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Lesson 1:
Introduction to Data Mining

Basics of Machine Learning

- Standard learning tasks
- Three generations of machine learning

« Advanced learning tasks



Basics of Machine Learning
e \What is Machine Learning (ML)

— Area of computer science, concerned with the

development of computer algorithms that learn from
data
Input: Data Output: Model
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Basics of Machine Learning

e Origins of terms

— Term Machine learning comes from early Al research in 1960s
and 1970s: Perception of learning algorithms as “machines”,

able to learn (generalize) from data automatically, without
human intervention

— Term Inductive learning refers to the capability of learners to
generalize — to automatically induce models from data

— Term Symbolic learning refers to the capability of learners to
induce explainable knowledge from data - XAl

Input: Data Output: Explainable knowledge
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Basics of Machine Learning

e [wo basic learning settings

- Symbolic learning — inducing explainable predictive

models, such as decision trees or classification rules
Input: Data Output: Model

Symbolic learning

ML > % Explainable predictive model

— Sub-symbolic (neural) learning — inducing black-box
classifiers, such as neural networks
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Basics of Machine Learning

e Early history of symbolic learning algorithms:
— Early rule learning algorithms: AQ (Michalski 1969), ...

— Early decision tree learning algorithms since 1970s: 1D3

(Quinlan 1979), ...
— Early regression tree learners CART (Breiman et al. 1984), ...

— Advantage: explainable models, but less accurate classifiers

e Sub-symbolic (neural) learning algorithms
— Early perceptron (Rosenblatt 1962), backpropagation neural
networks (Rumelhart et al. 1986), ...
— Modern deep neural networks (Hinton & Salakhutdinov
2006, Goodfellow et al. 2016), ...
— Advantage: more accurate classifiers, but black-box models



Basics of Machine Learning

e |Learning tasks depend on the type of input data and
the goal of learning

tabular data — prediction and classification, clustering, ...

relational databases - relational learning, inductive logic
programming, ...

graphs — network analysis, social network analysis, link
prediction, node classification, network completion, ...

texts — text mining, sentiment analysis, hate speech
detection, ...

Web pages — Web page recommendation, ...

heterogeneous data and heterogeneous information
networks — classification of data instances, node
classification, link prediction, ...
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Basics of Machine Learning

e Definition of a standard machine learning task

- Given: class-labeled data set (e.g., transaction data table,
relational database, text documents, Web pages, ...)

— Find: a classification model, able to predict new instances

Machine
Learning

classification model
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Basics of Machine Learning

e Standard machine learning scenario
1. Use a ML algorithm to learn a predictive model from
class-labeled data

2. Use the induced model to predict the class of new
(unlabeled) data instances

new unclassified classified }e\
instance instance 1 N
symbolic model LA b
explanation
new unclassified \ classified

instance N instance
B black box classifier

no explanation




Basics of Machine Learning
lllustrative example: Contact lens data set

Person Age Spect. presc. Astigm. Tear prod.  Lenses
O1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
O4 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

O14 35 hypermetrope no normal SOFT
O15 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 o4 myope no reduced NONE
018 62 myope no normal NONE
019-023
024 56 hypermetrope yes normal NONE



Basics of Machine Learning
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Decision tree learning from Contact lens data

Person Age Spect. presc.| Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope ves reduced NONE
o4 young myope vyes normal HARD
05 young | hypermetrope no reduced NONE

C6-C13
014  ore-presbyc hypermetrope no normal SOFT
015  opre-presbyc hypermetrope yes reduced NONE
016 orepresbyc hypermetrope ves normal NONE
017 |presbyopic myope ho reduced NONE
018 |presbyopic myope no normal NONE

019-023
024  preshyopic hypermetrope ves normal NONE

Data Mining

reduced{//

NONE

anai?mm

no/

SOFT

myopi//

spect. pre.

HARD

\\\rypennenope

NONE




Basics of Machine Learning
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Rule learning from Contact lens data

Person Age Spect. presc. Astigm.  Tear prod. Lenses
o1 17 myope no reduced NONE C
o2 23 myope no normal SOFT MaCh Ine
o3 22 nyope yes  reduced  NONE earning
O4 27 myope yes normal HARD -
05 19 hypermetrope no reduced NONE
06-013 T
014 35  hypermetrope  no normal SOFT \ tear prod.
015 43 hypermetrope yes reduced NONE reduced 'xlx normal
o186 39 hypermetrope  yes normal NONE s E_"_‘_‘r. e —
o7 54 nyope no reduced NCNE ‘ NONE :fastigmatism';}
o18 62 myope no normal NONE e ——
019-023 ... ne e A
o24 5  hypermetrope  yes  normal  NONE SOFT “spect. pre.
myope :-f K\x hypermetrope
*y
HARD HONE

lenses=NONE « tear production=reduced
lenses=NONE « tear production=normal AND astigmatism=yes AND

spect. presc.=hypermetrope

lenses=SOFT <« tear production=normal AND astigmatism=no
lenses=HARD « tear production=normal AND astigmatism=yes AND

lenses=NONE «

spect. presc.=myope



Basics of Machine Learning
Data Mining

dat

Person Arle Bpect. presc. Astiom. | Tear prad. Lenses
o1 17 myops no reduced MCRE
oz ) mycps no narrnal SOFT
o2 e myopa yas reducad MCME
o4 =T myopa yas narrnal HARD
05 14 hypermetraps no reducad MCME

o5-013
14 25 hypermetrope no narrnal SOFT
15 43 hypoirnoclropo: W rodug o M2ME
& 22 hypoirnelrope: W nor izl MZME
17T S my o pe no rodus e MZME
18 G2 my o po no nor il MZ2ME

Q18023
DEd b 7] hypoirnclrope: W nor il MZMNE

data

knowledge discovery
from data

Data Mining

patterns

Given: class labeled or non-labeled data
Find: a set of interesting patterns, explaining the data

IF

Tear prod. = reduced

THEN

Lenses = NONE

symbolic patterns

explanation

15



Basics of Machine Learning
Pattern discovery from Contact lens data

Person Age  Spect. presc. Astigm. Tearprod. Lenses PATTERN

o1 17 myope no reduced NONE
02 23 myope no normal SOFT
Q3 22 myope yes reduced NONE Rule:
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE IF
06-013 Tear prod. =
014 35 hypermetrope no normal SOFT reduced
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE THEN
017 54 myope no reduced NONE _
0138 62 myope no normal NONE Lenses =
019-023 NONE

024 56 hypermetrope yes hormal NONE
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Basics of Machine Learning
Summary

e Basic definition of Machine Learning

— Computer algorithms/machines that learn predictive models
from class-labeled data

e Extended definition of Machine Learning - Used
interchangeably with the term Data Mining

— computer algorithms/machines that learn patterns or models
from class-labeled or non-labeled data

— sometimes used to denote the practical use of ML techniques
applied to solving real-life data analysis problems
e Deep Learning - Used in popular literature
interchangeably with the term Al ?7?



Introduction to Data Mining

« Basics of Machine Learning

Standard learning tasks
- Three generations of machine learning

« Advanced learning tasks

18



Binary Classification

Person Age Spect. presc.  Astigm. Tear prod.. Lenses
&y 17 yope no reduced NO
Q2 23 myope no normal YES
03 22 myope VES reduced NO
o4 27 myope yes normal YES
Q3 19 hypermetrope no reduced NO

06-013
14 35 hypermetrope no normal YES
o135 43 hypermetrope vyes reduced NO
16 39 hypermetrope yes normal NO
17 54 nyope no reduced NO
18 62 myope no normal NO

O19-023 .
024 H6 hypermetrope ves normal NO

Binary classes
* positive vs. negative examples of Target class
« Concept learning — binary classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Multi-class Learning Task

Person Age Spect. presc.  Astigm. Tear prod. Lenses
&y 17 yope no reduced NONE
Q2 23 myope no normal SOFT
03 22 myope VES reduced NONE
o4 27 myope yes normal HARD
Q3 19 hypermetrope no reduced NONE

06-013 .

14 35 hypermetrope no normal SOFT
o135 43 hypermetrope vyes reduced NONE
16 39 hypermetrope yes normal NONE
17 54 yope no reduced NONE
18 62 myope no normal NONE
QO19-023 no
024 H6 hypermetrope no normal NONE

Several class labels of training examples of a single Target
attribute



Multi-target Classification

Person Age Spect. presc.  Astigm.  Tear prod.
o1 17 myope no reduced
o2 23 myope no normal
O3 22 myope yes reduced
4 27 myope yes narmal
05 18 hypermetrope no reduced

O6-O13 .
14 35 hypermetrope no normal
O15 43 hypermetrope yes reduced
016 39 hypermetrope yes narmal
o7 54 myope no reduced
018 G2 myope no narmal

O19-023 .
024 56 hypermetrope yes normal

Multi target classification
— each example belongs to several Target classes



Learning from Numeric Class Data

Person Age Spect. presc. Astigm. Tear prod.| LensPrice
01 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
04 27 myope ves normal 5
05 19 hypermetrope no reduced D

06-013 g

014 35 hypermetrope no normal S
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
017 54 myope no reduced 0
018 62 myope no normal D
019-023 .
024 56 hypermetrope yes normal D

Numeric class values — regression analysis



Example regression problem
e data about 80 people: Age and Height

Age | Height
5 3 1.03
.o,h:" . t.“«e{ . 5 1.19
e *:. o0 0t § 1.26
o ‘} 3 1.39
< 15 169
E 14 19 | 167
22 1.86
0.5 25 1.85
* Height 41 159
0 | 48 1.60
0 50 100 ¢ 1.90
Age il 1.82




Baseline numeric model

e Average of the target variable
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Age

Baseline numeric predictor

e Average of the target variable is 1.63

Height
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Height =

Linear Regression Model

0.0056 * Age + 1.4181
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Regression tree
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Simple sub-symbolic classifier:
K nearest neighbors (kNN)

e |ooks at K closest examples (by age) and predicts the
average of their target variable

o K=3

2.00
1.80
1.60
1.40
1.20
1.00
0.80

0.60 _
040 * Height |

0.20 " Prediction KNN, n=3
0.00

Height

0 20 40 60 80 100
Age




Lesson 1:
Introduction to Data Mining

« Basics of Machine Learning
- Standard learning tasks

Three generations of machine learning
« Advanced learning tasks
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First Generation Machine Learning

¢ First machine learning algorithms for
— Decision tree and rule learning in 1970s and early
1980s by Quinlan, Michalski et al., Breiman et al,, ...
e Characterized by
— Learning from data stored in a single data table
— Relatively small set of instances and attributes

e Lots of ML research followed in 1980s

— Numerous conferences ICML, ECML, ... and ML
sessions at Al conferences IJCAI, ECAI, AAAI, ...

— Extended set of learning tasks and algorithms
addressed

30
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Second Generation Machine Learning

e Developed since 1990s:

— Focused on data mining tasks characterized by large
datasets described by large numbers of attributes

— Addressing the entire process of Knowledge Discovery in
Databases (KDD): process understandable models or

patterns in data

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for
Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

— CRISP-DM methodology
buzzword s

— KDD
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Second Generation Machine Learning ~
KDD Process

MANUAL
PREPROCESSING

i
1L
'

SELECTION
DATA MINING
EVALUATION

TRANSFORMATION
MACHINE LEARNING

—

odels
s 7 Knowledge

e KDD process (CRISP-DM methodology) involves several phases:
— data preparation
- machine learning, data mining, statistics, ...
- evaluation and use of discovered patterns

e Machine Learning / Data Mining is the key step in the process

- performed using machine learning or pattern mining techniques for
extracting classification models or interesting patterns in data

- this key step represents only 15%-25% of entire KDD process
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Second Generation Machine Learning
— Industrial KDD standard: CRISP-DM methodology (1997)
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— New conferences on practical aspects of data mining and
knowledge discovery: KDD, PKDD, ...

— New learning tasks and efficient learning algorithms:

e Learning descriptive patterns: association rule learning,
subgroup discovery, ...

* Learning predictive models: Bayesian network learning,
Support Vector Machines, relational data mining, ...



Second Generation Machine Learning ~
Subgroup Discovery learning task

Person Age Spect. presc.| Astigm. Tear prod.| Lenses
o) 17 myope ho reduced NO
. o2 23 myope no normal YES
e Data transformation: o o e
- binary class values T A R
. . 014 35 hypermetrope no normal YES
(pOSltlve VS_ negatlve 015 43 hypermetrope  yes reduced NO
016 39 hypermetrope yes normal NO
examples of Target class) O17 | 5 myope | no  redued | NO
018 62 myope no normal NO
019-023 .
024 56 hypermetrope yes normal NO
e Subgroup discovery:
- atask in which individual ClassA Class B
interpretable patterns in 2
the form of rules are FPRN
induced from data, 1 3

labeled by a predefined
property of interest.
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Second Generation Machine Learning
Relational Data Mining task

casbooer
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Given: a relational database, a set of tables, sets of logical
facts, a graph, ...
Find: a classification model, a set of patterns
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Second Generation Data Mining
Platforms

Orange, WEKA, KNIME, RapidMiner, ...

iInclude numerous data mining algorithms

enable data and model visualization

like Orange, Taverna, WEKA, KNIME, RapidMiner,
also enable complex workflow construction



Second Generation Machine Learning ~
Big Data

e Big Data — Buzzword since 2008 (special issue
of Nature on Big Data)

— data and techniques for dealing with very large
volumes of data, possibly dynamic data streams

— requiring large data storage resources, special
algorithms for parallel computing architectures.



Second Generation Machine Learning

The 4 Vs of Big Data

40 ZETTABYTES o 15 estirnated that
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phones
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of Big
Data
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Second Generation Machine Learning ~
Data Science

e Data Science — buzzword since 2012 when
Harvard Business Review called it "The Sexiest
Job of the 21st Century"”

— an interdisciplinary field that uses scientific
methods, processes, algorithms and systems
to extract knowledge and insights from data
In various forms, both structured and
unstructured, similar to data mining.

— used interchangeably with earlier concepts
like business analytics, business intelligence,
predictive modeling, and statistics.
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Third Generation Machine Learning

Developed since 2010s:

Focused on big data analytics
Addressing complex data mining tasks and scenarios

New conferences on data science and big data
analytics; e.g., IEEE Big Data, Complex networks, ...

New learning tasks and efficient learning algorithms:

e Analysis of dynamic data streams, Network analysis,
Semantic data mining, Text mining, ...

Lots of emphasis on automated data transformation, i.
e. representation learning

SELECTION
MANUAL
PREPROCESSING
TRANSFORMATION
MACHINE LEARNINGI
DATA MINING
]

Ly

EVALUATION




Third Generation Machine Learning

Representation learning in the KDD process

MANUAL

SELECTION
PREPROCESSING

DATA MINING
H R
| |
EVALUATION

Background
knowledge

— e

TRANMSFORMATION
MACHIME LEARMNING

. - Preprocessed Transformed ' Models
Data I data ] data I Patterns Knowledge

Representation learning = Automated data transformation,
performed on manually preprocessed data

Data transformation requires handling heterogeneous data
— Data (feature vectors, documents, pictures, data streams, ...)

— Background knowledge (multi-relational data tables, networks, text
corpora, ...)



Current Generation Machine Learning

e Automated representation learning without manual data
preprocessing

e Using pre-trained deep neural networks for handling
heterogeneous data
— Data (feature vectors, documents, picture

— Using pre-trained deep neural networks for handling heterogeneous
data

e Transformer architectures allowing to adapt deep learning
models to new tasks

e Using open source Large Language Models for handling text
data

Machine Learning = Al ?



Lesson 1:
Introduction to Data Mining

« Basics of Machine Learning
- Standard learning tasks
- Three generations of machine learning

:>Advanced learning tasks
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Representation Learning

44

Relational Data Mining

Relational data
mining: Learning from
complex relational
databases

Inductive logic
programming:
Learning from complex
structured data, e.g.
molecules and their
biochemical properties
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Representation Learning
Relational Data Mining

 Representation learning in a relational learning setting:

D

— automated tra atinn nf muilti-re|gtional data

DATA MIMING

"

Relations ' Transformed P Models

TRANSFORMATION=4
MACHIME LEARMING

data Patterns

e [wo main approaches:

- Traditional approach: Propositionalization of relational
databases, heterogeneous information networks, ...

- Recent approach: Embedding of knowledge graphs,
network node embeddings, entity embeddings, ...



Representation Learning
Relational Data Mining
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Propositionalization

construct relational
features
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propositional table
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Representation Learning
Relational Data Mining
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2. construct a
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Step 2
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Machine Learning > ﬁ.

classification model




Representation Learning
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Relational Data Mining

Licatiom|

sl frangihige by

Tarme edes Ti7R)

Bedatiozal represensatiom of scistumers, ook o beoce.

Step 1

Propositionalization

construct relational
features

construct a
propositional table

Step 2

Subgroup discovery

f1 [ £2 | £3 | £4 | £5 | f6 fn
gl 1 (oo |1 (1140 f0j1j0)1)1
g2 o1 1ol j1ryofojoj1p140
g |01 1|10y 1f1rjojopn0l
L T T N 5 1 O I B A 1
gh| 1 (1|10 foqryofLr|1jop10
gl|jofo 1)1 (ojoyof1rjojopngl
L2 T I 1 1 s A I
L T 1 A I B (A
Lo | v I 1 1 O

fl | f2 | £3 | f4 | £5 | £6 fn
gl (oo |11 yo0f0j1j0p1)1
g2 o1 {10110 fojoj1p140
20 T O A 1 O
T 5 1 O I B A 1
L T S A O A 1 A I A A
gbyo (o1 1o joyoy1jojopngl
72 I A A 1 A
L0 I v A I I B 1
2 A 1 O

target (A) :-—

'Doctor? (A), ’Italy’(A).

target (A) :-—
’Public’ (4), ’Gold’(A).

target (A) :-—
’Poland’ (A), ’Deposit’(A), ’Gold’(4).

target (A) :-—
’Germany’ (A), ’Insurance’(A).

target (A) :-—
’Service’ (A), ’Germany’ (A).

patterns (set of rules)
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Relational and Semantic Data Mining

Relational data mining:
Learning from complex
relational databases

Inductive logic
programming:
Learning from complex
structured data, e.g.
molecules and their
biochemical properties

Semantic data mining:
Learning by using
domain knowledge in
the form of ontologies

Custouer
I [ % [% o |4 L
f L = T U o R ]

F im0 o
Fo (BT ARG T (g SR

A2
[ fre

iizpgener [Order re |Tetivery (Primie
% &’ %'l Mady ik

| I_'«.‘_.IIHEH Ak
1 E
i S253da 17 rarER | Crdic
ATl 517 D4 17 repgular ol
s I",
IE skie
Stuew LU Sige cLyvpe  Lucatiom
12 sl Fameiee sity
17 Tarpe iwden Tural
Flavabiozal cepresemeation b customery, anlecs aod beices.
G0:0005208
amine metabolism
GO:0009309
0:0006520 amine bio- GO:0006576
amino acid nthsis hiogenic amine
metaboldism metabolism

GO000B652
aming acid GO:00042401

binsynthesis bipgenic amine synthesis



Semantic Data Mining: Using ontologies as
background knowledge in RDM

p domain
- (_ontologies

target (A) :-
’Doctor’ (A), ’Italy’(4).

targeps*
annotations, dStemapt_lc m&del, .
mappings ala mining - patterns
‘Ge 1) .
target (A) :-
Given: ’Service’ (A), ’Germany’ (A).

Bk "2l o transaction data table, relational database,
{ data J text documents, Web pages, ...
e one or more domain ontologies

Find: a classification model, a set of
patterns




Using domain ontologies

Using domain ontologies as background knowledge, e.g.,

using the Gene Ontology (GO)

GO is a database of terms, describing gene sets in terms

of their

— functions

— processes

— components

Genes are annotated
to GO terms

Terms are connected
(is_a, part_of)

Levels represent
terms generality

GO:0009308
amine metabolism

G0:0009309
amine bio-
nthsis

GO0:0006576
biogenic amine
metabolism

G0:0006520
amino acid
metabolism

G0:0008652
amino acid
biosynthesis

@ Go:00042401
biogenic amine synthesis
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oS . . a
SN e wmea e rme LW gtlofofafefolololt]olo]o]:
GO-0003208 el fofofc]lelo]a]ola]1]2
amine metabolism gl o pufrjojoji 1)1 po)eo
gl ool oleolole]o]ola]o]n

1. constructing relational
G0:0006576 features

biogenic amine

GO:0009304
aming bio-
nthsis

GO:0006520
amine acid

metabolism metabolism 2 . COﬂ Stru Ctl ng a
00008652 propositional table
amino acid GO:00042401
biggynthesiz biggenic amine synthesis

Approach:

« Using relational learning in the SDM context, using a

propositionalization approach
Sample application:

« Semantic data mining in a biomedical application by using the
Gene Ontology as background knowledge in analyzing
microarray data



Text mining: Viewed In propositionalization

context: BoW data transformation
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Cacument W ordl Wi orel2 Wi ora Class

Step 1 fulll 1 1 Il 1 o [

a2 1 1 Il 0 YES

3 1 1 il 1 o [

BoW vector dd 1 1 1 0 ¥YES
construction oy T 2 .

dl14 ] ] [ ] YES

dlz ] ] 1 1 MW

116 ] ] 1 ] MW

BoW features 1 . : . : o
construction w1 .
Table of BoW vectors dz4 ” 0 1 o NO

construction

Document W ordl W orcly? Worc Class
ol i 1 [l i MW
d? i 1 [l 0 YES Step 2
d3 i 1 i i MW
dd 1 1 i 0 YES
5 1 Q0 [ 1 MO L.
de-d13 . Data |\/||n|ng
14 1 0 [ o YES
d1s 1 Q0 1 1 MO
16 1 0 1 o MO
a1y 1 1 [ 1 MO
18 i} 1 0 ] M
d1a-ck2d .
dzd 0 0 i 0 MW

model, patterns, clusters,
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BoW construction: Feature weights and Cosine

similarity between document vectors

e Each document D is represented as a vector of TF-IDF weights

e Similarity between two vectors is estimated by the similarity between
their vector representations (cosine of the angle between the two
vectors):

e Similarity between BoW vectors can be used for document clustering, i.
e. for finding natural groups of documents in an unsupervised way (no
class labels pre-assigned to documents)



Embeddings-based Data Transformation
for Text mining

Corpus embedding,
Document embedding,
Sentence embedding,
word embedding (e.g.,
word2vec)

. Trans?orming
documents by
projecting documents
into vectors (rows of a
data table)
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Embeddings-based Data Transformation
for Text mining

Corpus embedding,
Document embedding,
Sentence embedding,
word embedding (e.
g., word2vec)

. Trans?orming
documents by
projecting
documents into
vectors (rows of a
data table)

- Table values
correspond to
weights in the
embedding layer of
a neural network

I'he ;l:ll.d dallar ol gi.d Lhie bazst sowaw: R |

.M pre-training {'lassifier fine-tuning
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Embedding-based Data Transformation
for Text mining

Corpus embedding, Document embedding, Sentence embedding,
word embedding, ...

Representations of word meaning obtained from corpus statistics
Spatial relationships correspond to linguistic relationships
disambiguation
_;-' pages
F > t 4 05 heiress
= of ™ ; =
;‘:‘ﬂ.t'.JLI.:I"lS | :2 -. l' II sk o
n . .','.”_: » ‘ e ol I'r'ep"le.'u :|.1.air .
g.} o L.‘g; ;-’ : 0.1} ! Luncle . qup‘é‘fy

i 1 1 i . i - L i i i
-05 -04 -0.3 -0.2 -0 i} 0.1 0z 0.3 0.4 o5

Y
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Data Mining Lesson 1:
Summary and Take away messages

e Motivation for studying Machine Learning

— ML is highly relevant, as motivated by two epidemiology spreading
case studies

— Course outline should motivate for studying this modern ML approach
to become a skilled data scientist

¢ |ntroduction to Machine Learning

— ML basics and illustrative examples were presented for elementary
classification and regression learning tasks

— Three generations of machine learning and data mining methods were
outlined

e Representation Learning
— Representation learning is a highly relevant contemporary ML problem

— ML basics and illustrative examples were presented for advanced
relational, semantic and text mining tasks



Selected literature

e James G, Witten D, Hastie T and Tibshirani R (1' Edition 2013,

2" Edition 2021) An Introduction to Statistical Learning - with
Applications in R. Springer, New York. Available at_https://
statlearning.com/. Chapters 1 and 2.

Bramer M (2007) Principles of Data Mining. Springer, Berlin.
DOI:10.1007/978-1-84628-766-4. An introductory textbook for
refreshing your knowledge on basics of data mining. The first
edition of the textbook is also available at ResearchGate, https://
www.researchgate.net/

publication/220688376 Principles of Data Mining

Lavraé N, Podpe&an V and Robnik-Sikonja M (2021)

Representation Learning: Propositionalization and Embeddings.
Springer, Berlin. Chapters 1 and 2.
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Lesson 2
Decision tree learning

Basic decision tree learning algorithm
Classifier evaluation and decision tree pruning
e Selected decision tree learning algorithms
e Regression tree learning

60
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Decision tree learning: an illustrative example

Person Age Spect. presc.| Astigm. Tear prod. Lenses
o1 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope ves reduced NONE
o4 young myope vyes normal HARD
05 young | hypermetrope no reduced NONE

C6-C13
014  ore-presbyc hypermetrope no normal SOFT
015  opre-presbyc hypermetrope yes reduced NONE
016 orepresbyc hypermetrope ves normal NONE
017 |presbyopic myope ho reduced NONE
018 |presbyopic myope no normal NONE

019-023
024  preshyopic hypermetrope ves normal NONE

Machine
learning

hamhﬂfmml

reduced{//

NONE

no/

SOFT

spect. pre.

rnyopi/// \\\?ypennenope

HARD NONE




Predictive DM task: Basic notions

Data are objects, characterized with attributes
A, and class-labels C,

Objects (data instances, training examples)
are described with attribute values

Attributes can be discrete, nominal or numeric

Classes can be discrete (binary classification)
or nominal (multi-class learning) or numeric
(regression)

Classification learning task is to induce a
model capable to predict the class-label for a
new (unclassified) instance
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TDIDT - Decision tree learning algorithm

Elementary decision tree learning algorithm ID3 (Quinlan 1979)

- create the root node of the tree
- if all examples from S belong to the same class C,

then label the root with G,

- else

select the ‘most informative’ attribute A with values v,
Vo, ... Vp,

divide training set S into S4,... , S, according to values
V4, Vo, Vn @
recursively build sub-trees v
Tq,...,T,forS,,..., S, V//\

(- )
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Decision tree search heuristics

« Central choice in decision tree algorithms: Which
attribute to test at each node in the tree ? The
attribute that is most useful for classifying
examples.

« Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

« First define a measure commonly used in
information theory, called entropy, to
characterize the (im)purity of an arbitrary
collection of examples.
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Entropy

Entropy E(S) — measure of impurity of training set S

In concept learning (binary classification) problems,
with training set S labeled by two classes C, and C.
E(S) = - P- lng P--D- lng p. - prior probability of class C,

(relative frequency of C, in S)
p' p. - prior probability of class C.

In multi-class learning problems, with training set S
labeled by N classes C4,C....,Cy

N . .

p. - prior probability of class C,
E(S)=— 2 P log, p. (relative frequency of C. in S)
c=1



Entropy

* E(S)=-p.log.p.- p-log.p.

e The entropy function relative to a Boolean

classification, as the proportion p, of positive
examples varies between 0 and 1

1

0,8
0,8
0,7

D) 0.6

-

E,L 0.5

c 0.4

woa S \
os L f \
o1 L \
D I/ T T \I

0 0,2 0,4 0,6 0.3 1 Pt




Entropy - why ?

Entropy E(S) = expected amount of information
(in bits) needed to assign a class to a randomly
drawn object in S (under the optimal, shortest-
length code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

S0, in binary classification problems, the
expected number of bits to encode + or — of a
random member of S is:

p.(-log,p.) + p.(-log,p.) =-p.log,p. - p-log,p.
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Binary classification problem:

Survey data

Education Marital Status Sex  Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes

university divorced female no yes

university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes
single
0.600
5.0
Sex
male emgle
1.000 0.000
3.0 2.0 .
no yes

0.357
14.0

Marital Si3

married
0.000
4.0

BS
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Entropy — example calculation

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]

E(S) = - p. logzp. - p.10g,p.

Computing entropy, if probability is estimated by
relative frequency

E(S)=- 0 —log——
) [|5| “Tst) | Ts1 s

E([9+,5-]) = - (9/14) 10g,(9/14) - (5/14) log,(5/14)
= 0.940

S, 1 IS+I]_[|5_|l |s_|]
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Survey data: Entropy

« E(S)=-p.log:p., - p-log.p.
e E([9+,5-]) = - (9/14)log,(9/14) - (5/14) log,(5/14) = 0.940

sinal {ele2,e6,e7,e9} [2+, 3-] E=0.970

Marital status ?

married— (53 25 10,11} [4+, 0-] E=0

{e4,e8,el2,13,el4} [3+, 2-] E=0.970

, [3+, 4-]

e E0985

Sex ? femal _ [6+,1-]
© E=0.592

[6+,2-] E=0.811

no
Has children% [3+, 3-]

[ d
.

—>

s E=1.00
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Information gain
search heuristic

e [Information gain measure is aimed to minimize the

number of tests needed for the classification of a
new object

e Gain(S,A) — expected reduction in entropy of S due
to sorting on A

Gain(S, A = E(S) - 1S, | _
weValues( A) | SI

¢ Most informative attribute: max Gain(S,A)

E(S)
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Information gain
search heuristic

e \Which attribute is more informative, A1 or A2 ?

[9+,5-], E= [9+,5-], E =
0.94 0.94

®
/N /N

ZhE T AR P g
1 0 0 0
® Gain(S,A1) = 0.94 - (8/14 x 0.811 + 6/14 x 1.00) = 0.048

® Gain(S,A2)=0.94-0=0.94 A2 has max Gain
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Survey data: Information gain

1S,

Gain(S, A) = E(S) - Z E(S,)

veValues( A) | SI

« Values(Has children) = {no, yes}
[6+,2-] E=0.811

no

Has children= Y: . [3+, 3-]
_ S=[9+5-], ES) =0.940 E=1.00

- S,, =[6+,2-], E(S,,) = 0.811

— Sy =[3+,3-], E(Syes) = 1.0

- Gain(S, Has children) = E(S) - (8/14)E(S,,) - (6/14)E(S,es) =
0.940 - (8/14)x0.811 - (6/14)x1.0=0.048
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Survey data: Information gain

Which attribute is the best?

- Gain(S, Marital status)=0.246 MAX !
- Gain(S, Sex)=0.151
- @Gain(S, Has children)=0.048

- Gain(S, Education)=0.029
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Survey data: Information gain

singl

{D4,D5,D6,010,D14} [3+,62-] E=0.970 ???

married {D3,D7,D12,D13} [4+,0-] E=0 OK - assign class
ivorced Yes
{D1,02,D8,09,D11} [2+,3-] E=0.970 ???

Marital
status ?

. Which attribute should be tested here?>

_ Gain(Syyereey, SeX) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !
_  Gain(S,;....q,Has children) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570
_  Gain(Sy,...q,Education) = 0.97-(2/5)1-(3/5)0.918 = 0.019
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Alternative probability estimates

« Relative frequency :
-~ Computed as |S+ |/ [S]
— problems with small samples

[6+,1-] (7)
[2+,0-] (2)

6/7
2/2 =1

« Laplace estimate :

— assumes uniform prior distribution of k
classes

- For k=2, Computed as (|S+ |+1) / (|S|+2)

[6+,1-] (7) = (6+1)/ (7+2) = 7/9
[2+,0-] (2) = (2+1) / (2+2) = 3/4
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Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (top-down
greedy search, no backtracking, prefer small trees)

Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

- if all examples belong to same class C;, label
the leaf with G,

- if all attributes were used, label the leaf with
the most common value C, of examples in the
node

Extension to ID3: handling noise - tree pruning
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Decision tree learning

e Basic decision tree learning algorithm
Classifier evaluation and decision tree pruning
Selected decision tree learning algorithms

e Regression tree learning
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Classifier evaluation

« Evaluation of learned models
- discovery of new patterns, new knowledge
- explainability and compactness - XAl
- information contents (information score) - significance
- classification of new objects — accuracy
« Evaluating the accuracy of learned models
- Accuracy, Error = 1 — Accuracy

- high accuracy on testing examples = high percentage of
correctly classified unseen instances — high predictive power

- high accuracy on training examples — possible data
overfitting
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Classifier evaluation

« Evaluation methodology

- split the example set into training set (e.g. 70%) to induce a concept,
and test set (e.g. 30%) to test its accuracy

- more elaborate strategies: 10-fold cross validation, leave-one-out, ...
 N-fold cross-validation method for accuracy estimation of classifiers

- Partition set D into n disjoint, almost equally-sized folds T, where U; T,=D
- for i=1,...,ndo

« form a training set out of n-1 folds: Di = D\T,

« induce classifier H,from examples in Di

« use fold T, for testing the accuracy of H;

- Estimate the accuracy of the classifier by averaging accuracies over 10
folds T,
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Overfitting and accuracy

« Typical relation between tree size and accuracy

0.9
0.85 —

;]B /_/_/_/

0.75 /_/
~— —— On training data

0.7 -
/,“/ ; : On test data
0.65 1 —

0.6

0.55

0.5

0 20 40 60 80 100 120

« Question: how to prune optimally?
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Pruning of decision trees

« Avoid overfitting the data by tree pruning

« Pruned trees are

- less accurate on training data
- more accurate when classifying unseen data

,}
5 R

O O

O
e O ?\

O O
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Handling noise - Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
e erroneous attribute values
e erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)
4. Missing attribute values in training examples
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Handling noise - Tree pruning

« Handling imperfect data
- handling imperfections of type 1-3
e pre-pruning (stopping criteria)
e post-pruning / rule truncation
- handling missing values

« Pruning avoids perfectly fitting noisy data: relaxing the completeness
(fitting all +) and consistency (not fitting all -) criteria in ID3
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Prediction of breast cancer recurrence:
Tree pruning

Degree_of_mali

g
<3 > 3
Tumor_siz Invdlved_node
e S
1 <3 >3
Ag ho_recur 125 ho_recur 30 ho_recur 27
e recurrence recurrence recurrence
39 18 . 10 .
40 40 ) yo P
no_récur 4
recurrence no_recur
1 4
no_rec*s g 4

recl



Pruned decision tree for
contact lenses recommendation

reduce prod. norma

E m
ni// yes
[N=12,S+H=0
|
[S=5,H+N=1 my°'°e,/ Mmpe
]

HARD F

[H=3,S+N=2 [N=2, S+H=1]
]
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Decision tree learning

e Basic decision tree learning algorithm

e (Classifier evaluation and decision tree pruning
j>SeIected decision tree learning algorithms

¢ Regression tree learning
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Selected decision/regression
tree learners

« Decision tree learners

- ID3 (Quinlan 1979)

- CART (Breiman et al. 1984)

- Assistant (Cestnik et al. 1987)

- C4.5 (Quinlan 1993), C5 (Seeb5, Quinlan)
- J48 (available in WEKA), Tree (in Orange)

« Regression tree learners, model tree learners

- M5, M5P (implemented in WEKA), Tree (in Orange)
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Appropriate problems for
decision tree learning

« Classification problems: classify an instance into
one of a discrete set of possible categories

(medical diagnosis, classifying loan applicants, ...

« Characteristics:
- Instances described by attribute-value pairs
(discrete or real-valued attributes)

- target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)
- disjunctive hypothesis may be required

- training data may be noisy
(classification errors and/or errors in attribute values)

- training data may contain missing attribute values
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Selected decision tree learners

« Decision tree learners: Tree (in Orange)

win [ree ? X
1

MName

Tree | Tree

Parameters

] Induce binary tree

Min. number of instances in leaves: 25
Do not split subsets smaller than: 5[5 |
Limit the maximal tree depth to: 100 = |
Classification

[~] stop when majority reaches [%]: | 95 5 |
Apply Automatically

7 B




Decision tree learning

e Basic decision tree learning algorithm

e (Classifier evaluation and decision tree pruning

e Selected decision tree learning algorithms
Regression tree learning
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Regression tree learning

« Estimation or regression task: given objects
described with attribute values, induce a model to
predict the numeric class value

« Data are objects, characterized with attributes
(discrete or continuous), classes of objects are
continuous (numeric)

e Regression tree learners, model tree learners:

- M5
- M5P (implemented in WEKA)

— Tree (in Orange)
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Regression tree

==1245 =124
s e 3350)
«=F.5 =F.5 HEight =
£ o s ey 1709
<=4 -4 Height = 2
,ﬁ”f “‘“ﬂ-hh____h ‘:§“ “‘.Q* ’Q L +* -
mE O SR
Height = Height = 1.5 gt
1.3932 1.4025 L ¢
2 #
=
0.5 :
* Height
B Prediction
0 I
0 50 100
Age




Height

B

Model tree 25
Height =
0.0333 * Age
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? > ‘:‘ sette? VLT T *
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NI ~ il W wrracer i
ra
1
0.5 + Height
= Prediction
G | | | |
0 20 40 60 80

Age

100

=12.5

—

Height =
0.0011 * Age
+ 1.6692
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Predicting algal biomass: regression
tree




Regression learners:
Which predictor is the best?

Linear |Regression
Age Height | Baseline | regression tree Model tree KNN
2 10851 1.63 | 1.43 | 1.39 1.20 | 1.01
10 | 1.4 | 1.63 | 1.47 | 1.46 1.47 | 1.57
35 | 1.7 ] 1.63 | 1.61 1.7 1.7 1.6/
/0 | 1.6 | 1.63 | 1.81 1.7 1.75 | 1.8
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Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression trees,

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class




Lesson 2
Summary and Take away messages

« Decision tree learning
- Addresses classification problems

- Algorithms use search heuristics to search the space of
possible trees in a top-down manner

- Training data may be noisy - tree pruning help dealing
with noisy data to improve predictive accuracy on new,
unlabeled data

« Regression tree learning
- Addresses predictive modeling from numeric data
- Advanced regression tree and model tree learners exist

« Notice different evaluation criteria for classification
and regression

98



Lesson 3:
Rule Learning

Transforming decision trees to rules

e Classification rule learning algorithm
— Covering algorithm
— Learning individual rules

e Association rule learning

99
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Converting decision tree to rules, and rule
post-pruning (Quinlan 1993)

Very frequently used method, e.g., in C4.5 and J48

Procedure:

— grow a full tree (allowing overfitting)

— convert the tree to an equivalent set of rules

— prune each rule independently of others

— sort final rules into a desired sequence for use



Learning decision trees

Survey data

Education Marital Status Sex  Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes o357
14.0
Marital ‘S{2
single marmigd
0.600 0.000
5.0 4.0
Sex 5
male emgle
1.000 0.000
3.0 2.0
no yes
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Transforming trees to rules:
Survey data

Haz Children
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vey
N
uy
(il
vey
vioR
T3]
ves
v
oo

Approved

il
i
WES
VR
WS
na
¥
Vs
Y
=
s
ikl
I

¥es

LB
AND
THEN
IF
AND
THEN

=
=
=

BND
IHEM

IF
A L
THEN

MaritalStatus single
Sex = female

Approved = yes
MaritalStatus = single
Sex = male

Approved = no
MaritalStat married
Approved = ?ea
MaritalStatus = diverced
HasChildren = yes
Approved = no
Ha:i;a;ELaLLS = divorced
HasChildre rno
nppr@ved = ;es
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yas (219) na (W5)
| |

veas (0/4) nao (35)
| |

veas (4/9) no (/5]
| |

yves (0/9) na (2/8)
I |

yes (3/8) no (O/5)




Educanon
primary
peimacy
primary

sy

LLLvETSLLY

accondary

UILLVETSLLY

sccandary

seonliy

secandary
prisacy

secondary

NS

secondiry

Pruning classification rules:

Mianial Htams Sex Haz Children | Approved
sinple miLle no oo
single il e 1]

roitrried rrnitle oo =
disraraed female 1t TS
toerried [lermale Ve VS
zinglc male no ni
siogle [ermile it N
divarced fomale nict VS
sinple [eroile Vel s
mamizad male ] VES
cusaried ferale i WS
divorced miLle vy no
disrareed femiale e i
divorced toitle oo VES
IF MaritalStatus

THEN Approved = yes

[F Sex female
THEN Approved = yes

[F Sex = male
THEN Approved = no
DEFAULT Approved =

Survey data

[ b Maritalstatus
AND Sex = female
THEN Approved = yes

IF MaritalsStatus =
AMND Sex = male
THEN Approved = no

L MaritalStat
Approved =

IF Marital3tatus =
HasChildren = ye
Approved = no

IF Ha:i;a;

5
AND HasChild:
THEN nppr@ved

marriad

single

single

married

divorced
=

divorced

no (0/5)

yas (219)
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na (W5)

vea (09)

no (3/5)

yes (4/9)

na (V8)

yes (09)

na (205)

yes (319)

na (V5]

na (1/5)

12 (475

ves
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Lesson 3:
Rule Learning

e Transforming decision trees to rules

Classification rule learning algorithm
— Covering algorithm
— Learning individual rules

e Association rule learning
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Covering algorithm for binary classification
problems (AQ, Michalski 1969,86)

Given examples of 2 classes C, C-
for each class Ci do o+ || -
— RuleBase(Ci) := empty + t 4
— repeat {learn-set-of-rules} et
e E.. :=PiUNi(Pipos., Nineg.) =

¢ |earn-one-rule R covering some positive and no
negatives examples

e add R, to RuleBase(Ci)
e Pi= delete from Pi all pos. ex. covered by R

- until Pi = empty
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Covering algorithm

Positive examples Negative examples
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples

AV
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples

Y
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Covering algorithm

B Rule1: Cl=+ « Cond2 AND Cond3
Positive examples x Negative examples

QY

Rule2: Cl=+ « Cond8 AND Cond6



Principles of learning classification rules
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Education Marital Status Sex Has Children | Approved
primary single male no no
primary single male yes no
primary married male no ves

university divorced female no yes

university married female yes yes

secondary single male no no

university single female no yes

secondary divorced female no yes

secondary single female yes yes

secondary married male yes yes

primary married female no yes

. secondary divorced male yes no

I m p (o) rta nt N ot| ons.: university divorced female yes no
secondary divorced male no yes

Rules are learned separately for each class
(e.g., separately for two classes: Yes and No)

Aiming at large “coverage” of the target class

« Large coverage of class Yes when learning rules for class Yes
« Large coverage of class No when learning rules for class No

Default (majority class) rule is added when coverage becomes low

(below some user-defined rule pruning parameter)
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Multi-class learning:
One-against-all learning strategy

£ q
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_—— — — - —
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Fig. 10.4: The six binary learning problems that are the result of one-against-all
class binarization of the multiclass dataset of Figure 10.2,
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Learn-one-rule:
Search mechanism and heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl)

Search for specializations R’ of a rule R = Cl — Cond
from the RuleBase

Specialization R’ of rule R = Cl <~ Cond
has the form R’ =Cl < Cond & Cond’

Heuristic search for rules: find the best Cond’ to be
added to the current rule R, such that rule accuracy
IS improved, e.g., such that Acc(R’) > Acc(R)

— where the expected accuracy (precision) of a rule can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule as heuristic search:
Survey data

Approved = yes -

Approved = yes - Approved = yes

Has children = no Sex = male
Approved = yes Approved = yes -
Has children = yes Sex = female

Approved = yes
Sex = female
Has children = no Approved = yes
Sex = female

Approved = yes - Approved = yes — maritql status=divorced

Sex = female Sex = female
Has children =yes  Marital status = single
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Learn-one-rule as heuristic search:
Survey data

[9+,5-]
(14)

Approved = yes

Approved = yes - Approved = yes

Has children = no Sox = mle
[6+,2-1(8)  Apbroved = ves —  Approved = yes
HES childr'er?: yes Sex = female [3+,4-1(7)

[6+,1-]1(7)

[3+,3-](6)

Approved = yes
Sex = female

Has children = no Approved = yes

Sex = female

Approved = yes Approved = yes — Marital status=divorced
Sex = female Sex = female

Has children =yes  Marital status = single

[2+,0-] (2)
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Probability estimates for calculating rule

accuracy
e Relative frequency : p(Class | Cond) =
— problems with small samples (Class Cond)
n(Cilass.Con
~ n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) = 2/2 =1
* Laplace estimate : n(Class Cond)+1 | _ 5
— assumes uniform prior - e
distribution of k classes n(Cond)+k

[6+,1-] (7) = (6+1)/ (7+2) = 7/9
[2+,0-] (2) = (2+1) / (2+2) = 3/4
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Learn-one-rule:
Beam search in CN2 (Clark and Niblett 1989)

e Beam search in CN2 learn-one-rule algorithm:

— construct BeamSize of best rule bodies (conjunctive
conditions) that are statistically significant

— BestBody - min. entropy of examples covered by Body

— construct best rule R := Head - BestBody by adding

majority class of examples covered by BestBody in rule
Head

e A variant of CN-2 is implemented in Orange toolbox

e Best performing rule learning algorithm is Ripper - JRip
iImplementation of Ripper is implemented in WEKA toolbox



117

CN2 rule learner in Orange

‘@ CN2 Rule Induction ? X
MName
CN2 rule inducer
Rule ordering Covering algorithm
(®) Ordered (®) Exdcusive
L O Unordered O Weighted ¥: 0.70 =
L]
Rule search
CN2 Rule Induction Evaluation measure: Entropy -
Beam width: 5%
Rule filtering
Minimum rule coverage: 118
Maximum rule length: 5%
] Statistical significance 100 =
(default a): =
Relative significance 1=
Dﬂ:arenta}: e
E Apply Automatically

? B




Lesson 3:
Rule Learning

e Transforming decision trees to rules

e Classification rule learning algorithm
— Covering algorithm
— Learning individual rules

: >Association rule learning

118
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Association Rule Learning

Rules: Al B, if AthenB
A and B are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions 102 oo, i50

itemsets (records) 1 1 0
t2 0 1 0

Find: A set of association rules in the form A2 B
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)
e Support: Sup(A,B) = #AB/#D = p(AB)
e Confidence: Conf(A,B) = #AB/#A = Sup(A,B)/Sup(A) =
= p(AB)/p(A) = p(B|A)
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Association Rule Learning:
Motivation

What people buy in a given shopping experience.
25 Osco Drug stores
1.2 million market baskets

(A market basket is the stuff you put in

the physical cart and check out at the register.)

Or harried dads rewarding themselves with impulse buys

An unexpected pattern

Between S5p.m. and 7p.m. diapers 2l beer

http://www.dssresources.com/newsletters/66.php



Association Rule Learning:
Motivation

e Determine associations between groups of items
bought by customers.

« No predefined target variable(s).
e Find interesting, useful patterns and relationships.
« Data mining, business intelligence.

items, itemsets, ...)

121
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Support and Confidence

e The dataset consists of n transactions
e \We have an association rule B

The support of an itemset A is defined as the fraction of the transactions in the database
T={T1...Tn}that contain A as a subset.

_ 14
The confidence of the rule AZ B itsupp(A — B) = —
transaction, given that the transaction contains A.

supp(A)
| AN Bl

robability of A and B occurring in a

|A A B|

conf(A — B) = A

= P(B|A)
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Association Rule Learning:
Examples

« Market basket analysis
- beer & coke = peanuts & chips (5%, 65%)

(IF beer AND coke THEN peanuts AND chips)
- Support 5%: 5% of all customers buy all four items

- Confidence 65%: 65% of customers that buy beer
and coke also buy peanuts and chips

e Insurance
- mortgage & loans & savings = insurance (2%, 62%)
- Support 2%: 2% of all customers have all four

- Confidence 62%: 62% of all customers that have
mortgage, loan and savings also have insurance
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Mamal Stams
sinple
single

oried
disraracd
cotirried
zinglc
siogle
divarced
sinple
marmiad
IR
divarced
disroreed
divorced

IF
THEN

IF
AND

THEN
ANLC

Sex
mitle
male
it e
fomale
[ernale
male
fernls
female
fermle
male
ferale
mitle
famale

it e

Education

1= 4

Approved = no
= male

Sex

Education
MaritalStatus = divorced
ildren = no

Approved

H

e

bl MR

Survey data

association rule learning

[ E MaritalStatus single
Has Children | Appraved BND Sex = female yes (2/9) no (0/5)
oo no THEN Approved = yes | |
s il
oo VES _ . 3 .
. e IF MaritalStatus = single
o e e res (0f9) nao (35)
vey v AND Sex male yes |
no ni THEN Approved = no | |
o =1
ne yes [F MaritalsStatus married yes (4/9) no (0/5)
e =0 B | |
ves ves THEN Approved = yes
L Y
wes no [F MaritalStatus = diverced
L e BND HasChildren = yes yes (0/9) no (2/5)
oo YES WETT R — . | |
'HEN Approved no
IF MaritalStatus = divorced
AND HasChildren ol | yes |:3-;'9] na {(V8)
MITTTIATY I = |

university support (4/14)

confidence (4/4)

= female | |

support (4/14)

confidence (4/5)

= gecondary
support (2/14)

confidence (2/3)

= yeas

124



Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of
transactions that have
— user defined minimum support, i.e., support > MinSup, and
— user defined minimum confidence, i.e., confidence > MinConf
It is a form of exploratory data analysis, rather than
hypothesis verification

125



Searching for associations

Find all large itemsets
Use the large itemsets to generate association rules
If XY is a large itemset, compute
r =support(XY) / support(X)
If r > MinConf, then X = Y holds
(support > MinSup, as XY is large)

126
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Large itemsets

- Large itemsets are itemsets that appear in at least MinSup
transaction

. All subsets of a large itemset are large itemsets (e.qg., if A,B
appears in at least MinSup transactions, so do A and B)

« This observation is the basis for very efficient algorithms for
association rules discovery (linear in the number of
transactions)



Apriori algorithm

&) ©

Freguent Itemsets Assaciation Rules

* Find all itemsets * For all frequent

within the itemsets, find

minSupport rules which

constraint satisfy the
minConfidence
constraint

*Frequent itemsets = large itemsets, sometimes also frequent patterns



Association rules:
Orange workflow

&= T N
8T e
oa i
[ Srhon -

= B FARS D Data Table

i tul ol ] A nital

| wirralize 4000

= me i Fie

|| o

- ::r.'ll;i- --rrr';v_q"\. C?L aq:}

| TSR T e | -

Oranga3-Aszociata
Trange swbdn b ararwracine besoesHhereabs nms awoe ek nis i
Er SaE) TINTELLT FT YO By Gy
Lo 1
Freqguent Itemsets _—
Association Rules

* Start with a small minSupport and we increase it gradually (to avoid running out of memory)



Association vs. Classification

rules

Exploration of
dependencies

Different combinations

of dependent and
iIndependent attributes

Complete search (all
rules found)

rules

Focused prediction

Predict one attribute
(class) from the others

Heuristic search
(subset of rules found)

130
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Lesson 3
Summary and Take away messages

Classification rule learning addresses classification
problems

Algorithms use search heuristics to search the space
of possible rules in a general-to-specific manner
Training data may be noisy - rule truncation help
dealing with noisy data to improve predictive accuracy
on new, unlabeled data

Association rule learning is an example of descriptive
induction algorithms, aimed at finding interesting
patterns in data



Lesson1-3
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Summary and Take away messages

Data mining techniques

Predictive induction

Classification

Decision trees
Classification
rules

Naive Bayes
classifier

JIHH)

Numeric prediction

Linear
regression

Regression /
model trees

KNN

| Numeric prcicton
—
— ey
T
s
oA
e

Descriptive induction

[ |
Association rules Clustering

Hierarchical
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Lesson 4:
Text Mining

Introduction to text mining
e [ext mining process
e [ext mining tasks and applications
e From BoW to dense text embeddings



Background: Machine learning

Person Age Spect presc. | Astgime | Tear prod. Lengsoes
1 17 Iy e no recuced NOME
0z et iy CRE no narmal S0OFT
03 2z iy CRE Vves reduced NOME
04 ey iy CRE VEs narmal HARD
05 12 hy permeirope no reduced NOME

D613 ..
714 ah hy permetrope no rearmiasl SOFT
a5 43 hy parmetrope yas recuced NOME
Ol g hy permetrope Vvas narmal NOME
a7 54 iy CRE no reduced NOME
& [ iy CRE no narmal NOME

019-023
024 56 hy permeirope WESR rarmas| NOME
data

Machine
learning

model, patterns, clusters,

Given: transaction data table, a set of text documents, ...
Find: a classification model, a set of interesting patterns



Machine learning: Task reformulation

Person Y oung Myope Astigm. Reuced tea
01 1 1 0 1
02 1 1 0 0
03 1 1 1 1
04 1 1 1 0
05 1 0 0 1

06-013
014 0 0 0 0
015 0 0 1 1
016 0 0 1 0
017 0 1 0 1
018 0 1 0 0

019-023
024 0 0 1 0

Binary features and class values



Machine learning vs. text mining

Machine learning:

 instances are objects, belonging to different classes

 instances are feature vectors, described by attribute
values

» classification model is learned using machine
learning algorithms

Text mining:

* Instances are text documents

» text documents need to be transformed into feature
vector representation in data preprocessing

« data mining algorithms can then be used for

! learning the model

6



Text mining:

Words/terms as binary features

Document Word1 W ord2 W ordN Class
d1 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO

d6-d13
d14 0 0 0 0 YES
d15 0 0 1 1 NO
d16 0 0 1 0 NO
d17 0 1 0 1 NO
d18 0 1 0 0 NO

d19-d23
d24 0 0 1 0 NO

Instances = documents
Words and terms = Binary features



Text mining

Locument Wordl W ol W o Class
Step 1 a1 1 1 0 1 MO
a2 1 1 0 0 YES
d3 1 1 1 1 MO
BoW vector dd 1 1 1 0 YES
. ol } MO
construction dors o
d14 0 0 0 0 YES
d1s 0 0 1 1 MO
116 0 0 1 0 MO
BoW features ik : : 3 1 NO
construction fodm | ! R
Table of BoW vectors d24 d a L L Hi
construction
Locument Wordl W orel2 W orel Class
a1 1 1 0 1 MO
a2 1 1 0 0 YES Step 2
d3 1 1 1 1 MO
dd 1 1 1 0 YES
el5 1 0 0 1 MO _ .
de-d13 . Machine |earn|ng
4 0 0 0 0 YES
s 0 0 1 1 MO
e 0 0 1 0 MO
7 0 1 0 1 MO
d18 0 1 0 0 M
d10-c23 .
od ; - : = i model, patterns, clusters,



Text Mining from unlabeled data

Document Word1 Word2 W ordN
d 1 1 0 T
d2 1 1 0 0
d3 1 1 1 1
d4 1 1 1 0
d5 1 0 0 1

d6-d13
d14 0 0 0 0
d15 0 0 1 1
d16 0 0 1 0
d17 0 1 0 1
d18 0 1 0 0
d19-d23
d24 0 0 1 0

Unlabeled data - clustering: grouping of similar instances
- association rule learning
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Lesson 4:
Text Mining (non-obligatory material)

e Introduction to text mining
Text mining process
e [ext mining tasks and applications
e From BoW to dense text embeddings



Text Mining process
« Document preprocessing
« BoW vector construction

« Mining of BoW vector table
- for text Categorization, Clustering, Summarization, ...

Raw Text Data




Document preprocessing

Tokenization

« Convert text to a list of tokens (e.g., words, bigrams ...)
Stop-word removal

 Remove words that carry little or no semantic or lexical

(1P}

information (e.g., prepositions “a” or “the” or very
frequent words such as “and” which are part of every
document, ...)

Part-of-Speech (POS) tagging

« Annotate words to their POS category (e.g., noun, verb ...)

Lowercase transformation
Lemmatization or stemming



Stemming and Lemmatization

« Different forms of the same word are usually

problematic for text data analysis

- because they have different spelling and similar meaning (e.g.,
learns, learned, learning,...) should not be treated as unrelated

words

« Lemmatization is a process of transforming a word

Into its normalized form

- replacing the word by dictionary form of a word (e.g., am, is, are —
be), various lemmatizers for English available in R

— most often by replacing a word’s suffix (e.g., in Slovene language,
replacing smejem - smejati)

. Stemming is a process of transforming a word into

Its stem

— cutting off the suffix of a word (e.g., cats — cat, works, working -
work). Porter stemming algorithm for English available in R



Document preprocessing

The order of preprocessing steps is important
» Always start with tokenization

Removal of stop-words is optional

« Can lead to loss of information
Lemmatization/stemming is sometimes not necessary

* (Can lead to loss of information
« But is very useful in highly inflected languages,
such as Russian or Slovene
Other possible preprocessing operations:

* remove punctuation, spell checking ...
« Use terms obtained from thesaurus (e.g., WordNet)
« Construct terms by frequent N-Grams construction



Words/terms representation -
One-hot encoding of dictionary terms

e In machine learning, binary vector representation used for
representing nominal variables in tabular data is referred to
also as one-hot encoding

« In text mining, binary representation of words/terms is
referred also as one-hot encoding of terms, formalized as
follows:

- Dictionary V is an ordered set of vocabulary terms
- Terms can include single words =~ ==~~~ ~fanmims “~ "

- Vector x
e istheencoding oftermtfromV  sa55500000000000000000.0)
e X has length |V| '

i - - o~ - - - = - i
o X = 1 for in V 10..000000000000000000000000..0 1
i ’ - : !

e X = 0 otherwise ) |
0.000000MOOOO0O00O000000000000.0 1



Words/terms representation -
One-hot encoding of dictionary terms

« One-hot encoding of individual words or terms

(0..000000
(0..000000

(0..000000

Tina lives in a house

© ™~ Tina

00000000000Jfl0000000..0

£ o
/] lives

0000fl00000000000000..0 )

S house

EDGDDDD{}DGUDDDDDODD."O]



Document representation as
Bag-of-words vectors

« E.g., take a corpus of 1,000 documents, using a
dictionary of 50,000 words, where vectors x;are BoW

encodings of documents d

document / word wy ... house ... large ... lives ... Tina ... wsgooo
dy o... 1 ... 0 ... 0 ... 0 ... O
Tina lives ina house. 0 ... 1 ... 0 ... 1 ... 1 0
The house is large. 0 ... 1 ... 1 ... 0 ... 0 ... 0

d1000 o... o ... 0 ... 0 ... 0 ... ]




Bag-of-words document representation

Document 1: Document 2:
The quick brown dog jumps This is another lazy person.
over the lazy dog.

Unigram BoW:

[quick, brown, dog, jump, lazy, another, person]
Docl[ 1, O, 1, 0, 0, 1, 1]
Doc2[ O, 1, 0, 1, 1, 1, 1]

Bigram BoW:

[quick brown, brown dog, dog jump, jump lazy, lazy dog,
another lazy, lazy person]



Bag-of-words document representation
with term frequency weighting

C) 4 quick

o 3
= 0O E >
The quick brown 28 S 530N
browndog | )y ° mm) [i[1]2[1]1
jumps over jump
the lazy dog. lazy
@ ) dog .
@ ) 8 E
5 ®
This is another C O +~
another lazy :> lazy > 1111
person. person
e ol
‘ 8’—% - g o E © =
TF(t,d) = f(t,d) ACICIERE
* logarithmic TF variant: log(1+TF(t,d)) 117

e normalized TF variant: TF(t,d)/|d|, where
|d| is the number of terms in document d



TF-IDF term weighting heuristic
(Salton, 1989)

« In bag-of-words representation each word/term is
represented as a separate variable having numeric weight.

e The most popular weighting schema is TF-IDF:
D
DF(H’;‘)

TF-IDF(w;.d;) = TF(w;,d,) - log

- TF(w,;,d) — term frequency (number of occurrences\of w;in document d))

— DI;(wi) — document fregdency (number of documents containing word
W,

— |D| = number of all dgcuments
- TF-IDF(w;,d)) - relative importance of the word in the dqcument

The word is more important if it The word is more important if it

appears appears in less documents
several times in a target document



TF-IDF term weighting heuristic
A more realistic example

@ A hotel is an establishment that provides paid lodging on a short-term basis.
@ A motel or motor lodge is a hotel designed for motorists.
@ Yulia rented room 215 in the Night Lodge motel.

@ Aleksei is staying in a hotel.



TF-IDF term weighting heuristic
A more realistic example

@ A hotel is an establishment that provides paid lodging on a short-term basis.
@ A motel or motor lodge is a hotel designed for motorists.
@ Yulia rented room 215 in the Night Lodge motel.

@ Aleksei is staying in a hotel.

1D hotel motel lodg short
1 1 0 1 1
1 1 1 0
3 0 1 1 0
4 1 0 0 0 ID | hotel motel lodg short
DF 3 2 3 1 0.415 0 0415 2
IDF = log(4/DF) | 0.415 1 0415 2 0.415 0415

= W o=

1
0 1 0.415
0.415 0

o o O



Document similarity measures

« Similarity between two BoW vectors is estimated by the
similarity between their vector representations (cosine of
the angle between the two vectors):

[l - {1yl \/ZT N
« |t each document d Is represented as a vector ot TF-IDF
weights

similarity (x,y) = cos( &)

YVl (TF-IDF(w;,x) - TE-IDF (w3, y))

similarity(x,y) =

\/Z[V| TF-IDF(wj,x)= - \/ V TF-IDF(wj.y)?

=1 =1
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Lesson 4:
Text Mining (non-obligatory material)

e Introduction to text mining
e [ext mining process

e [ext mining tasks and applications
j|> - Document classification and document clustering

e From BoW to dense text embeddings



Text mining tasks and applications

Document clustering and topic identification
Document classification and categorization
Anomaly and outlier detection

Analyzis of sentiment in tweets

Authorship attribution

Support in searching the web

Web user profiling

Detection of hidden links between domains



Document classification and
categorization

Classification of documents by categories
Training set consists of pre-categorized documents (class-
labeled data)

The task is to learn a classifier able to classify new
documents into a predefined set of categories

Metaphor: documents are folded into folders, labeled by a
topic category
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Clustering

« Clustering is a process of finding natural groups in
data in a unsupervised way (no class labels pre-
assigned to documents)

« Clustering principles:

- Use similarity/distance measures to determine
document similarity

- Data within cluster should be as similar as possible

- Data from different clusters should be as different as
possible

« Most popular clustering methods:

- K-Means, Agglomerative hierarchical clustering, EM
(Gaussian Mixture), ...



K-Means clustering

k-Means clustering can be used for semi-automated
topic ontology construction
. Given:

- set of documents (e.g., word-vectors with TFIDF),

- distance measure (e.g., cosine similarity)
- K - number of groups

« For each group initialize its centroid with a random
document
- While not converging

- each document is assigned to the nearest group
(represented by its centroid)

- for each group calculate new centroid (group mass
point, average document in the group)



Document clustering for topic
identification

Topic Identification

Domain
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Lesson 4:
Text Mining (non-obligatory material)

e Introduction to text mining

e [ext mining process

e [ext mining tasks and applications
j> From BoW to dense text embeddings
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From sparse to dense text representations:
Text embedding
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Transforming text into
compact vector
representation (projection
into a small number of
dimensions k << N)

DocumeLt embedding
transforms documents to low-
dimensional numeric vectors
(rows in a data table). Corpus
embedding corresponds to
the data table.

Table values correspond to
weights in the embedding
layer of a neural network

162

Embeddings-based Data Transformation
for Text mining




Embedding-based Data Transformation
for Text mining

Corpus embedding, Document embedding, Sentence embedding, ...

Word embedding (e.g., word2vec), ...

* Representations of word meaning obtained from corpus statistics

*  Spatial relationships correspond to linguistic relationships
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Contemporary Large Language Models

* Transformer neural network architectures Probabitic
®* Learning in 2 phases T:‘
* 1% phase: pretrained models
e Predicting masked words, next words, etc. Forvard
e |arge document corpora ’
¢ |Long training times j“ﬂ s il
;
* 2nd phase: model training for a specific task N ﬁ%;{? M:%*fi‘;}j
e Much faster than 1% phase | | =
e Transfer of general knowledge from 1% phase ":wj] ) @ sl
e Example transformer architecture: BERT Embiciong crbagdog
e (ChatGPT, OpenAl, .l oI|

[shifted rgiht)

neural network with 175 billion parametrers
e demo on https://chat.openai.com/

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2019 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT.




Lesson 4 - Text mining
Summary and take away messages

Text mining definitions, process, typical tasks and selected applications
were presented

Standard BoW document representation and weighting heuristics were
presented in detail

Document classification and document clustering as main text mining
approaches were outlined

Dense text embeddings were briefly introduced

Contemporary LLMs (Large Language Models) were just briefly
mentioned



