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Introduction to Data Mining

»Basics of Machine Learning
« Standard learning tasks
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« Advanced learning tasks




Basics of Machine Learning

e \What is Machine Learning (ML)

— Area of computer science, concerned with the
development of computer algorithms that learn from

data
Input: Data Output: Model
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Basics of Machine Learning

e QOrigins of terms

— Term Machine learning comes from early Al research in 1960s
and 1970s: Perception of learning algorithms as “machines”,
able to learn (generalize) from data automatically, without
human intervention

— Term Inductive learning refers to the capability of learners to
generalize — to automatically induce models from data

— Term Symbolic learning refers to the capability of learners to
induce explainable knowledge from data - XAl

Input: Data Output: Explainable knowledge

W




Basics of Machine Learning

e Two basic learning settings

- Symbolic learning — inducing explainable predictive
models, such as decision trees or classification rules

Input: Data

Person _Age  Spect presc Asigm Tearprod. _Lenses
17 myo 1

Output: Model

Symbolic

learfing
ML >

Explainable predictive
model

- Sub-symbolic (neural) learning — inducing black-box
classifiers, such as neural networks

Input: Data

e wa e OUD-SYMbolic learning

>

Black-box
classifier



Basics of Machine Learning

e Early history of symbolic learning algorithms:
— Early rule learning algorithms: AQ (Michalski 1969), ...

— Early decision tree learning algorithms since 1970s: ID3
(Quinlan 1979), ...

— Early regression tree learners CART (Breiman et al. 1984), ...
— Advantage: explainable models, but less accurate classifiers

» Sub-symbolic (neural) learning algorithms

— Early perceptron (Rosenblatt 1962), backpropagation neural
networks (Rumelhart et al. 1986), ...

— Modern deep neural networks (Hinton & Salakhutdinov 2006,
Goodfellow et al. 2016), ...

— Advantage: more accurate classifiers, but black-box models



Basics of Machine Learning

e Learning tasks depend on the type of input data and
the goal of learning
— tabular data — prediction and classification, clustering, ...

— relational databases - relational learning, inductive logic
programming, ...

— graphs — network analysis, social network analysis, link
prediction, node classification, network completion, ...

— texts — text mining, sentiment analysis, hate speech
detection, ...

— Web pages - Web page recommendation, ...

— heterogeneous data and heterogeneous information
networks — classification of data instances, node
classification, link prediction, ...



Basics of Machine Learning

e Definition of a standard machine learning task

- Given: class-labeled data set (e.g., transaction data table,

relational database, text documents, Web pages, ...)
- Find: a classification model, able to predict new instances

Spect. presc. _ Astigm. Tear prod. Lenses

Person Age
o1 17 myope
02 23 myope
o3 22 myope
o4 27 myope
05 19 hypermetrope
06-013 - -
014 35 hypermetrope
o015 43 hypermetrope
0o16 39 hypermetrope
o17 54 myope
018 62 myope
019-023 .
024 56 hypermetrope
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no
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no

yes

reduced
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reduced
normal
reduced
normal
reduced
normal
reduced
normal

normal

NONE
SOFT
NONE
HARD
NONE
SOFT
NONE
NONE
NONE
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NONE

Machine
Learning

classification model
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Basics of Machine Learning

e Standard machine learning scenario
1. Use a ML algorithm to learn a predictive model from

class-labeled data

2. Use the induced model to predict the class of new

(unlabeled) data instances

new unclassified instance

new unclassified instance

classified instanc;%
symbolic model i .

explanation Lha b

classified instance

black box classifier
no explanation



Basics of Machine Learning
lllustrative example: Contact lens data set

Person Age Spect. presc. Astigm. Tear prod. Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT

015 43 hypermetrope yes reduced NONE

016 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

018 62 myope no normal NONE
019-023

024 56 hypermetrope yes normal NONE



Basics of Machine Learning
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Decision tree learning from Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
04 young myope yes normal HARD
05 young | hypermetrope no reduced  NONE Data Mlnlng
06-013
014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE
019-023
024  presbyopic hypermetrope yes normal NONE
tear prod.

NONE

reduced /

Nﬁ)rmal

no/

SOFT spect. pre.

myope/ \hypermetrope

HARD NONE




Basics of Machine Learning
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Rule learning from Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

o1 17 myope no reduced NONE 3
o2 23 myope no normal SOFT MaCh Ine
o3 22 myope yes reduced NONE Lea rn | ng
o4 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013
014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE reduced N?rmal
016 39 hypermetrope yes normal NONE
o17 54 myope no reduced NONE
o18 62 myope no normal NONE

019-023 . e e
024 56 hypermetrope ves normal NONE

myope hypermetrope
HARD NONE

lenses=NONE « tear production=reduced

lenses=NONE « tear production=normal AND astigmatism=yes AND
spect. presc.=hypermetrope
lenses=SOFT « tear production=normal AND astigmatism=no
lenses=HARD « tear production=normal AND astigmatism=yes AND

spect. presc.=myope

lenses=NONE «



Basics of Machine Learning
Data Mining

dat
o]

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
o3 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013 .
014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE

019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining

patterns

Given: class labeled or non-labeled data
Find: a set of interesting patterns, explaining the data

|

IF

Tear prod. = reduced

THEN

Lenses = NONE

symbolic patterns

explanation
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Basics of Machine Learning
Pattern discovery from Contact lens data

Person Age  Spect. presc. Astigm. Tearprod. Lenses PATTERN

O1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE Rule:
O4 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE IF
06-013 Tear prod. =
014 35 hypermetrope no normal SOFT reduced
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE THEN
017 54 myope no reduced NONE _
018 62 myope no normal NONE Lenses =
019-023 NONE

024 56 hypermetrope yes normal NONE
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Basics of Machine Learning
Summary

e Basic definition of Machine Learning

— Computer algorithms/machines that learn predictive models from
class-labeled data

o Extended definition of Machine Learning - Used
interchangeably with the term Data Mining

— computer algorithms/machines that learn patterns or models
from class-labeled or non-labeled data

— sometimes used to denote the practical use of ML techniques
applied to solving real-life data analysis problems
e Deep Learning - Used in popular literature interchangeably
with the term Al ??



Introduction to Data Mining

« Basics of Machine Learning

Standard learning tasks
« Three generations of machine learning

« Advanced learning tasks
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Binary Classification

Person Age  Spect. presc. Astigm. Tear prod.| Lenses

o1 17 myope no reduced NO
02 23 myope no normal YES
o3 22 myope yes reduced NO
o4 27 myope yes normal YES
05 19 hypermetrope no reduced NO
06-013
O14 35 hypermetrope no normal YES
o15 43 hypermetrope  yes reduced NO
016 39 hypermetrope  yes normal NO
o17 54 myope no reduced NO
018 62 myope no normal NO
019-023 ..
024 56 hypermetrope  ves normal NO

Binary classes
*positive vs. negative examples of Target class
*Concept learning — binary classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Multi-class Learning Task

Person Age  Spect. presc. Astigm. Tear prod.| Lenses

o1 17 myope no reduced NONE
02 23 myope no normal SOFT
o3 22 myope yes reduced NONE
o4 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE
06-013 ..
O14 35 hypermetrope no normal SOFT
o15 43 hypermetrope  yes reduced NONE
016 39 hypermetrope  yes normal NONE
o17 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 no
024 56 hypermetrope no normal NONE

Several class labels of training examples of a single Target
attribute



Multi-target Classification

Person Age  Spect presc. Astigm. Tear prod.
o1 17 myope no reduced
o2 23 myope no normal
o3 22 myope yes reduced
o4 27 myope yes normal
05 19 hypermetrope no reduced

06-013 . e v v
O14 35 hypermetrope no normal
O15 43 hypermetrope yes reduced
O16 39 hypermetrope yes normal
o17 54 myope no reduced
018 62 myope no normal

019-023 .
024 56 hypermetrope ves normal

Multi target classification
— each example belongs to several Target classes



Learning from Numeric Class Data

Person Age Spect. presc. Astigm. Tear prod. LensPrice
O1 17 myope no reduced 0
02 23 myope no normal 8
o3 22 myope yes reduced 0
04 27 myope yes normal 5
05 19 hypermetrope no reduced 0

06-013 .

014 35 hypermetrope no normal 5
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
o17 54 myope no reduced 0
018 62 myope no normal 0
019-023 .
024 56 hypermetrope yes normal 0

Numeric class values — regression analysis



Example regression problem
e data about 80 people: Age and Height

Age | Height

5 3 1.03

PE NG NN P S TR 5 119

I R IRC RS 5 | 126

' } g 1.39

< 15 169
-5-’5’ 1 ¢ 19 | 167
A5 1.86

0.5 25 1.85

¢ Height 41 159

0 w 48 1.60

0 50 100 54 1.90

Age 71| 182




e Average of the target variable

Baseline nhumeric model
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Baseline numeric predictor

e Average of the target variable is 1.63

25

2
1.8 1
1.6 1
1.4
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10 1.4
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Height =

Linear Regression Model

0.0056 * Age + 1.4181
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Regression tree
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Simple sub-symbolic classifier:
K nearest neighbors (kNN)

e | ooks at K closest examples (by age) and predicts the
average of their target variable

e K=3

?gg | 0 mL.* . * *
; . gy E -y g’ !'0_1 LK
1.60 *® o (3
1.40 H

£ 120

L

5 1.00 i.l

T 080
0.60 )
0.40 * Height
0.20 " Prediction KNN, n=3
0.00 ; ; ' '

0 20 40 60 80 100
Age
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Introduction to Data Mining
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Three generations of machine learning
« Advanced learning tasks
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First Generation Machine Learning

¢ First machine learning algorithms for

— Decision tree and rule learning in 1970s and early 1980s
by Quinlan, Michalski et al., Breiman et al., ...

e Characterized by
— Learning from data stored in a single data table
— Relatively small set of instances and attributes

e Lots of ML research followed in 1980s

— Numerous conferences ICML, ECML, ... and ML
sessions at Al conferences IJCAI, ECAI, AAAI, ...

— Extended set of learning tasks and algorithms
addressed

30
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Second Generation Machine Learning

Developed since 1990s:

— Focused on data mining tasks characterized by large
datasets described by large numbers of attributes

— Addressing the entire process of Knowledge Discovery in
Databases (KDD): process understandable models or
patterns in data

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for
Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

— CRISP-DM methodology
- KDD buzzword since 1996

Ed 7kt z 122 5
s - 25 == = zTZ =
(3] B =0 = == =
b | @ (3E| 2 H S
- = o - g — b L <
g % hrel T w << " = u>.: ~
Background | & == =1 | o | === |£° S
knowledge g - < cEE—— x — —
\-‘ &~ o S o= 2 =
- — - =
P =

. Preprocessed | Transformed . Models |
Data [ data ‘ data [ Patterns Knowledge

Data 7




Second Generation Machine Learning
KDD Process

3 =2 3 22 3
- = R 22| T = z= =
= | & - = < - == - =
o =8 3 uj = = =
- 5 g e o= = = = -
= Background ] 2 z° _
i knowledg g = 5 = e e
—— & = =3
= = —
= E
- ———
- - Preprocesse d . Transforme Models
Data I D I dat I d atterns Knowledge

e KDD process (CRISP-DM methodology) involves several phases:
- data preparation
- machine learning, data mining, statistics, ...
- evaluation and use of discovered patterns

e Machine Learning / Data Mining is the key step in the process

- performed using machine learning or pattern mining techniques for
extracting classification models or interesting patterns in data

- this key step represents only 15%-25% of entire KDD process
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Second Generation Machine Learning
— Industrial KDD standard: CRISP-DM methodology (1997)

SELECTION
TRANSFORMATION
DATA MINING
n
EVALUATION

Data -
il
— New conferences on practical aspects of data mining and
knowledge discovery: KDD, PKDD, ...

— New learning tasks and efficient learning algorithms:

e Learning descriptive patterns: association rule learning,
subgroup discovery, ...

e Learning predictive models: Bayesian network learning,
Support Vector Machines, relational data mining, ...

MACHINE LEARNINC

-

-

:
g2
-

3

n

e

'




Second Generation Machine Learning 3

Subgroup Discovery learning task

e Data transformation:

- binary class values
(positive vs. negative
examples of Target class)

e Subgroup discovery:

- atask in which individual
interpretable patterns in
the form of rules are
induced from data,
labeled by a predefined
property of interest.

4

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
04 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013 .
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO
Class A \ Class B

3\
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Second Generation Machine Learning
Relational Data Mining task

customer
ID |Zi S |So [Iln_ |A|CI |Re .
7| e[S fctmelgelsb |5 knowledge discovery

3478(34677|m [si 60-70[32]mear from data

3479(43666|f |ma|80 45(nm|re
/ order . o0
B B T e [ooae Relational Data Mining
s [ranra g s
3478 344677812 express [check

3478 4728386(17 {regular  |check

3479 3233444|17 xpress  |credit
3479 3475886|12 egular  |credit mOdel, pattemS,

\

store
Store ID|Size |Type  |Location
12 small (franct
17 large indep  [rural
Relational repr ion of cust: , orders and stores.

Given: a relational database, a set of tables, sets of logical
facts, a graph, ...
Find: a classification model, a set of patterns
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Second Generation Data Mining
Platforms

Orange, WEKA, KNIME, RapidMiner, ...

— include numerous data mining algorithms

— enable data and model visualization

— like Orange, Taverna, WEKA, KNIME, RapidMiner,
also enable complex workflow construction



Second Generation Machine Learning ~
Big Data

e Big Data — Buzzword since 2008 (special issue
of Nature on Big Data)

— data and techniques for dealing with very large
volumes of data, possibly dynamic data streams

— requiring large data storage resources, special
algorithms for parallel computing architectures.
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Second Generation Machine Learning
The 4 Vs of Big Data

As of 2011, the global size of
data in healthcare was
estimated to be

150 EXABYTES

161 BILLION GIGABYTES |

By 2014, it's anticipated
there will be

420 MILLION
WEARABLE, WIRELESS
HEALTH MONITORS

It's estimated that

2.5 QUINTILLION BYTES
[ 2.3 TRILLION GIGABYTES

of data are created each day

40 ZETTABYTES

[ 43 TRILLION GIGABYTES |

of data will be created by
2020, an increase of 300
times from 2005

The
FOUR V’s
of Big
Data

2029
U

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

6 BILLION
PEOPLE

have cell
phones

30 BILLION
From traffic patte d music do PIECES OF CONTENT
history and medical records, data is record ‘e shara:on Facebook
A ed, and anal enable the y every month
Most companies in the
U.S. have at least ah eioes B o 400 MILLION TWEETS
100 TERABYTES - e i n [ £] o <] are sent per day by about 200
= million monthly active users

110,000 GIGABYTES | [ £]

'WORLD POPULATION: 7 BILLION of data stored

. Modern cars have close to

The New York Stock Exchange - ending on the inc Poor data quality costs the US
captures @ e 00 SENSORS data encompasse: economy around
171B OF TRADE ( hat monitor items such as internal and external s T et st $3.1 TRILLID VEA
cial
INFORMATION ) Pl fevel g Grepressins il ey USe to s decisions

riny radil ion
during gach Gading sessio adapt their products and services to better meet

customer needs, optimize operations and

nfrastructure, and find new sources of revenue.

Velocity

ANALYSIS OF 44 wiﬂunn ITJOBS
STREAMING DATA will be create 7

Veracity

L v UNCERTAINTY
- OF DATA

in one survey were unsure of
how much of their data was
inaccurate

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYYYYYYYYYY
amozeeme GO RGRRER DD

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS




Second Generation Machine Learning ~
Data Science

e Data Science — buzzword since 2012 when
Harvard Business Review called it "The Sexiest
Job of the 21st Century"

— an interdisciplinary field that uses scientific
methods, processes, algorithms and systems
to extract knowledge and insights from data in
various forms, both structured and
unstructured, similar to data mining.

— used interchangeably with earlier concepts
like business analytics, business intelligence,
predictive modeling, and statistics.
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Third Generation Machine Learning

e Developed since 2010s:
— Focused on big data analytics
— Addressing complex data mining tasks and scenarios

— New conferences on data science and big data
analytics; e.g., IEEE Big Data, Complex networks, ...

— New learning tasks and efficient learning algorithms:

e Analysis of dynamic data streams, Network analysis,
Semantic data mining, Text mining, ...

— Lots of emphasis on automated data transformation,
I.e. representation learning

SELECTION
MANUAL
PREPROCESSING
DATA MINING
EVALUATION

TRANSFORMATION
MACHINE LEARNING




Third Generation Machine Learning

e Representation learning in the KDD process

MANUAL

PREPROCESSING

SELECTION
f
DATA MINING
|
LB
3
o
EVALUATION

&, l Background
— . knowledge

' . Preprocessed Transformed ' Models
Data ‘ Data [ data l data I Patterns Knowledge

NP

TRANSFORMATION
MACHINE LEARNING

mlw

e Representation learning = Automated data transformation,
performed on manually preprocessed data

¢ Data transformation requires handling heterogeneous data
— Data (feature vectors, documents, pictures, data streams, ...)

— Background knowledge (multi-relational data tables, networks, text
corpora, ...)



Current Generation Machine Learning

Automated representation learning without manual data
preprocessing

Using pre-trained deep neural networks for handling
heterogeneous data
— Data (feature vectors, documents, picture

— Using pre-trained deep neural networks for handling heterogeneous
data

Transformer architectures allowing to adapt deep learning
models to new tasks

Using open source Large Language Models for handling text
data

Machine Learning = Al ?
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Representation Learning
Relational Data Mining

D [7ip ]S [So[ln ACIE

* Relational data (R
mining: Learning from B i

complex relational ' o
Mutagenesis B [ P [eae
databases

3478 3446778|12 express  |check
3478 4728386|17 regular  |check
379 (323344417 ?pless credit

3479 347588612 gular  |credit

¢ Inductive logic

programming:

Store ID[Size |Type |Locati

Learning from complex C s
structured data, e.qg. i e, e s

molecules and their
biochemical properties



Representation Learning
Relational Data Mining

» Representation learning in a relational learning setting:
- automated transformation of multi-relational data

DATA MINING
|
) |
-

TRANSFORMATION>
|
|

MACHINE LEARNING

"

Relations . Transformed

data

Models
Patterns

o

e Two main approaches:

- Traditional approach: Propositionalization of relational
databases, heterogeneous information networks, ...

- Recent approach: Embedding of knowledge graphs,
network node embeddings, entity embeddings, ...



Representation Learning
Relational Data Mining

D [Zip [S |§o I [ATCI [Re
/ ex|St |come|ge|yb [sp
Step 1 AP
3478|346 77|m [si |60-70|32|me [nr - -
3479(43666|f [ma(80-90|45(nmre gl| 1 (0|0 1
. MR
g0 (1|1
order g 0 .
s g o ook i Propositionalization wl |1
D 1D D} [Mode * |Mode
(-3 I
3478 2140267(12 \ regular  [cash glfof0]1
3478 3446778/ 12 express |check -
3478 472838617 regular  [check g2 |1 [1s]0
3479 3233444|17 xpress |credit @lofoo
3479 3475886/ 1 gular  |credit g ~
01

ole|lw|ale|—

T 1. construct relational =L

—

lsbe st ShoveLacntion features
12 [l sty 2. construct a
propositional table

ion of orders and stores.



Representation Learning
Relational Data Mining

come (ge|yb |Sp

I/P Zip estgln A[CI [Re

Step 1 £1]£2 | £3 ] 64 ] £5 | £6
347534677 /m [si [60-70[32]me [nr - L :
3479|3666/f [ma|50-90(15/mire guf1fofolea]afofolafo]n
o fe e e - elofelelofaafololo]2]2]o
glofrleo{oP@alr]o]o]0
order - H -
e g e o o Propositionalization i e o]
| [Mode  [Mode Slt|t]r]ofofafalz]t]o]1]o
378 214026712 \;e:gula.r cash alolalaftlalo]olzlo]o]e
3478 3446778|12 express |check ] T - -
3478 4728386(17 regular  |check 20T [ N I O I I I
3479 3233444|17 xpress |credit @lofolo]o z | = 11100
3479 34758861 gular  [credit gl = _ _ i 5
PR A : flelolelefalole]o]ale]o
| 1. construct relational :
it
It o[ e ot features
- e e -
I e i 2. construct a
‘ propositional table
of orders and stores.

f1|£2 | £3 | £4 | £5 | £6 fn St p 2
gl|1(0 0 11|11, |.08mf it 0|1 |1 e
g2|0f1]1]0 1 [CEEORIMAE =0 | 1 | 1|0
gg|o0f11(f1]0 ™1 00|01 . .
ARBORADRRRE Machine Learning
(- (1 I e PR I 0 o120 L]0
gl 0|0 1,170 pjof1rfojojoj|1l
g2|1(1]0 0 1(1(0j21fj0|1]1]1
g3| 0 (0 0 0 1({ofoj1j1]1]0]¢0
gd| 1|0 11 )1{of1fojoj1ryjofl

classification model
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Representation Learning
Relational Data Mining

Step 1 L[| 83|64 |65 |6 fu
3478(34677|m [si {60-70|32|me |ar Il 3 )
3479|136661f | ma|80-00/45/amlre gtrfofofrfr]ejojofalof1]:
|0 l1]1]0 SN
@glofr|afa|o™Ya]a|ofo]o]|1
order iy . .
rcomer orderore ey [Py Propositionalization gt [o[tfalofo]t]t]r]o
D D D \ [Mode * |Mode Slil1]1]0]0 . T Tolilo
378 [2140267(12 \;efguuu cash glolo1 oot
3478 3446778|12 express |check L A -
3478 4728386(17 regular  |check 2T [ N o T O O I O O I O I P I
3479 3233444|17 xpress |credit . gg|ofofjofofrfojof{1]1j1]0|¢0
3479 34758861 gular |credit 1 t t I t I =
it W i il . construct relationa Al olclt]t]olz]o]olz]o]t

ﬁ\m features

Type  |Location

i ey 2. construct a
propositional table

of orders and stores.

target(A) :-
’Doctor’(A), ’Italy’(A).
f1|£2 | £3 [ 4| £5 | £6 fn Step 2 octor’ (A) aly’ (4)
gl (of0o |11 |1 | 0uistl0|1]|1 target(A) :-—
g2 |0 1(0]0j0]1]1]¢0 ’Public’ (A), ’Gold’(A).
gglof1 121 fofejr|L1]j0|0]|0]|1 & +(A)
— % — — H arge : S
sl e [a o] tfalolo]i]i]1]o Subgroup discovery TPoland’ (A), *Deposit’(A), *Gold’ ().
gs| 1 (22 {OjoOMAE O[22 ]0]2|0
alololafelolafof2]o]a]o]t target(A) :-
’Germany’ (A), ’Insurance’(A).
g2l1ffOofOfj2f2jof1j0|1]2]|1
glofojofofrjofjoj1f{1][1]|0]0 target(A) :-
a1 1lololtlol2 ’Service’ (A), ’Germany’ (A).

patterns (set of rules)



Relational and Semantic Data Mining

¢ Relational data mining:

Learning from complex
relational databases

Inductive logic
programming: Learning
from complex structured
data, e.g. molecules and
their biochemical
properties

Semantic data mining:
Learning by using
domain knowledge in
the form of ontologies

Mutagenesis
sl

G0:0006520
amino acid
metabolism

G0:0008652
amino acid
biosynthesis

customer
;D Zip esxgg%gm ACIE

3478(34677/m [si |60-70|32|me|nr
£ 80-90(45(nm|re

order
Customer |Order (Store [Delivery [Paymt
D 1D D \ Mode ~ |Mode
3478 214026712 regular |cash

3478 3446778|12 express  |check
3478 4728386|17 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886|12 gular  (credit
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Store ID[Size |Type |Locati

12 small [franchise|ci
17 large [indep  |rural
ion of orders and stores.

G0:0009308
amine metabolism

G0:0009309
amine bio-
ynthsis

G0:0006576
biogenic amine
metabolism

G0:00042401
biogenic amine synthesis



Semantic Data Mining: Using ontologies as
background knowledge in RDM

domain
- (_ontologies

target (A) :-
’Doctor’ (A), ’Italy’(A).

Semantic .| model,

annotations, . nt ) : e
mappings ata mining | patterns
: A).
Given: ;.Servic:e?(A) , ’Germany’ (A).

SEi=Tg ¢ transaction data table, relational database,
[ data } text documents, Web pages, ...

® one or more domain ontologies
Find: a classification model, a set of patterns




Using domain ontologies

Using domain ontologies as background knowledge, e.g.,

using the Gene Ontology (GO)

* GO is a database of terms, describing gene sets in terms

of their
— functions
— processes
— components

» Genes are annotated
to GO terms

» Terms are connected
(is_a, part_of)

* Levels represent
terms generality

G0:0009308
amine metabolism

G0:0009309
amine bio-
ynthsis

G0:0006576
biogenic amine
metabolism

G0:0006520
amino acid
metabolism

G0:0008652
amino acid G0:00042401
biosynthesis biogenic amine synthesis



Representation Learning
Semantic Data Mining

Person _ Age  Spect presc. Astigm Tear prod. Lenses
ope n

G0:0009308
amine metabolism

G0:0006520 G0:0006576
amino acid biogenic amine
metabolism metabolism
G0:0008652
amino acid @ G0:00042401

biosynthesis biogenic amine synthesis

Approach:

» Using relational learning in the SDM context, using a

NONE
SOFT
NONE
HARD
NONE

SOFT

Step 1

Propositionalization

constructing relational
features

constructing a
propositional table

propositionalization approach

Sample application:

« Semantic data mining in a biomedical application by using the

52

fn

mlelelelr]le|~

Gene Ontology as background knowledge in analyzing microarray

data



Text mining: Viewed in propositionalization

context: BoW data transformation

53

Document Word1 Word2 .. WordN Class

Step 1 d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

BoW vector da 1 1 1 0 YES
construction SR ’ PR

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

BoW features a7 0 1 0 1 NO
construction ra > .
Table of BoW vectors d24 0 0 L 0 O

construction

Document Word1 Word2 ... WordN Class
d1 1 1 0 1 NO
d2 1 1 0 0 YES Step 2
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO L.
d6-d13 Data Mmmg
d14 0 0 0 0 YES
d15 0 0 1 1 NO
d16 0 0 1 0 NO
d17 0 1 0 1 NO
d18 0 1 0 0 NO
d19-d23
d24 0 0 1 0 NO

model, patterns, clusters,
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BoW construction: Feature weights and Cosine
similarity between document vectors

e Each document D is represented as a vector of TF-IDF weights

: N
tfidf (w) = tf log(———)
df (w)
e Similarity between two vectors is estimated by the similarity between
their vector representations (cosine of the angle between the two

vectors):

e Similarity between BoW vectors can be used for document clustering,
i.e. for finding natural groups of documents in an unsupervised way (no
class labels pre-assigned to documents)



Embeddings-based Data Transformation
for Text mining

» Corpus embedding,
Document embedding,
Sentence embedding,
word embedding (e.g.,
word2vec)

. Transforming
documents by
projecting documents
into vectors (rows of a
data table)

Document __ Dim1 Dim2 .. DimN Class
d1 0.378 0.222 0.333 0.95 NO
d2 YES
d3 NO
d4 YES
d5 NO

d6-d13
d14 YES
d15 NO
d16 NO
d17 NO
d18 NO

d19-d23
d24 0.198 0.523 0.715 0.263 NO
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Embeddings-based Data Transformation
for Text mining

- Corpus embedding, S o e o ow | We
Document embedding, & - .
Sentence embedding, T - o .
word embedding oo o o e
(e.g., word2vec) 11 .

N Transforming d24 0.198 0.523 0.715 0.263 NO
documents by [I— " EE
projecting L SRRREY K ol
documents into _— :
vectors (rowsofa ™ N&&AT "
data table) s | , ez

- Table values . 4
correspond to NS ! s ,‘
weights in the I "V o /G — Ve 'S :
embedding layer of : = ' e

The gold dollar or gold The best scene ever

neural network

LM pre-training Classifier fine-tuning
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Embedding-based Data Transformation
for Text mining

» Corpus embedding, Document embedding, Sentence embedding,
word embedding, ...

* Representations of word meaning obtained from corpus statistics

* Spatial relationships correspond to linguistic relationships

disambiguation

pages

: o
)
»” - < 051 + heiress
r 04f !
» 5
o' 0s ; meceaun( ! -cou&\(eshs
3l . i / "+ duchess-
~ ‘- rgistel f 4
¥ -~ 02f ! | ! , ! rempresy
z o ) | | ! /
¢ o a1l !+ madam
- « albums 1} i i 4 5B
S ! I nepHew ! eir £
2 P s or [ h / 4
- films | / P
o y - “ ! ; woman ; !
> 2o > 5. 01} . 1 d 4 Learl
B .{? P ce - = | uncle | / 1queaty
O : ! brother ! ! I /lduke
< - x -0.2F | ! .
2.8 3 - < | 1 /
‘em
-03f X 3
1
—0.4 !
! !si
-05+ {man tking

L L L L L L L L L L L
-05 -04 -03 -02 -01 0 0.1 02 03 0.4 0.5
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Data Mining Lesson 1:
Summary and Take away messages

e Motivation for studying Machine Learning
— ML is highly relevant, as motivated by two epidemiology spreading case
studies

— Course outline should motivate for studying this modern ML approach
to become a skilled data scientist

¢ |Introduction to Machine Learning

— ML basics and illustrative examples were presented for elementary
classification and regression learning tasks

— Three generations of machine learning and data mining methods were
outlined

e Representation Learning
— Representation learning is a highly relevant contemporary ML problem

— ML basics and illustrative examples were presented for advanced
relational, semantic and text mining tasks
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Selected literature

® James G, Witten D, Hastie T and Tibshirani R (15! Edition 2013,
2" Edition 2021) An Introduction to Statistical Learning - with
Applications in R. Springer, New York. Available at
https://statlearning.com/. Chapters 1 and 2.

® Bramer M (2007) Principles of Data Mining. Springer, Berlin.
DOI:10.1007/978-1-84628-766-4. An introductory textbook for
refreshing your knowledge on basics of data mining. The first
edition of the textbook is also available at ResearchGate,

https://www.researchqgate.net/publication/220688376 Principles
of Data Mining

® Lavraé N, Podpeé&an V and Robnik-Sikonja M (2021)
Representation Learning: Propositionalization and Embeddings.
Springer, Berlin. Chapters 1 and 2.



https://statlearning.com/
https://statlearning.com/
https://doi.org/10.1007/978-1-84628-766-4
https://doi.org/10.1007/978-1-84628-766-4
https://www.researchgate.net/publication/220688376_Principles_of_Data_Mining
https://www.researchgate.net/publication/220688376_Principles_of_Data_Mining
https://www.researchgate.net/publication/220688376_Principles_of_Data_Mining

Lesson 2
Decision tree learning

Basic decision tree learning algorithm
e Classifier evaluation and decision tree pruning
e Selected decision tree learning algorithms
e Regression tree learning

60
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Decision tree learning: an illustrative example

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
o3 young myope yes reduced NONE
04 young myope yes normal HARD 1
05 young | hypermetrope no reduced NONE M aChI ne
06-013 |earn|ng
014  ore-presbyc hypermetrope no normal SOFT
015  ore-presbyc hypermetrope yes reduced NONE
016  ore-presbyc hypermetrope yes normal NONE
017  presbyopic myope no reduced NONE
018  presbyopic myope no normal NONE
019-023
024  presbyopic hypermetrope yes normal NONE
tear prod.

reduced///

NONE

\\\\Eymm

no/

SOFT

spect. pre.

lnyop%/// \\\?ypennenope

HARD

NONE
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Predictive DM task: Basic notions

Data are objects, characterized with attributes
A and class-labels CJ.

Obijects (data instances, training examples)
are described with attribute values

Attributes can be discrete, nominal or numeric
Classes can be discrete (binary classification)
or nominal (multi-class learning) or numeric
(regression)

Classification learning task is to induce a

model capable to predict the class-label for a
new (unclassified) instance



TDIDT - Decision tree learning algorithm

Elementary decision tree learning algorithm ID3 (Quinlan 1979)

- create the root node of the tree
- if all examples from S belong to the same class Cj
e then label the root with CJ.

- else
e select the ‘most informative’ attribute A with values V.,
Vs «on V.
 divide training set S into S1,... , Sn according to values
Vs Vi, oee VL @
e recursively build sub-trees \,// NQ

T,..,T forS,,..., S

(3. &)
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Decision tree search heuristics

« Central choice in decision tree algorithms: Which
attribute to test at each node in the tree ? The
attribute that is most useful for classifying
examples.

« Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

« First define a measure commonly used in
information theory, called entropy, to characterize
the (im)purity of an arbitrary collection of
examples.

64



Entropy

e Entropy E(S) — measure of impurity of training set S

¢ |n concept learning (binary classification) problems,
with training set S labeled by two classes C,_ and C_
p, - prior probability of class C,

E(S) —-P. 10g2p+ -P. logzp_ (relative frequency of C_in §)
p_- prior probability of class C_

¢ In multi-class learning problems, with training set S
labeled by N classes C.,C.,...,C

N : -
p. - prior probability of class C

E(S)=- E ,Pe- log, p. (relative frequency of C.inS) ‘

c=1

65



Entropy

* ES)=-p,log,p, - p_log,p.

¢ The entropy function relative to a Boolean
classification, as the proportion p, of positive
examples varies between 0 and 1

- / \
o5 /~ AN

07 p N\

505l / \
s/ \
£/ \
“ s / \

o1 |f \

0

0 0,2 0,4 0,6 0,8 1 Pt
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Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly
drawn object in S (under the optimal,
shortest-length code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

So, in binary classification problems, the expected
number of bits to encode + or — of a random
member of S is:

p,(-log,p. )+ p (-log,p )=-p, log,p, -p logp



Binary classification problem:
Survey data

Education Marital Status ~ Sex  Has Children | Approved

primary single male no no

primary single male yes no

primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes

primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male




Entropy — example calculation

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]

E(S) =-p, log,p, - p_log,p.
Computing entropy, if probability is estimated by
relative frequency

(180, IS0 _(1S.1, 1S |

HE= (|S lg|S|j (|S| lg|S|j

E(19+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
= 0.940
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Survey data: Entropy

« E(S)=-p, log,p, -p_log,p.
E([9+,5-]) = - (9/14) 10g,(9/14) - (5/14) log,(5/14) = 0.940

singl {ele2,e6,7,e9} [2+, 3-] E=0.970
MClr‘I‘I'Cll status /mair‘le/' {e3.e5,e10 ell) [4+ 0-]
vor'ce E O
{e4,e8,e12,e13,e14} [3+, 2-] E=0.970
mal [3+,4-] E=0.985
Sex /fezrri [6"‘, 1_]
? e E=0.592

. [6+,2-] E=0.811
Has childre% [3+, 3-]

? s E=1.00
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Information gain
search heuristic
¢ Information gain measure is aimed to minimize the
number of tests needed for the classification of a

new object

e Gain(S,A) — expected reduction in entropy of S due

to sorting on A

Gain(S,A)=E(S)— ). M-E(Sv)
veValues (A) |S|

e Most informative attribute: max Gain(S,A)
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Information gain
search heuristic

e \Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94

[6+,/\3+, [9+,/\0+

P 3— _ 1
E=5.811 E=100 2% 20k

e Gain(S,A1)=0.94 — (8/14 x 0.811 + 6/14 x 1.00) = 0.048

® Gain(S,A2)=0.94-0=0.94 A2 has max Gain
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Survey data: Information gain

Gain(S,A)=E(S)— . |SV|-E(SV)

veValues(A) |S|

« Values(Has children) = {no, yes}

[6+,2-] E=0.811

no
Has childrer%' [3+ 3-]
? s p

~ S=1[9+,57], E(S)=0.940 E=1.00

- S =[6+2-], E@S, )= 0811

- S, =[3+3]E@S ) =10

- Gain(8, Has children) = E(S) - (8/14)E(S ) - (6/14)E(S ) =

0.940 - (8/14)x0.811 - (6/14)x1.0=0.048



Survey data: Information gain

Which attribute is the best?

- Gain(S, Marital status)=0.246 MAX !
- Gain(S, Sex)=0.151
- Gain(S, Has children)=0.048

- Gain(S, Education)=0.029
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Survey data: Information gain

”Qfg;f,‘;' 9 {D4,056,010,D14} [3+,2-] E=0.970 2?2
e {D3,D7,D12,D13) [4+,0-] E=0 OK - assign class

188020809 D11}  [2+ 3-] E=0.970
277

« Which attribute should be tested here?>

_ Gain(S Sex) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !

divorced’

- Gain(S Has children) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

divorced’

- Gain(S Education) = 0.97-(2/5)1-(3/5)0.918 = 0.019

divorced’



Alternative probability estimates

* Relative frequency :
— Computed as [S+ |/ [S]
— problems with small samples

[6+,1-] (7)
[2+,0-] (2)

6/7
2/2 =1

 Laplace estimate :

— assumes uniform prior distribution of k
classes

— For k=2, Computed as (|S+ |+1) / (|S|+2)

[6+,1-] (7) = (6+1) / (7+2) = 7/9
[2+,0-] (2) = (2+1) / (2+2) = 3/4
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Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (top-down
greedy search, no backtracking, prefer small trees)
Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

- if all examples belong to same class C label
the leaf with C

- if all attrlbutes were used, label the leaf with the
most common value C, of examples in the node

Extension to ID3: handling noise - tree pruning
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Decision tree learning

¢ Basic decision tree learning algorithm
Classifier evaluation and decision tree pruning

e Selected decision tree learning algorithms

e Regression tree learning

78



Classifier evaluation

- Evaluation of learned models
- discovery of new patterns, new knowledge
- explainability and compactness - XAl
- information contents (information score) - significance

classification of new objects — accuracy

« Evaluating the accuracy of learned models

Accuracy, Error = 1 — Accuracy

high accuracy on testing examples = high percentage of
correctly classified unseen instances — high predictive power

high accuracy on training examples — possible data
overfitting

79



Classifier evaluation

« Evaluation methodology

- split the example set into training set (e.g. 70%) to induce a concept, and
test set (e.g. 30%) to test its accuracy

- more elaborate strategies: 10-fold cross validation, leave-one-out, ...
 N-fold cross-validation method for accuracy estimation of classifiers
- Partition set D into n disjoint, almost equally-sized folds T. where U T.= D
- for i=1,..,ndo
« form a training set out of n-1 folds: Di = D\T.
« induce classifier H from examples in Di
 use fold T, for testing the accuracy of H.

- Estimate the accuracy of the classifier by averaging accuracies over 10
folds T.
|
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Overfitting and accuracy

» Typical relation between tree size and accuracy

0.9

0.85

0.8

0.75

0.7

/—/_/_/
/_/
[/
J N

0.65

0.6

0.55

0.5

0

20

40

60

80

100

120

——On training data
—— On test data

e Question: how to prune optimally?
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Pruning of decision trees

« Avoid overfitting the data by tree pruning

« Pruned trees are
- less accurate on training data
- more accurate when classifying unseen data

82



Handling noise - Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
e erroneous attribute values
» erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)
4. Missing attribute values in training examples
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Handling noise - Tree pruning

« Handling imperfect data
- handling imperfections of type 1-3
e pre-pruning (stopping criteria)
e post-pruning / rule truncation
- handling missing values

e Pruning avoids perfectly fitting noisy data: relaxing the completeness
(fitting all +) and consistency (not fitting all -) criteria in ID3
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Prediction of breast cancer recurrence:
Tree pruning

Degree_of_mali

< 9 >
Tumor_siz Invblved_node
e S
< > < >
1 5 3
Ag no_recur 125 no_recur 30 no_recur 27
e recurrence recurrence recurrence
39 18 . 10 .
40 14 ¥ Q ¥ %
no_recur 4
recurrence ho_recur
1 4
¥ y ¥ Y

ho_rec 4 recl
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Pruned decision tree for
contact lenses recommendation

tear
Zleduce rmal
E .
[N=12,S+H=0 "°/ yes

|
T 0
[S=5,H+N=1 myopée / \rypermetrope

] HAR NON
D E
[H=3,S+N=2 N=2,

] S+H=1]
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Decision tree learning

¢ Basic decision tree learning algorithm

e Classifier evaluation and decision tree pruning
Selected decision tree learning algorithms

e Regression tree learning
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Selected decision/regression
tree learners

« Decision tree learners

ID3 (Quinlan 1979)

CART (Breiman et al. 1984)

Assistant (Cestnik et al. 1987)

- C4.5 (Quinlan 1993), C5 (See5, Quinlan)
J48 (available in WEKA), Tree (in Orange)

« Regression tree learners, model tree learners

- M5, M5P (implemented in WEKA), Tree (in Orange)
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Appropriate problems for

decision tree learning

« Classification problems: classify an instance into
one of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

« Characteristics:

- instances described by attribute-value pairs
(discrete or real-valued attributes)

- target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)
- disjunctive hypothesis may be required

- training data may be noisy
(classification errors and/or errors in attribute values)

- training data may contain missing attribute values
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Selected decision tree learners

« Decision tree learners: Tree (in Orange)

rh «i» Tree ? X

Name

Tree { ee

Parameters

[ Induce binary tree

Min. number of instances in leaves: l 23 \
[4] Do not spiit subsets smaller than: 58 l
(] Limit the maximal tree depth to: \ 100 :H\
Classification

(4] stop when majority reaches [%]: | g5 —31{
Apply Automatically

?2 B




Decision tree learning

¢ Basic decision tree learning algorithm
e Classifier evaluation and decision tree pruning
e Selected decision tree learning algorithms

>Regression tree learning
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Regression tree learning

« Estimation or regression task: given objects described
with attribute values, induce a model to predict the
numeric class value

« Data are objects, characterized with attributes
(discrete or continuous), classes of objects are
continuous (numeric)

« Regression tree learners, model tree learners:

- M5
— M5P (implemented in WEKA)

— Tree (in Orange)
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Regression tree

=125

=125

Height =
1.7096
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Model tree

Height
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Predicting algal biomass: regression
tree
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Regression learners:
Which predictor is the best?

Linear

Regression

Age Height | Baseline | regression tree Model tree KNN
2 10851163 | 143 | 1.39 1.20 | 1.01
10 1 14 |1 163 | 147 | 1.46 1.47 | 1.51
35 | 1.7 1 1.63 | 1.61 1.71 1.71 1.67
/0 1161163 | 1.81 1.71 1.76 | 1.81
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Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (hominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression
trees,...

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class




Lesson 2
Summary and Take away messages

« Decision tree learning
- Addresses classification problems

- Algorithms use search heuristics to search the space of
possible trees in a top-down manner

- Training data may be noisy - tree pruning help dealing
with noisy data to improve predictive accuracy on new,
unlabeled data

« Regression tree learning
- Addresses predictive modeling from numeric data
- Advanced regression tree and model tree learners exist

« Notice different evaluation criteria for classification
and regression
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Lesson 3:
Rule Learning

Transforming decision trees to rules

o Classification rule learning algorithm
— Covering algorithm
— Learning individual rules

e Association rule learning

99
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Converting decision tree to rules, and rule
post-pruning (Quinlan 1993)

e Very frequently used method, e.g., in C4.5 and J48

e Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use



Learning decision trees
Survey data

Education Marital Status Sex Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male
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Transforming trees to rules:
Survey data

Education ~Marital Status ~ Sex ~ Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes

university divorced female no yes

university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes

primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

1E
AND
THEN

MaritalStatus = single
Sex = female

Approved = yes

MaritalStatus = single
Sex = male
Approved = no

MaritalStatus married
Approved = yes
MaritalStatus = diverced
HasChildren = yes
Approved = no
MaritalStatus = divorced
HasChildren = no

Approved = yes

102

yes (2/9) no (0/5)
| |

ves (0/9) neo (3/5)
[

ves (4/9) no (0/5)
l |

yes (0/9) no (2/5)
[ |

ves (3/9) no (0/5)
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Pruning classification rules:
Survey data

Education ~Marital Status ~ Sex ~ Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes

university divorced female no yes

university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes

primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

IE
AND
THEN

IF
AND
THEN

married

IF MaritalStatus

THEN Approved = yes

IF Sex female

THEN Approved = yes

LF Sex = male

THEN Approved = no
DEFAULT Appreoved = yes

MaritalStatus
Sex = female
Approved = yes

single

MaritalStatus = single
Sex = male
Approved = no
MaritalStatus married
Approved = yes

MaritalStatus = diverced
HasChildren = yes
Approved = no
MaritalStatus = divorced
HasChildren no
Approved = yes

yves (4/9)

I NN\ |

yes (2/9) no (0/5)

| |

ves (0/9) neo (3/5)

ves (4/9) no (0/5)

l |

yes (0/9) no (2/5)

yes (3/9) no (0/5)

noAUB)"

]

yes (6/9) no (1/5)

L1 l

yes (3/9) no (4/5)
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Lesson 3:
Rule Learning

e Transforming decision trees to rules

Classification rule learning algorithm
— Covering algorithm
— Learning individual rules

e Association rule learning
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Covering algorithm for binary classification
problems (AQ, Michalski 1969,86)

Given examples of 2 classes C, C. ‘
for each class Ci do o+ || -
— RuleBase(Ci) := empty + t 4
- repeat {learn-set-of-rules} i, *
e E_. :=PiUNi(Pipos., Nineg.) =~ R

¢ learn-one-rule R covering some positive and no
negatives examples

* add R_ to RuleBase(Cl)
¢ Pi= delete from Pi all pos. ex. covered by R

— until Pi = empty
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Covering algorithm

Positive examples Negative examples
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Covering algorithm

N Rulel: Cl=+ <« Cond2 AND Cond3
Positive examples I Negative examples

AV
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Covering algorithm

N Rulel: Cl=+ <« Cond2 AND Cond3
Positive examples I Negative examples

Y
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

QY

Rule2: Cl=+ «— Cond8 AND Cond6



Principles of learning classification rules
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Education Marital Status Sex Has Children ] Approved
primary single male no no
primary single male yes no
primary married male no yes

university divorced female no yes

university married female yes yes

secondary single male no no

university single female no yes

secondary divorced female no yes

secondary single female yes yes

secondary married male yes yes

primary married female no yes

. secondary divorced male yes no

Im PO rtant notions: university divorced female yes no
secondary divorced male no yes

*Rules are learned separately for each class
(e.g., separately for two classes: Yes and No)

*Aiming at large “coverage” of the target class

» Large coverage of class Yes when learning rules for class Yes
« Large coverage of class No when learning rules for class No

*Default (majority class) rule is added when coverage becomes low

(below some user-defined rule pruning parameter)
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Multi-class learning:
One-against-all learning strategy

' +
X ! +
|
X X \ o +
X | e
X
X X | * +
X 1 + +
X x X N +
X ’ N +
X . ~ + >
’ N v
-~ ’ +
_____ . 00 ¥ +
- .
- 3 o ©° N (TR
~ o o N
\ o 8 i il i
- " 4 090 s
-~"-. \ ooo [+ ;) - "
- \ o - A - =
~ oo = . - - = =
o . LTSRN I gm um - “ e
\ R bl 3hint A .- i T - N i
o ymem \ - Toai® = 8 . - e - - - - oo T -
~ ’/ » # - ® - v ¢ + . - - - = i SN u »
N ] " \ 5 i T ‘. e & ~ 5
€ # M \ . R "o Voe
v . " V. =
’

* " \ sl ) __'f'__ L::‘_'. - _'_:_ :'_ ,,":."‘. - _‘_:__ _:*f- .
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Fig. 10.4: The six binary learning problems that are the result of onec-against-all
class binarization of the multiclass dataset of Figure 10.2.
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Learn-one-rule:
Search mechanism and heuristics

e Assume a two-class problem
e Two classes (+,-), learn rules for + class (Cl)

e Search for specializations R’ of arule R = Cl —~ Cond
from the RuleBase

e Specialization R’ of rule R = Cl - Cond
has the form R’ =CIl «~ Cond & Cond’

e Heuristic search for rules: find the best Cond’ to be
added to the current rule R, such that rule accuracy is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected accuracy (precision) of a rule can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule as heuristic search:
Survey data

Approved = yes

F

Approved = ye

H

Approved = yes

Has children = népproved = Approved = yes Sex = male
Has children = :?emale
yes

Approved = yes «—
Sex = female - -
Has children = no Apg;c:(vsdfen:/;se
Approved = yes «— Approved = yes «— Marital
Sex = female Sex = female
Has children = Marital status =
yes single

status=divorced
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Learn-one-rule as heuristic search:
Survey data

Approved = yes [9+,5-]
(14)

(_

Approved = ye Approved = yes

) : E .
Has children = - (7
[3?@3‘] female[6+,1_]

(6) (7)
Approved = yes «—
Sex = female

Has children = no

Approved = yes «—
Sex = female

Approved = yes « Approved = yes « Marital
Sex = female Sex = female status=divorced
Has children = Marital status =

yes [Fingle

(2)
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Probability estimates for calculating rule

accuracy
¢ Relative frequency p(Class | Cond) =
— problems with small samples (Class.Cond)
n(Class.Con
- n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 = 1
e Laplace estimate : _n(Class.Cond)+1 1 _»
— assumes uniform prior - n(Cond)+k

distribution of k classes

[6+,1-] (7) = (6+1) / (7+2) = 7/9
[2+,0-] (2) = (2+1) / (2+2) = 3/4
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Learn-one-rule:
Beam search in CN2 (Clark and Niblett 1989)

e Beam search in CN2 learn-one-rule algorithm:

— construct BeamSize of best rule bodies (conjunctive
conditions) that are statistically significant

— BestBody - min. entropy of examples covered by Body

— construct best rule R := Head - BestBody by adding
majority class of examples covered by BestBody in rule
Head

e A variant of CN-2 is implemented in Orange toolbox

e Best performing rule learning algorithm is Ripper - JRip
implementation of Ripper is implemented in WEKA toolbox



CN2 rule learner in Orange

CN2 Rule Induction

“# CN2 Rule Induction ? X
Name

|ON2 rule inducer
Rule ordering Covering algorithm

(® Ordered (® Exdusive

O Unordered O Weighted Yv: 0.70 %

Rule search
Evaluation measure: Entropy b
Beam width: [ sfE]
Rule filtering
Minimum rule coverage: 18

Maximum rule length: [j‘

] Statistical significance

(default o): 100 =

Relative significance o
O (parent a): 1.00 [+
M Apply Automatically

? B
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Lesson 3:
Rule Learning

e Transforming decision trees to rules

o Classification rule learning algorithm
— Covering algorithm
— Learning individual rules

:: > Association rule learning

118
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Association Rule Learning

Rules: A B, if AthenB

A and B are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions I I i50

itemsets (records) 11 0
2 0 1 0

Find: A set of association rules in the form A [0 B
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)
e Support: Sup(A,B) = #AB/#D = p(AB)
e Confidence: Conf(A,B) = #AB/#A = Sup(A,B)/Sup(A) =
= P(AB)/p(A) = p(B|A)
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Association Rule Learning:
Motivation

What people buy in a given shopping experience.
. 25 Osco Drug stores

. 1.2 million market baskets

(A market basket is the stuff you put in

the physical cart and check out at the register.)

. An unexpected pattern
Between 5p.m. and 7p.m. diapers [0 beer

http://www.dssresources.com/newsletters/66.php
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Association Rule Learning:
Motivation

e Determine associations between groups of items bought
by customers.

» No predefined target variable(s).
« Find interesting, useful patterns and relationships.
» Data mining, business intelligence.

* Terminology from market basket analysis (transactions,
items, itemsets, ...)
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Support and Confidence

e The dataset consists of n transactions
¢ We have an association rule A1 B

The support of an itemset A is defined as the fraction of the transactions in the database
T={T1...Tn}that contain A as a subset.

The confidence of the rule AC] B is the conditional probability of A and B occurring in a
transaction, given that the transaction contains A.

ANB y
|[AA B conf(A — B) = 1A 7 B = P(B|A) supp(A) = 4]

supp(A — B) =
supp( ) = 7 =
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Association Rule Learning:
Examples

« Market basket analysis
- beer & coke » peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
- Support 5%: 5% of all customers buy all four items

- Confidence 65%: 65% of customers that buy beer
and coke also buy peanuts and chips

e Insurance
- mortgage & loans & savings = insurance (2%, 62%)
- Support 2%: 2% of all customers have all four

- Confidence 62%: 62% of all customers that have
mortgage, loan and savings also have insurance



Survey data
association rule learning

IE MaritalStatus single
Education Marital Status  Sex  Has Children | Approved AND Sex = female yes (2/9) no (0/5)
primary single male no no THEN Approved = yes ( |
primary single male yes no
primary married male no yes & 5 W= g %
university divorced female no yes iE MaritalStatus = single yes (0/9) no (3/5)
university married female yes yes AND Sex = male yes ol
secondary single male no no THEN Approved = no I |
university single female no yes
R el S o Vi IF MaritalStatus = married yus (419) no (05)
secondary single female yes yes S I l
secondary married male yes yes THEN Approved = yes
primary married female no yes
secondary divorced male yes no IF MaritalStatus = divorced
univegsity ;ﬁvorceg fem'ixle yes no AND HasChildren = yes yes (0/9) no (2/5)
S roree ma = o I'HEN Approved = no I I
IF MaritalStatus = divorced
AND HasChildren no : yes (3:9) no (0/5)
MrTTIAY M e m e ) — S AN
I[F Educatiocn university support (4/14) | confidence (4/4)
THEN Sex = female I [ |
. =y - support (4/14) | confidence (4/5
IE Approved = no PROI {(H14) (45)
THEN Sex = male | I L]
IF Education = secondary
AND MaritalStatus = divorced support (2/14) | confidence (2/3)
THEN HasChildren = no | | | |
AND Approved = yes
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf
It is a form of exploratory data analysis, rather than
hypothesis verification

125



Searching for associations

Find all large itemsets
Use the large itemsets to generate association rules
If XY is a large itemset, compute
r =support(XY) / support(X)
If r > MinConf, then X = Y holds
(support > MinSup, as XY is large)

126
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Large itemsets

« Large itemsets are itemsets that appear in at least MinSup
transaction

« All subsets of a large itemset are large itemsets (e.g., if A,B
appears in at least MinSup transactions, so do A and B)

« This observation is the basis for very efficient algorithms for
association rules discovery (linear in the number of
transactions)



Apriori algorithm

Frequent Itemsets Association Rules

* Find all itemsets * For all frequent

within the itemsets, find

minSupport rules which

constraint satisfy the
minConfidence
constraint

*Frequent itemsets = large itemsets, sometimes also frequent patterns



Association rules:
Orange workflow

® Add-ons ? X
e Add more...
Name Version Action A
[0  Orange-Spectroscopy 049
W  Orange3 3.23.1<3.240
Orange3-Associate 13 Install
[  Orange3-Bioinformatics ~ 4.0.0
[]  Orange3-Educational 021
[0  Orange3-Geo
[J  Orange3-ImageAnalytics  0.4.
[  Orange3-Network 150
[0  Orange3-Prototypes 0120
[] Orange3-SingleCell 130 v
Orange3-Associate
Orange add-on for enumerating frequent itemsets and association rules mining.
h ol
Cencel

File

pa2 D

Data Table
0,
% X5
>
s

Frequent Itemsets

Association Rules

* Start with a small minSupport and we increase it gradually (to avoid running out of memory)



Association vs. Classification

rules

Exploration of
dependencies

Different combinations
of dependent and
independent attributes

Complete search (all
rules found)

rules

Focused prediction

Predict one attribute
(class) from the others

Heuristic search
(subset of rules found)
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Lesson 3
Summary and Take away messages

Classification rule learning addresses classification
problems

Algorithms use search heuristics to search the space
of possible rules in a general-to-specific manner
Training data may be noisy - rule truncation help
dealing with noisy data to improve predictive accuracy
on new, unlabeled data

Association rule learning is an example of descriptive
induction algorithms, aimed at finding interesting
patterns in data
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Lesson1-3
Summary and Take away messages

Data mining techniques
Predictive induction Descriptive induction

[ [ 1
Classification Numeric prediction Association rules Clustering
— Linear : :
e N
regression
FP-
]

Classification Regression /
rules model trees
Naive Bayes _
classifier
e,
SVM r




