

Data and Text Mining: Hands-on Labs 2024 / 2025

Blaž Škrlj

Department of Knowledge Technologies

Jožef Stefan Institute

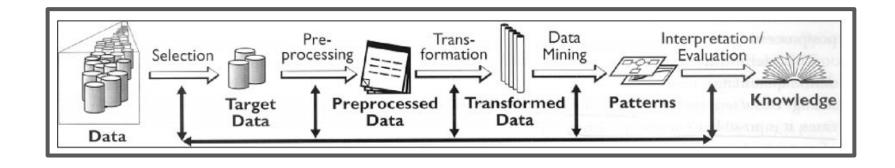
Ljubljana, Slovenia

Overview

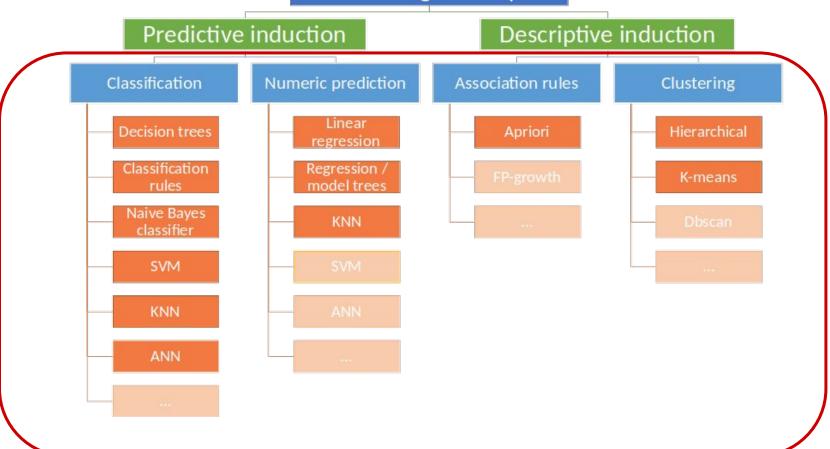
- Hands-on Orange3
 - Machine learning and Data Visualization
 - Interactive Analysis
 - Visual Programming

- Main goals
 - Understanding of the data mining process
 - Being able to perform analysis on your own
 - Critical evaluation of the results

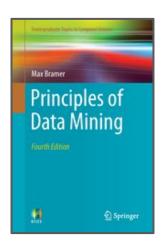
KDD vs. ML/DM



Data mining techniques



Max Bramer: Principles of data mining (2007)



Attribute Types

- 1. Categorical
 - a. Nominal (e.g., Colors -> R,G,B)
 - b. Binary (e.g., class presence -> yes, no)
 - c. Ordinal (e.g., Size -> small, medium, large, ...)

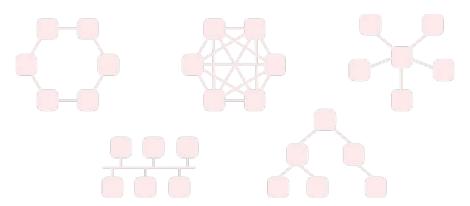
2. Numerical

- a. Integer (Number of pets)
- b. Real (wavelength, temperature etc.)

Why is this relevant?

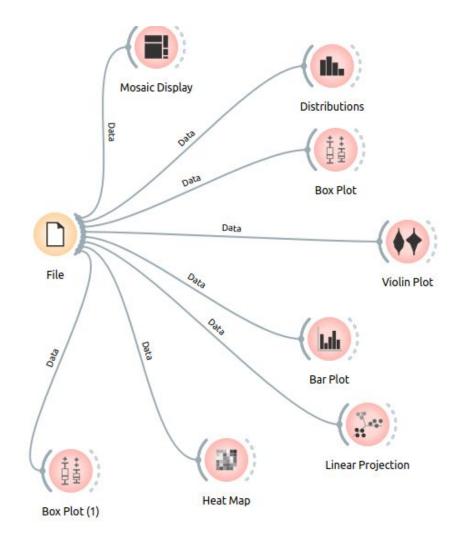
Complex data types

- 1. Time series data in time
- 2. Texts instances are documents
- 3. Graphs instances are related (explicitly)
- 4. Images instances are images
- 5. Multi-modal data combined spaces



Data visualization

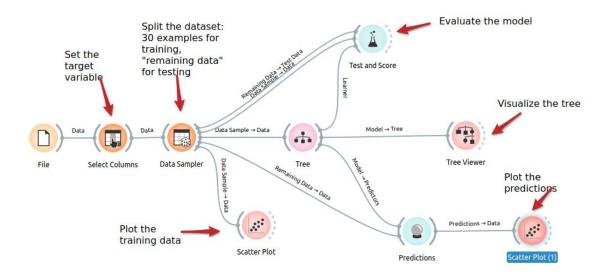
Wf1 - visualization



Classification

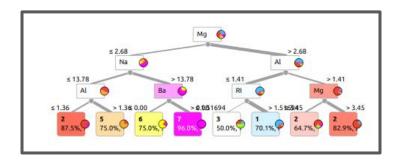
The classification problem

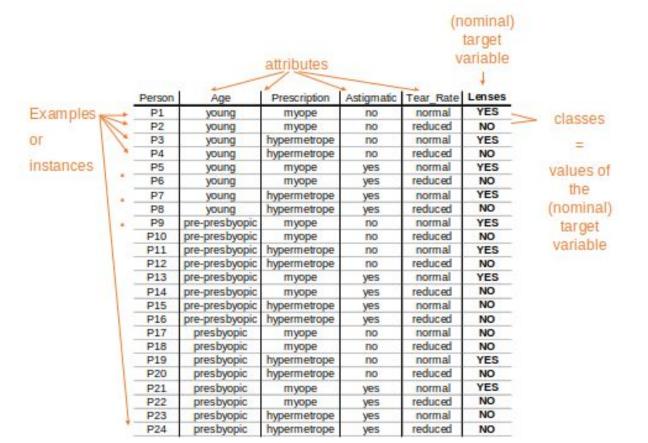
- Given a collection of examples, assign them to categories.
 - Magazine reader (or not)
 - A patient at risk of falling ill
 - Likely buyers
 - Types of plants
 - Gene functions



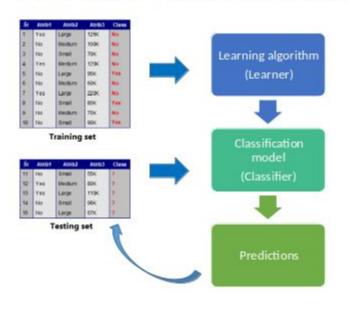
More formally

- 1. Given a collection of instances X with corresponding labels Y, identify f: X -> Y.
 - a. Instances are described by attributes
 - b. The target variable is an attribute we are interested in (e.g., illness, categorical)
 - c. The values of the target variable are called labels.
 - d. The goal is to assign labels to new instances, as accurately as possible.



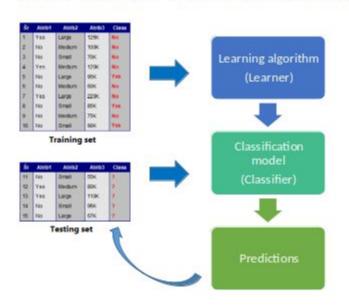


The basic classification schema



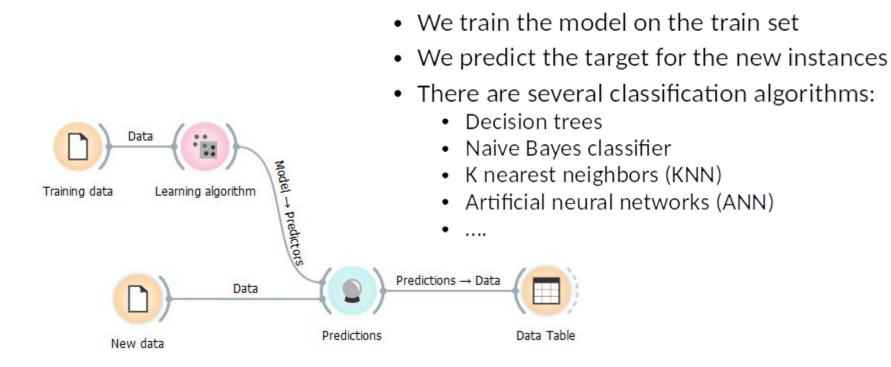
- A classifier is a function that maps from the attributes to the classes
 - · Classifier(attributes) = Classes
 - f(X) = Y
- In training, the attributes and the classes are known (training examples) and we are learning a mapping function f (the clasifier)
 - ?(X) = Y
- When predicting, the attributes and the classifier are known and we are assigning the classes
 - f(X) = ?
- · What about evaluation?

The basic classification schema



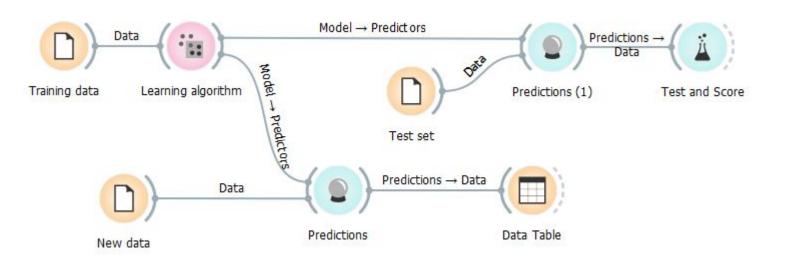
- A classifier is a function that maps from the attributes to the classes
 - · Classifier(attributes) = Classes
 - f(X) = Y
- In training, the attributes and the classes are known (training examples) and we are learning a mapping function f (the clasifier)
 - ?(X) = Y
- When predicting, the attributes and the classifier are known and we are assigning the classes
 - f(X) = ?
- When evaluating, f, X and Y are known.
 We compute the predictions Yp = f(X) and evaluate the difference between Y and Yp.

Basic classification schema

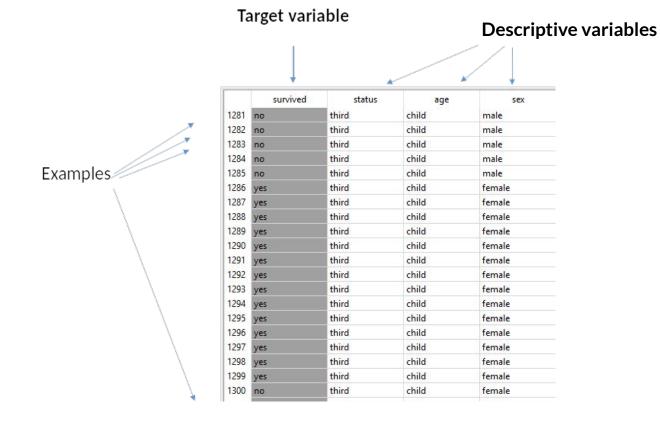


What about evaluation

- We train the model on the train set
- We evaluate on the test set
- We classify the new instances



A recap

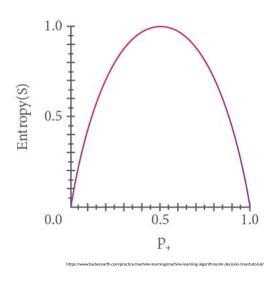


Algorithm 1: Decision trees

Trees: Algorithmic background

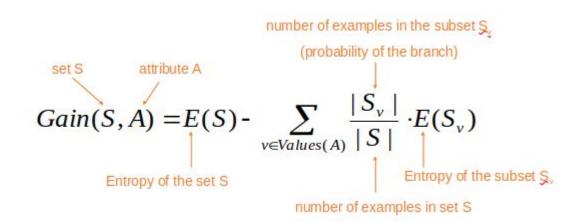
Induce a decision tree on set S:

- 1. Compute the entropy E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the **information gain** of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root
- 7. Divide the set S into subsets S, according to the values of A
- 8. Repeat steps 1-7 on each S_i

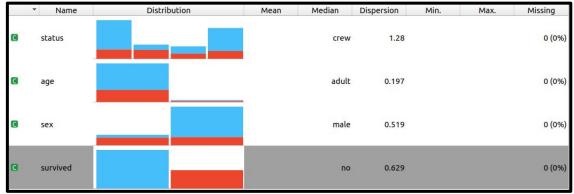


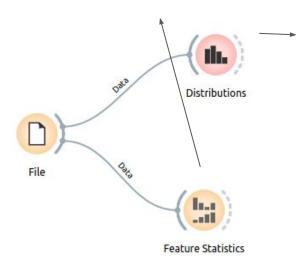
Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106

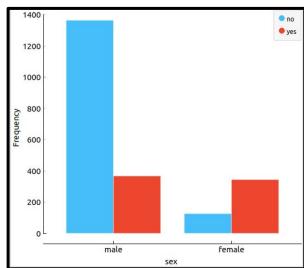
Decision Trees - intuition - Information Gain



Warm up







Select: titanic.tab

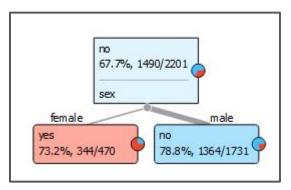
Illustrative example (IG)

- 1. Compute entropy of the entire set
- 2. Identify subsets based on a given attribute's values
- 3. Compute entropy of each subset
- 4. Compute the IG

	NO	YES	total
	1490	721	2211
class probability	0.674	0.326	
pi * log (pi, 2)	-0.384	-0.527	
pr 10g (pr, 2)	0.504	0.527	
entropy	0.911		

female	NO	YES	total
	136	334	470
Class probability pi	0,289	0,711	
pi * log (pi, 2)	-0,52	-0,35	
entropy	0,868		
male	NO	YES	total
	1364	367	1731
Class probability pi	0,788	0,212	
pi * log (pi, 2)	-0,27	-0,47	
entropy	0,745		

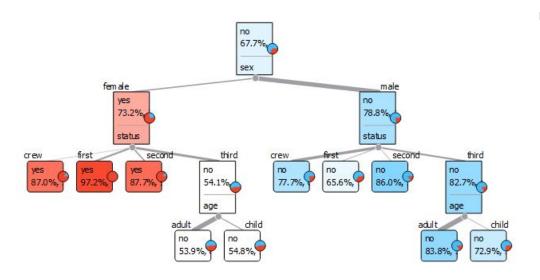
Higher gain = better!



$$Gain(S, A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

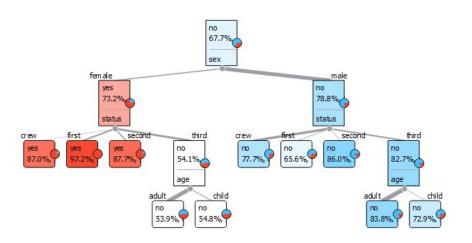
$$Gain(S, Sex) = 0.911 - \left(\frac{470}{2201} \cdot 0.868 + \frac{1731}{2201} \cdot 0.745\right) = 0.166$$

Classification via traversal



status	age	sex	survived?
1third	child	male	
2third	child	female	
3crew	adult	male	
4first	adult	male	
5second	adult	male	
6third	adult	male	
7first	adult	female	
8second	adult	female	
9third	adult	female	
10third	child	male	

From trees to rules

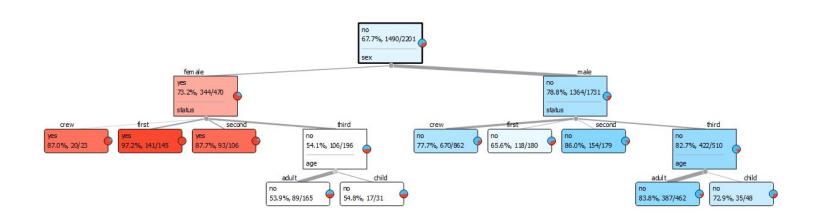


- sex = female & status = crew _ survived = yes
- sex = female & status = first _ survived = yes
- sex = female & status = second _ survived = yes
- sex = female & status = third & age = adult _ survived = no
- sex = female & status = third & age = child _ survived = no
- sex = male & status = crew _ survived = no
- sex = male & status = first _ survived = no
- sex = male & status = second _ survived = no
- sex = male & status = third & age = adult _ survived = no
- sex = male & status = third & age = child _ survived = no

One example -> one rule -> one path!

A note on interpretability

- Attribute importance and its placement
- Visualization interpretation



A note on language bias



Algorithm 2: Rules

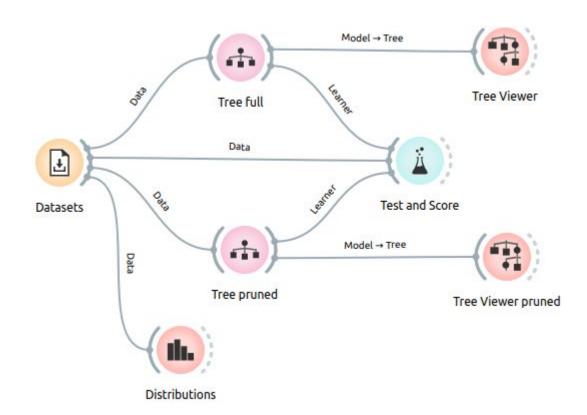
CN2 Rule Induction

- Based on the "covering" principle
- Dependent on the BEST_CPX
 - Generates candidate rules
 - Tests their "significance"
 - Prunes the complex space
- Why is this different to tree chopping?
 - Not as greedy
 - Effectively upgrades a rule list

```
Let: E be a set of training examples;
Procedure CN2(E) returning RULE_LIST:
let RULE LIST be the empty list;
repeat
    let BEST_CPX be Find_Best_Complex(E);
    if BEST_CPX is not nil then
         Let E' be the examples covered by BEST_CPX;
         Remove from E the examples E' covered by BEST_CPX;
         Let C be the most common class of examples in E';
         Add the rule 'if BEST_CPX then class=C' to the end of RULE_LIST,
until BEST_CPX is nil or E is empty.
return RULE_LIST.
Procedure Find_Best_Complex(E) returning BEST_CPX:
let the set STAR contain only the empty complex;
let BEST_CPX be nil;
let SELECTORS be the set of all possible selectors;
while STAR is not empty,
    specialize all complexes in STAR as follows:
    let NEWSTAR be the set \{x \land y | x \in STAR, y \in SELECTORS\};
    Remove all complexes in NEWSTAR that are either in STAR (i.e., the
        unspecialized ones) or are null (e.g. big = y \land big = n)
    for every complex Ci in NEWSTAR:
        if C<sub>i</sub> is statistically significant when tested on E and better than
             BEST_CPX according to user-defined criteria when tested on E,
         then replace the current value of BEST_CPX by Ci;
    repeat remove worst complexes from NEWSTAR
        until size of NEWSTAR is < user-defined maximum;
    let STAR be NEWSTAR;
return BEST_CPX.
```

Practice time - basic tree learning

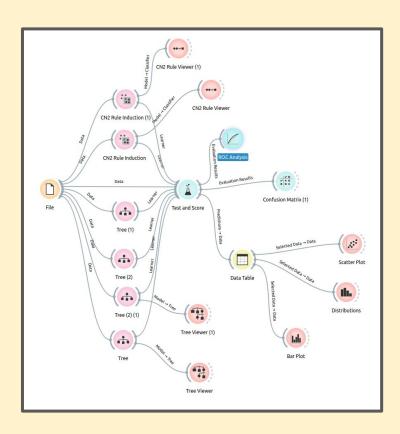
- 1. Open Orange3
- 2. Load the data
- 3. Explore the data
- 4. Build and visualize a tree
- 5. Generate rules (CN2)



HW questions

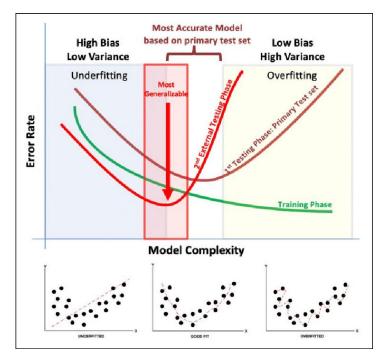
- 1. How does an attribute with IG=~1 look like?
- 2. What about IG ~ 0?
- 3. How would you compute the information gain of a numeric attribute (Hint: See Kullback-Leibler Divergence)
- 4. Explain the difference between TDIDT- and CN2-based rules.
 - a. How they are constructed
 - b. How much time does it take to construct them (based on pseudocode)
 - c. Are some more greedy than others? Why?

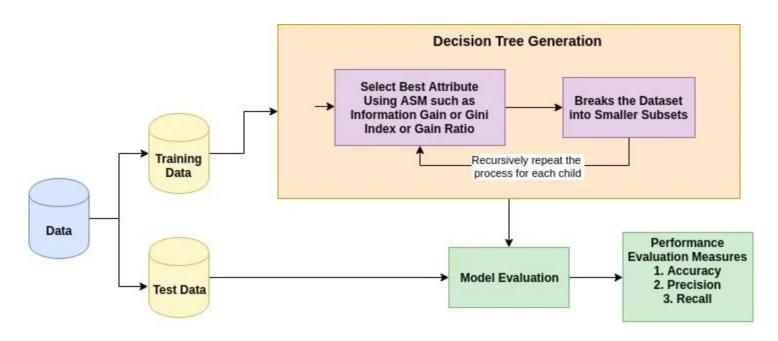
Evaluation



(over) Fitting a model on the whole data set is ... not ok.

- Does the model generalize?
- How do we measure the performance?
- What are we measuring, really?





https://www.datacamp.com/community/tutorials/decision-tree-classification-python

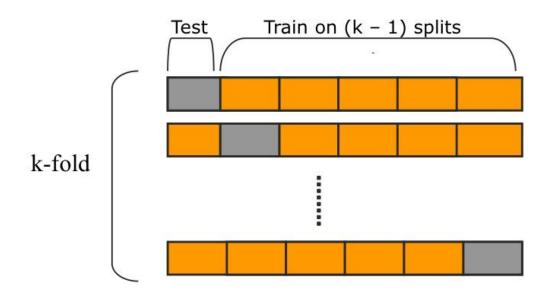
Key take-away message

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses	
P1	young	myope	no	normal	YES	
P2	young	myope	no	reduced	NO	200/ of ovamples are
P3	young	hypermetrope	no	normal	YES	30% of examples are
P4	young	hypermetrope	no	reduced	NO	(randomly)
P5	young	myope	yes	normal	YES	
P6	young	myope	yes	reduced	NO	selected for testing
P7	young	hypermetrope	yes	normal	YES	//
P8	young	hypermetrope	yes	reduced	NO	J //N
P9	pre-presbyopic	myope	no	normal	YES	* ////
P10	pre-presbyopic	myope	no	reduced	NO	
P11	pre-presbyopic	hypermetrope	no	normal	YES	
P12	pre-presbyopic	hypermetrope	no	reduced	NO	4/// /
P13	pre-presbyopic	myope	yes	normal	YES	4// [
P14	pre-presbyopic	myope	yes	reduced	NO	
P15	pre-presbyopic	hypermetrope	yes	normal	NO	*/
P16	pre-presbyopic	hypermetrope	yes	reduced	NO	4.]
P17	presbyo pic	myope	no	normal	NO	
P18	presbyo pic	myope	no	reduced	NO	
P19	presbyo pic	hypermetrope	no	normal	YES	
P20	presbyo pic	hypermetrope	no	reduced	NO	
P21	presbyo pic	myope	yes	normal	YES	
P22	presbyo pic	myope	yes	reduced	NO	
P23	presbyo pic	hypermetrope	yes	normal	NO	M.
P24	presbyopic	hypermetrope	yes	reduced	NO	

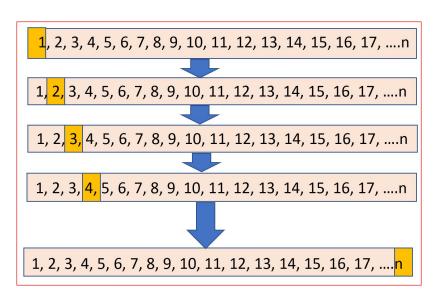
Common evaluation scenarios

- 1. Train-val-test split
- 2. K-fold cross validation
- 3. Leave-one-out validation
- 4. Random sampling (and averaging)
- 5. Stratified splits

K-fold Cross Validation

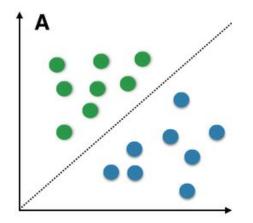


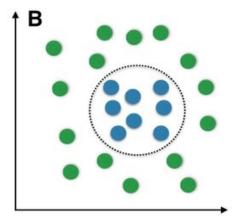
Leave-one-out



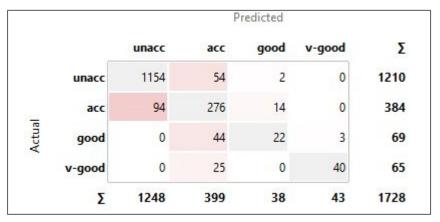
Classification Quality

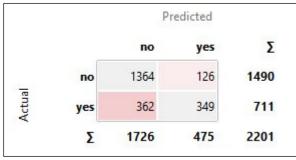
- Splitting the data is the first step
- The second one involves computing a score (on unseen samples)





Confusion matrix





Matrix of correct/incorrect classifications

- Rows = actual
- Columns = predicted
- Correct = diagonal

Accuracy

TP: true positives

The number of positive instances that are classified as positive

FP: false positives

The number of negative instances that are classified as positive

FN: false negatives

The number of positive instances that are classified as negative

TN: true negatives

The number of negative instances that are classified as negative

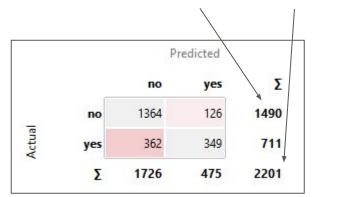
Correct classification	Classified as	
	+	-
+	true positives	false negatives
	false positives	true negatives

Acc = sum(diag)/sum(all)

Baselines

- Knowing that we are able to classify with a certain accuracy is fine, but is that good/bad?
- **Baselines are crucial** in machine learning comparing your method against other methods is the most credible way to prove its actual performance.

A simple baseline: Majority class #most frequent class / all

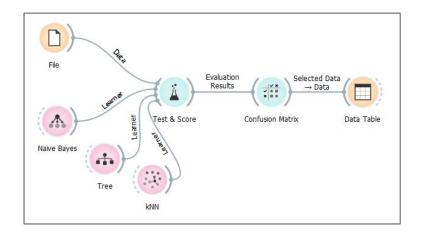


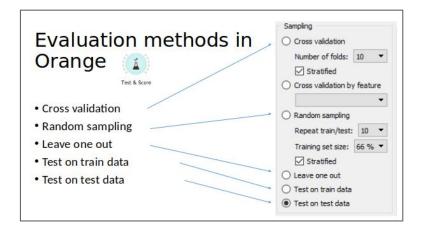
= 68%

Class-specific metrics

True Positive	TP/P	The proportion of
Rate		positive instances that
or Hit Rate		are correctly classified as
or Recall		positive
or Sensitivity or		
TP Rate		
Precision	TP/(TP+FP)	Proportion of instances
or Positive		classified as positive that
Predictive Value		are really positive
F1 Score	$(2 \times \text{Precision} \times \text{Recall})$	A measure that combines
	/(Precision + Recall)	Precision and Recall
Accuracy or	(TP + TN)/(P + N)	The proportion of
Predictive		instances that are
Accuracy		correctly classified

Practice time: evaluation and Orange3



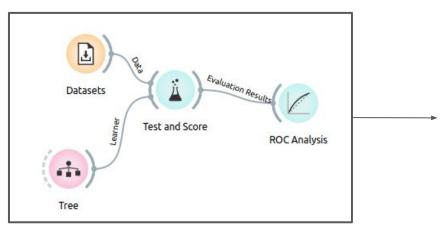


ROC curves

Key point: Varying discrimination threshold has great impact on classification!

True positive rate = $\frac{TP}{TP + FN}$

False positive rate = 1 - Specificity = $\frac{FP}{FP + TN}$



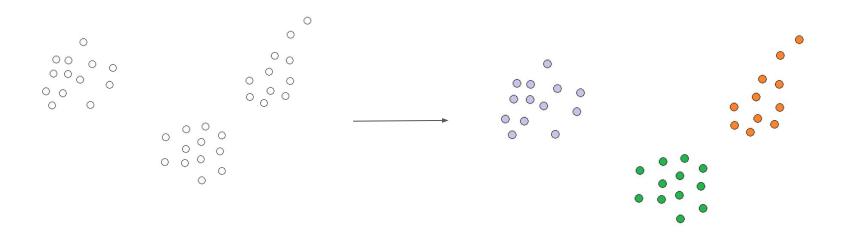
Different thresholds! Plot 1.00 Target Proteas 0.94 0.91 0.89 Classifiers Curves Merge Predictions from Folds ▼ Show convex ROC curves Show ROC convex hull **Analysis** ✓ Default threshold (0.5) point ✓ Show performance line 500 ‡ FP Cost: 500 \$ FN Cost: Prior probability: 19 % 韋 FP Rate (1-Specificity) 2 B B | → 1×186

HW questions

- 1. For a given classifier, obtain its confusion matrix (Iris data set, 70:30 split)
- 2. Compute the Precision and Recall for the most frequent class
- 3. Compute F1
- 4. Compute the precision of the Majority classifier. What do you observe?

Unsupervised learning: clustering

End-goal



Clustering

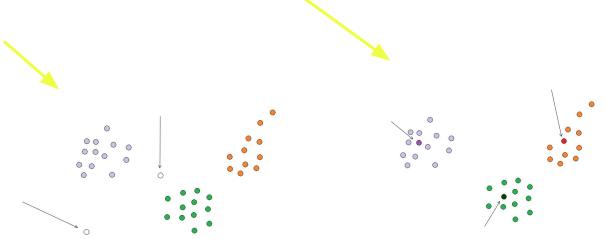
... is the process of grouping the data instances into clusters so that objects within a cluster have high similarity but are very dissimilar to objects in other clusters.

Wish list:

- Identity clusters irrespective of their shapes
- Scalability
- Ability to deal with noisy data
- Insensitivity to the order of input records

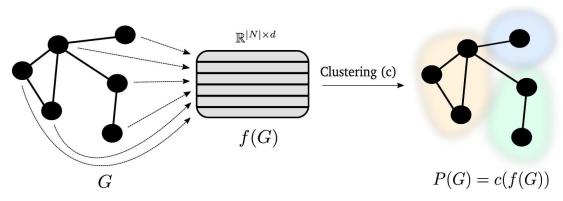
Some applications

- Label assignment (cluster-based classification)
- 2. Data summarization (e.g., via centroids, medoids)
- 3. Outlier detection



More applications

- 1. Customer segmentation and collaborative filtering
- 2. Text applications
- 3. Social network analysis



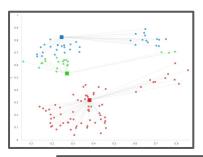
Clustering algorithm types

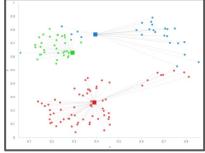
- Partitioning-based
 - o K-means, k-medoids, k-modes
- Hierarchical
 - Agglomerative
- Grid-based
 - Multi-resolution grid structure
 - Efficient and scalable
- Density based
 - Low/high density regions of space (DBSCAN, OPTICS, DenClue)

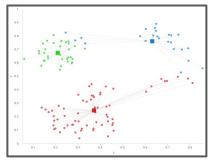
k-Means

- 1. Choose **k random instances** as cluster centers
- 2. Assign each instance to its **closest cluster** center
- 3. Re-compute cluster centers by computing the average (*aka centroid*) of the instances pertaining to each cluster
- 4. If cluster centers have moved, go back to Step 2
- 5. (Equivalent termination criterion: stop when assignment of instances to cluster centers has not changed)

Alternatives: K-medoids, K-modes







Some properties of k-Means

- The number of clusters k is fixed in advance
- It is fast, it always converges
- Can converge into a local minima (bad solution because of unlucky start)
- Finds "spherical" shaped clusters
- k-Means will cluster the data even if it can't be clustered (e.g. data that comes from uniform distributions)

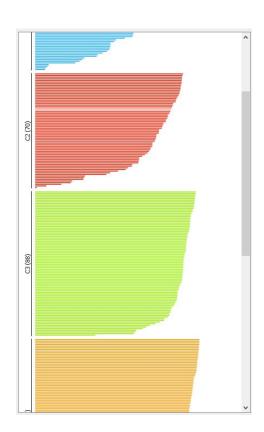
How many clusters?

The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation).

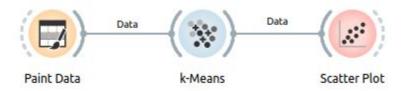
• For example xi, its silhouette coefficient is $s_i = (b_i - a_i)/\max(a_i, b_i)$ ai average distance between xi to all other examples in its cluster.

bi average distance between xi to the examples in the "closet neighboring" cluster

The overall silhouette coefficient is the average of the data point-specific coefficients.



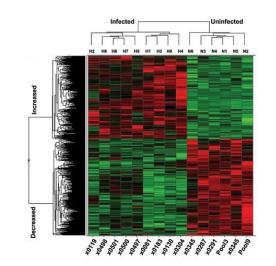
Practice: Number of clusters and custom data

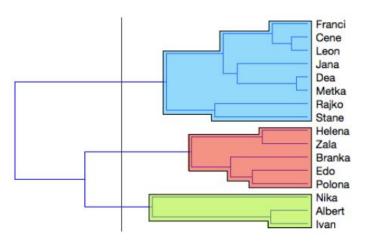


Agglomerative clustering

- Start with a collection C of n singleton clusters
 - Each cluster contains one data point ci ={xi}
- Repeat until only one cluster is left:
 - Find a pair of clusters that is closest: min D(ci, cj)
 - Merge the clusters ci and cj into ci+j
 - Remove ci and cj from the collection C, add ci+j

Discuss: time&space complexity?





Linkage functions and metrics

Two main parameters: The metric (e.g., Manhattan, Euclidean etc.),

and **linkage:**
$$D(X,Y) = \min_{x \in X} d(x,y)$$

- Single Linkage $D(X,Y) = \overline{N_X}$ Average Linkage $x_i \in X, y_i \in Y$

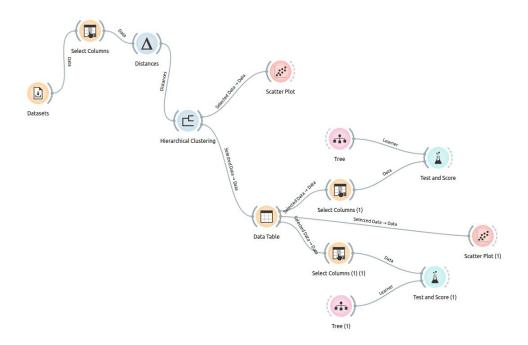
Ward Linkage
$$ESS(X) = \sum_{i=1}^{N_X} |x_i - \frac{1}{N_X} \sum_{j=1}^{N_X} x_j|^2$$

Complete Linkage

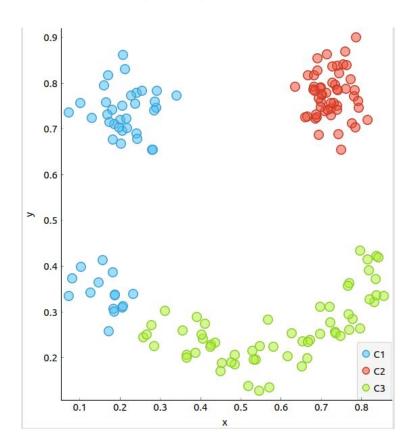
$$D(X,Y) = \max_{x \in X} d(x,y)$$

Practice

- Language bias of clustering algorithms
- The clustering hypothesis



Practice - algorithmic language bias



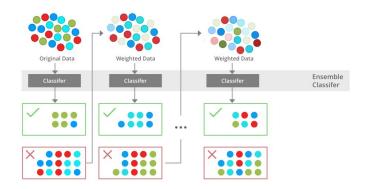
Interesting things to try

- 1. Write your version of Single-linkage Hierarchical Clustering. Try to skip a step or two during cluster generalization. What do you observe?
- 2. Implement k-medoids algorithm and try to estimate cluster uncertainty by performing multiple initializations (and implementing their combination)

State-of-the-art classification

Extreme Gradient Boosting

- Decision tree ensembles
- 2. Build a tree
 - a. Identify where loss is highest
 - b. Use this information when building subsequent trees
- 3. Final ensemble of trees used for classification



Python Notebook

- 1. Benchmark:
 - a. Tree
 - b. Extreme gradient boosting
- 2. Accuracy

