40 40/ no_recur 4 no_recur recurrence

no_rec 4 rec1

Pruned decision tree for contact lenses recommendation



Decision tree learning

- Basic decision tree learning algorithm
- Classifier evaluation and decision tree pruning
- Selected decision tree learning algorithms
- Regression tree learning

Selected decision/regression tree learners

- Decision tree learners
 - ID3 (Quinlan 1979)
 - CART (Breiman et al. 1984)
 - Assistant (Cestnik et al. 1987)
 - C4.5 (Quinlan 1993), C5 (See5, Quinlan)
 - J48 (available in WEKA), Tree (in Orange)
- Regression tree learners, model tree learners
 - M5, M5P (implemented in WEKA), Tree (in Orange)

Appropriate problems for decision tree learning

- Classification problems: classify an instance into one of a discrete set of possible categories (medical diagnosis, classifying loan applicants, ...)
- Characteristics:
 - instances described by attribute-value pairs
 - (discrete or real-valued attributes)
 - target function has discrete output values
 (boolean or multi-valued, if real-valued then regression trees)
 - disjunctive hypothesis may be required
 - training data may be noisy (classification errors and/or errors in attribute values)
 - training data may contain missing attribute values

Selected decision tree learners

• Decision tree learners: Tree (in Orange)

Tree

Tree	?	×
Name		
Tree		
Parameters		
Induce binary tree		
Min. number of instances in leaves:		2 🗘
Do not split subsets smaller than:		5 🗘
✓ Limit the maximal tree depth to:	1	00 🗘
Classification		
Stop when majority reaches [%]:		95 🗘
Apply Automatically	r	

Decision tree learning

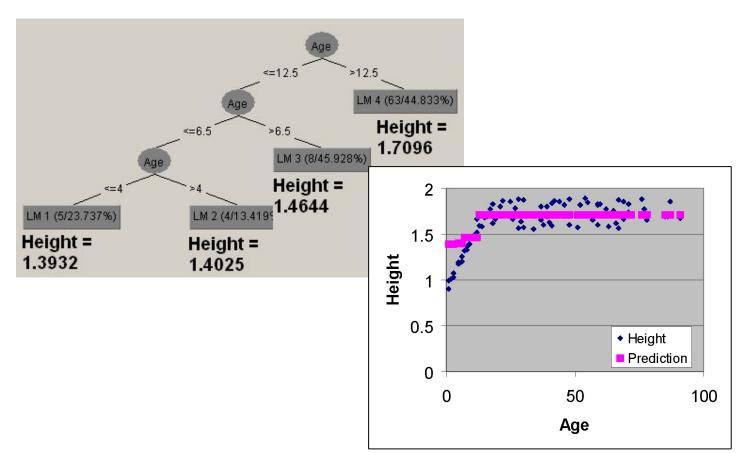
- Basic decision tree learning algorithm
- Classifier evaluation and decision tree pruning
- Selected decision tree learning algorithms

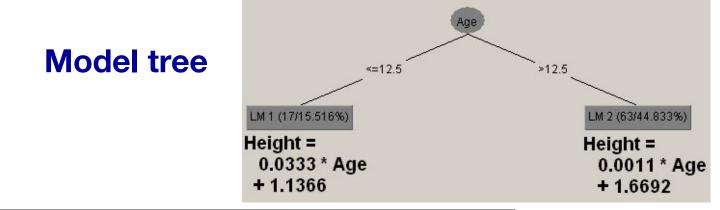
Regression tree learning

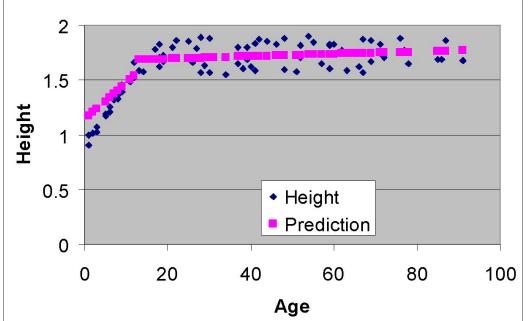
Regression tree learning

- Estimation or regression task: given objects described with attribute values, induce a model to predict the numeric class value
- Data are objects, characterized with attributes (discrete or continuous), classes of objects are continuous (numeric)
- Regression tree learners, model tree learners:
 - M5
 - M5P (implemented in WEKA)
 - Tree (in Orange)

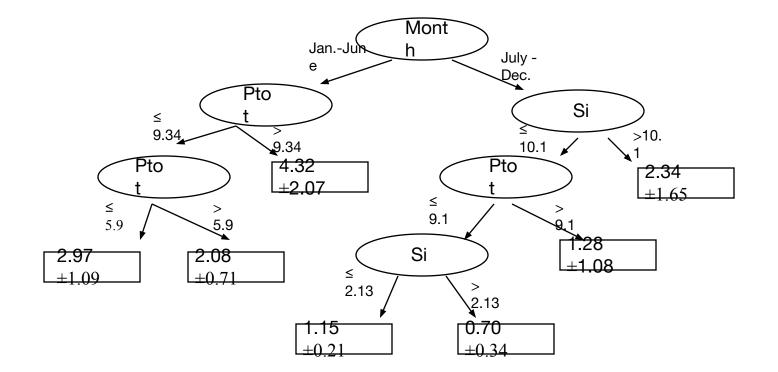
Regression tree







Predicting algal biomass: regression tree



Regression learners: Which predictor is the best?

Age	Height	Baseline	Linear regression	Regression tree	Model tree	kNN
2	0.85	1.63	1.43	1.39	1.20	1.01
10	1.4	1.63	1.47	1.46	1.47	1.51
35	1.7	1.63	1.61	1.71	1.71	1.67
70	1.6	1.63	1.81	1.71	1.75	1.81

Regression	Classification			
Data: attribute-value description				
Target variable:	Target variable:			
Continuous	Categorical (nominal)			
Evaluation : cross validation, separate test set,				
Error:	Error:			
MSE, MAE, RMSE,	1-accuracy			
Algorithms:	Algorithms:			
Linear regression, regression	Decision trees, Naïve Bayes,			
trees,				
Baseline predictor:	Baseline predictor:			
Mean of the target variable	Majority class			

Lesson 2

Summary and Take away messages

- Decision tree learning
 - Addresses classification problems
 - Algorithms use search heuristics to search the space of possible trees in a top-down manner
 - Training data may be noisy tree pruning help dealing with noisy data to improve predictive accuracy on new, unlabeled data
- Regression tree learning
 - Addresses predictive modeling from numeric data
 - Advanced regression tree and model tree learners exist
- Notice different evaluation criteria for classification and regression

Lesson 3: Rule Learning

> Transforming decision trees to rules

- Classification rule learning algorithm
 - Covering algorithm
 - Learning individual rules
- Association rule learning

Converting decision tree to rules, and rule post-pruning (Quinlan 1993)

- Very frequently used method, e.g., in C4.5 and J48
- Procedure:
 - grow a full tree (allowing overfitting)
 - convert the tree to an equivalent set of rules
 - prune each rule independently of others
 - sort final rules into a desired sequence for use

Learning decision trees **Survey data**

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes



Transforming trees to rules: Survey data

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes

IF MaritalStatus = single AND Sex = female THEN Approved = yes

IF MaritalStatus = single AND Sex = male THEN Approved = no

IF MaritalStatus = married THEN Approved = yes

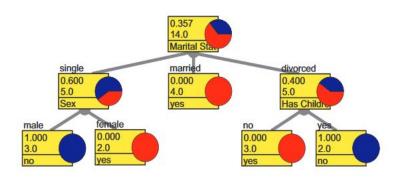
IF MaritalStatus = divorced AND HasChildren = yes THEN Approved = no

IF MaritalStatus = divorced AND HasChildren = no THEN Approved = yes

no (0/5)
no (3/5)
no (0/5)

yes (0/9)	no (2/5)
	1/////

yes (3	/9)	no (0/5)
	1111	100 - 10



102

Pruning classification rules: Survey data

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes

IF MaritalStatus = single AND Sex = female THEN Approved = yes

IF MaritalStatus = single AND Sex = male THEN Approved = no

IF MaritalStatus = married THEN Approved = yes

IF MaritalStatus = divorced AND HasChildren = yes THEN Approved = no

IF MaritalStatus = divorced AND HasChildren = no THEN Approved = yes

1.0

yes (0/9)	no (3/5)
yes (4/9)	no (0/5)
11111	

yes (2/9)

yes (0/9)	no (2/5)		
	(////)		

yes (3/9)	no (0/5)
	100-00

IF MaritalStatus = married THEN Approved = yes	yes (4/9)	no (0/5)
IF Sex = female THEN Approved = yes	yes (6/9)	no (1/5)
IF Sex = male THEN Approved = no	yes (3/9)	no (4/5)

DEFAULT Approved = yes

103

no (0/5)

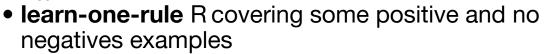
Lesson 3: Rule Learning

- Transforming decision trees to rules
 - Classification rule learning algorithm
 - Covering algorithm
 - Learning individual rules
- Association rule learning

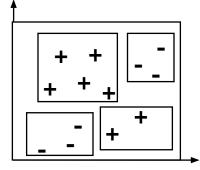
Covering algorithm for binary classification problems (AQ, Michalski 1969,86)

Given examples of 2 classes C₁, C₂ **for** each class Ci **do**

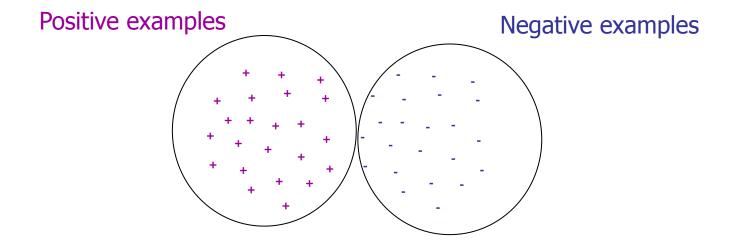
- RuleBase(Ci) := empty
- repeat {learn-set-of-rules}
 - E_{cur} := Pi U Ni (Pi pos., Ni neg.)



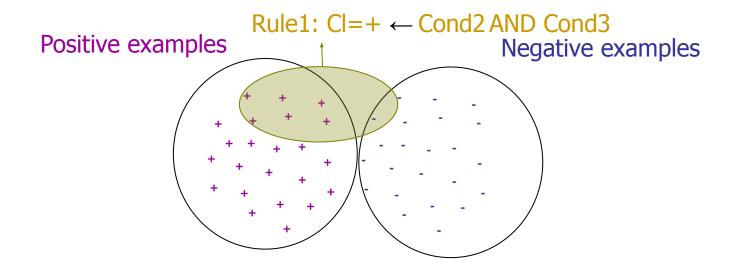
- add R_{cur} to RuleBase(Ci)
- Pi = delete from Pi all pos. ex. covered by R
- until Pi = empty



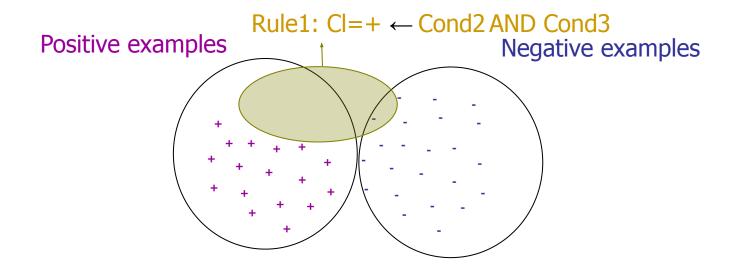
Covering algorithm



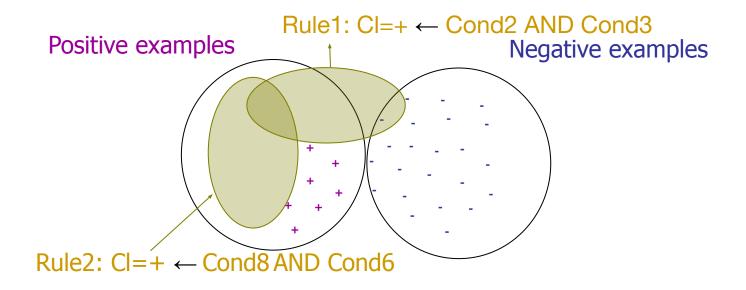
Covering algorithm



Covering algorithm



Covering algorithm



Principles of learning classification rules

Education	Marital Status	Sex	Has Children	Approved
primary	single	male	no	no
primary	single	male	yes	no
primary	married	male	no	yes
university	divorced	female	no	yes
university	married	female	yes	yes
secondary	single	male	no	no
university	single	female	no	yes
secondary	divorced	female	no	yes
secondary	single	female	yes	yes
secondary	married	male	yes	yes
primary	married	female	no	yes
secondary	divorced	male	yes	no
university	divorced	female	yes	no
secondary	divorced	male	no	yes

Important notions:

•Rules are learned separately for each class (e.g., separately for two classes: Yes and No)

•Aiming at large "coverage" of the target class

- Large coverage of class Yes when learning rules for class Yes
- Large coverage of class No when learning rules for class No

•Default (majority class) rule is added when coverage becomes low (below some user-defined rule pruning parameter)

Multi-class learning: One-against-all learning strategy

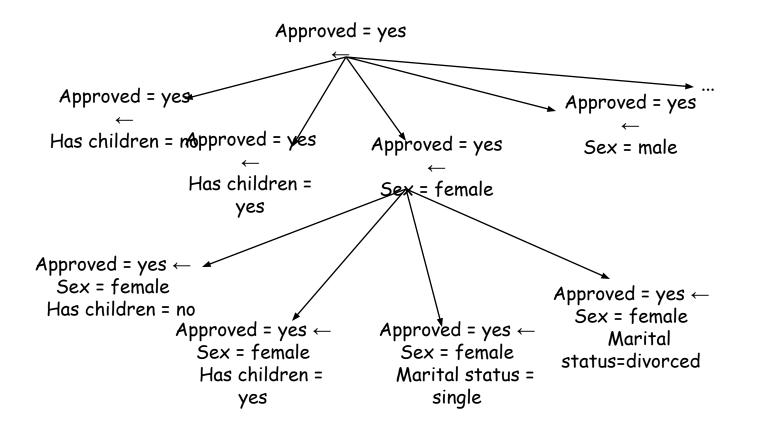
Fig. 10.2: A multiclass classification

Fig. 10.4: The six binary learning problems that are the result of one-against-all class binarization of the multiclass dataset of Figure 10.2.

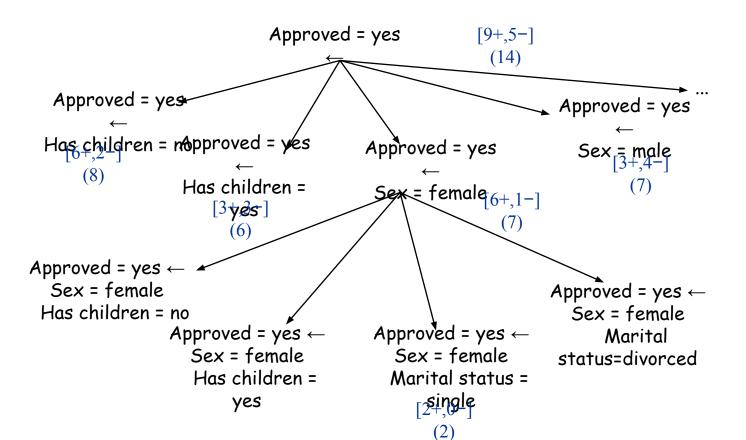
Learn-one-rule: Search mechanism and heuristics

- Assume a two-class problem
- Two classes (+,-), learn rules for + class (Cl)
- Search for specializations R' of a rule R = CI ← Cond from the RuleBase
- Specialization R' of rule R = CI ← Cond has the form R' = CI ← Cond & Cond'
- Heuristic search for rules: find the best Cond' to be added to the current rule R, such that rule accuracy is improved, e.g., such that Acc(R') > Acc(R)
 - where the expected accuracy (precision) of a rule can be estimated as A(R) = p(CI|Cond)

Learn-one-rule as heuristic search: Survey data



Learn-one-rule as heuristic search: Survey data



Probability estimates for calculating rule accuracy

- Relative frequency :
 - problems with small samples

 $p(Class | Cond) = \frac{n(Class.Cond)}{n(Cond)}$

[6+,1-](7) = 6/7[2+,0-](2) = 2/2 = 1

- Laplace estimate :
 - assumes uniform prior distribution of k classes

 $=\frac{n(Class.Cond)+1}{n(Cond)+k} \quad k=2$

 $\begin{bmatrix} 6+,1- \end{bmatrix} (7) = (6+1) / (7+2) = 7/9$ $\begin{bmatrix} 2+,0- \end{bmatrix} (2) = (2+1) / (2+2) = 3/4$

115

Learn-one-rule: Beam search in CN2 (Clark and Niblett 1989)

- Beam search in CN2 learn-one-rule algorithm:
 - construct BeamSize of best rule bodies (conjunctive conditions) that are statistically significant
 - BestBody min. entropy of examples covered by Body
 - construct best rule R := Head

 BestBody by adding majority class of examples covered by BestBody in rule Head
- A variant of CN-2 is implemented in Orange toolbox
- Best performing rule learning algorithm is Ripper JRip implementation of Ripper is implemented in WEKA toolbox

CN2 rule learner in Orange

CN2 Rule Induction

porithm	
γ: 0.70	*
/	•
	5 \$
	1 🗘
	hinter
	1 🗘 5 🗘
	gorithm

Lesson 3: Rule Learning

- Transforming decision trees to rules
- Classification rule learning algorithm
 - Covering algorithm
 - Learning individual rules
 - Association rule learning

Association Rule Learning

Rules: $A \square B$, if A then B

- A and B are itemsets (records, conjunction of items), where items/features are binary-valued attributes)
- Given: Transactions
 i1
 i2
 i50

 itemsets (records)
 t1
 1
 0

 t2
 0
 1
 0

Find: A set of association rules in the form A □ B
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)

- Support: Sup(A,B) = #AB/#D = p(AB)
- Confidence: Conf(A,B) = #AB/#A = Sup(A,B)/Sup(A) = = p(AB)/p(A) = p(B|A)

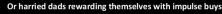
Association Rule Learning: Motivation

What people buy in a given shopping experience.

- . 25 Osco Drug stores
- . 1.2 million market baskets

(A market basket is the stuff you put in the physical cart and check out at the register.)

. An unexpected pattern



Between 5p.m. and 7p.m. **diapers** \Box beer

http://www.dssresources.com/newsletters/66.php

Association Rule Learning: Motivation

- Determine associations between groups of items bought by customers.
- No predefined target variable(s).
- Find interesting, useful patterns and relationships.
- Data mining, business intelligence.

* Terminology from market basket analysis (transactions, items, itemsets, ...)

Support and Confidence

- The dataset consists of **n** transactions
- We have an association rule $A \square B$

The **support** of an itemset A is defined as the fraction of the transactions in the database $T = \{T1 \dots Tn\}$ that contain A as a subset.

The **confidence** of the rule $A \square$ B is the conditional probability of A and B occurring in a transaction, given that the transaction contains A.

$$supp(A \to B) = \frac{|A \land B|}{n} \qquad \qquad conf(A \to B) = \frac{|A \land B|}{|A|} = P(B|A) \qquad \qquad supp(A) = \frac{|A|}{n}$$

Association Rule Learning: Examples

- Market basket analysis
 - beer & coke ⇒ peanuts & chips (5%, 65%)
 (IF beer AND coke THEN peanuts AND chips)
 - Support 5%: 5% of all customers buy all four items
 - Confidence 65%: 65% of customers that buy beer and coke also buy peanuts and chips
- Insurance
 - mortgage & loans & savings \Rightarrow insurance (2%, 62%)
 - Support 2%: 2% of all customers have all four
 - Confidence 62%: 62% of all customers that have mortgage, loan and savings also have insurance

Survey data association rule learning

Education	Marital Status	Sex	Has Children	Approved	AND	Sex = female	yes (2/9)	no (0/5)
primary	single	male	no	no	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Approved = yes		1
primary	single	male	yes	no		inpproved yes		
primary	married	male	no	yes	TE	Manital Chatura - single		
university	divorced	female	no	yes		MaritalStatus = single	yes (0/9)	no (3/5)
university	married	female	yes	yes		Sex = male	363 (00)	110 (0,0)
secondary	single	male	no	no	THEN	Approved = no		///////////////////////////////////////
university	single	female	no	yes				
secondary	divorced	female	no	yes	IF	MaritalStatus = marrie	edyes (4/9)	no (0/5)
secondary	single	female	yes	yes		Approved = yes		
secondary	married	male	yes	yes	THEN	Approved - yes		2
primary	married	female	no	yes				
secondary	divorced	male	yes	no	IF	MaritalStatus = divord		
university	divorced	female	yes	no	AND	HasChildren = yes	yes (0/9)	no (2/5)
secondary	divorced	male	no	yes	THEN	Approved = no		/////>
			ation = fema		versi	ty support (4/14)	confidence (4/4)	
	THEN	Sex	- rema	re				
	IF	Appr	oved =	no		support (4/14)	confidence (4/5)	
THEN Sex = male								
	TURN	Ser	- mare			· · · · · ·	N.	
	IF Education = sec				ndar			
	AND	Mari	talSta	tus =	divo	rced support (2/14)	confidence (2/3)	
			hildre					
	A LIGHT	nasc	TTTATE	11 - 110	/		111111111	
			oved =			V21 V31 V31 V		

Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions that have

- user defined minimum support, i.e., support > MinSup, and
- user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis verification

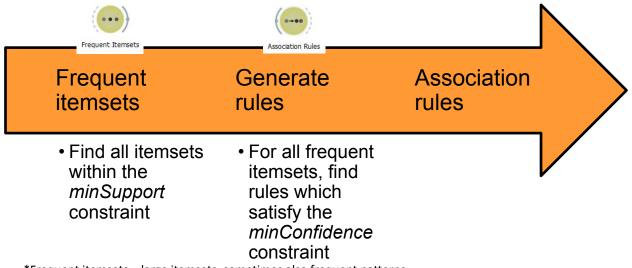
Searching for associations

- Find all large itemsets
- Use the large itemsets to generate association rules
- If XY is a large itemset, compute
 r =support(XY) / support(X)
- If r > MinConf, then X → Y holds
 (support > MinSup, as XY is large)

Large itemsets

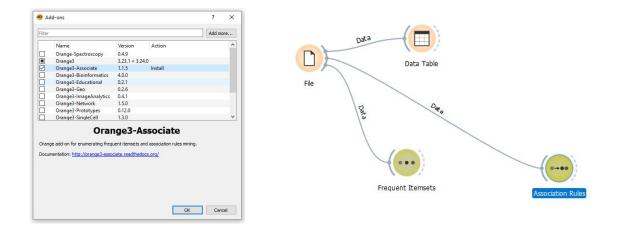
- Large itemsets are itemsets that appear in at least MinSup transaction
- All subsets of a large itemset are large itemsets (e.g., if A,B appears in at least MinSup transactions, so do A and B)
- This observation is the basis for very efficient algorithms for association rules discovery (linear in the number of transactions)

Apriori algorithm



*Frequent itemsets = large itemsets, sometimes also frequent patterns

Association rules: Orange workflow



* Start with a small minSupport and we increase it gradually (to avoid running out of memory)

Association vs. Classification rules rules

- Exploration of dependencies
- Different combinations of dependent and independent attributes
- Complete search (all rules found)

- Focused prediction
- Predict one attribute (class) from the others
- Heuristic search (subset of rules found)

Lesson 3

Summary and Take away messages

- Classification rule learning addresses classification problems
- Algorithms use search heuristics to search the space of possible rules in a general-to-specific manner
- Training data may be noisy rule truncation help dealing with noisy data to improve predictive accuracy on new, unlabeled data
- Association rule learning is an example of descriptive induction algorithms, aimed at finding interesting patterns in data

Lesson 1 - 3 Summary and Take away messages

