

Accepted Manuscript

Refinement and Selection Heuristics in Subgroup Discovery and
Classification Rule Learning

Anita Valmarska, Nada Lavrač, Johannes Fürnkranz,
Marko Robnik-Šikonja

PII: S0957-4174(17)30191-4
DOI: 10.1016/j.eswa.2017.03.041
Reference: ESWA 11199

To appear in: Expert Systems With Applications

Received date: 7 June 2016
Revised date: 17 March 2017
Accepted date: 18 March 2017

Please cite this article as: Anita Valmarska, Nada Lavrač, Johannes Fürnkranz, Marko Robnik-Šikonja,
Refinement and Selection Heuristics in Subgroup Discovery and Classification Rule Learning, Expert
Systems With Applications (2017), doi: 10.1016/j.eswa.2017.03.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.eswa.2017.03.041
http://dx.doi.org/10.1016/j.eswa.2017.03.041

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• New double beam algorithms for subgroup discovery (SD) and classi-
fication rules (RL).

• Algorithms can use different heuristics for rule refinement and rule
selection.

• Variants of new SD algorithm give more interesting rules than state-
of-the-art.

• RL algorithm gives rules with comparable accuracy with state-of-the-
art algorithms.

• Inverted heuristics in rule refinement produce rules with better cover-
age.

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Refinement and Selection Heuristics in Subgroup
Discovery and Classification Rule Learning

Anita Valmarskaa,b,∗, Nada Lavrača,b,c, Johannes Fürnkranzd, Marko
Robnik-Šikonjae

aJožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
bJožef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia

cUniversity of Nova Gorica, Vipavska 13, Nova Gorica, Slovenia
dTU Darmstadt, Darmstadt, Germany

eUniversity of Ljubljana, Faculty of Computer and Information Science, Slovenia

Abstract

Classification rules and rules describing interesting subgroups are impor-
tant components of descriptive machine learning. Rule learning algorithms
typically proceed in two phases: rule refinement selects conditions for spe-
cializing the rule, and rule selection selects the final rule among several
rule candidates. While most conventional algorithms use the same heuris-
tic for guiding both phases, recent research indicates that the use of two
separate heuristics is conceptually better justified, improves the coverage
of positive examples, and may result in better classification accuracy. The
paper presents and evaluates two new beam search rule learning algorithms:
DoubleBeam-SD for subgroup discovery and DoubleBeam-RL for classifica-
tion rule learning. The algorithms use two separate beams and can combine
various heuristics for rule refinement and rule selection, which widens the
search space and allows for finding rules with improved quality. In the clas-
sification rule learning setting, the experimental results confirm previously
shown benefits of using two separate heuristics for rule refinement and rule
selection. In subgroup discovery, DoubleBeam-SD algorithm variants out-
perform several state-of-the-art related algorithms.

Keywords: rule learning, subgroup discovery, inverted heuristics.

∗Corresponding author.
Email addresses: anita.valmarska@ijs.si (Anita Valmarska),

nada.lavrac@ijs.si (Nada Lavrač), fuernkranz@informatik.tu-darmstadt.de
(Johannes Fürnkranz), marko.robnik@fri.uni-lj.si (Marko Robnik-Šikonja)

Preprint submitted to Expert Systems with Applications March 20, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

While most data mining techniques aim at optimizing predictive per-
formance of the induced models, their comprehensibility is of ultimate im-
portance for expert systems and decision support. Examples of applica-
tion areas in need of transparent models include medicine, law, finance and
knowledge discovery (Bibal and Frénay, 2016).

Rule learning is a symbolic data analysis technique that can be used to
construct understandable models or patterns describing the data (Michal-
ski, 1969; Clark and Niblett, 1989; Fürnkranz et al., 2012). As one of the
standard machine learning techniques it has been used in numerous applica-
tions. Compared to statistical learning techniques, the key advantage of rule
learning is its simplicity and human understandable outputs. Therefore, the
development of new rule learning algorithms for constructing understandable
models and patterns is in the core interest of the data mining community.

Symbolic data analysis techniques can be divided into two categories.
Techniques for predictive induction produce models, typically induced from
labeled data, which are used to predict the label of previously unseen ex-
amples. The second category consists of techniques for descriptive induc-
tion, where the aim is to find comprehensible patterns, typically induced
from unlabeled data. There are also descriptive induction techniques that
learn descriptive rules from labeled data, which are referred to as supervised
descriptive rule discovery techniques (Kralj Novak et al., 2009). Typical
representatives of these techniques are subgroup discovery (SD) (Klösgen,
1996; Wrobel, 1997; Atzmueller, 2015), contrast set mining (CSM) (Bay and
Pazzani, 2001), and emerging pattern mining (EPM) (Dong and Li, 1999)
techniques. For instance, the task of subgroup discovery is to find interesting
subgroups in the population, i.e. subgroups that have a significantly differ-
ent class distribution than the entire population (Klösgen, 1996; Wrobel,
1997). The result of subgroup discovery is a set of individual rules, where
the rule consequence is a class label.

An important characteristic of subgroup discovery is that its task is a
combination of predictive and descriptive rule induction. It provides under-
standable descriptions of subgroups of individuals which share a common
target property of interest. This feature of subgroup discovery has inspired
many researchers to investigate new methods that will be more effective in
finding interesting patterns in the data. Most subgroup discovery approaches
build on classification algorithms, e.g., EXPLORA (Klösgen, 1996), MIDOS
(Wrobel, 1997), SD (Gamberger and Lavrač, 2002), CN2-SD (Lavrač et al.,
2004), and RSD (Lavrač et al., 2002), or on algorithms for association rule

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

learning, e.g., APRIORI-SD (Kavšek et al., 2003), SD-MAP (Atzmüller and
Puppe, 2006), and Merge-SD (Grosskreutz and Rüping, 2009).

The main difference between classification rule learning and subgroup
discovery is that subgroup discovery algorithms construct individual rules
describing the properties of individual groups of target class instances, while
classification rule learning algorithms construct a set of classification rules
covering the entire problem space.

A common property of classification rule learning and subgroup discovery
is that rule construction is performed in two phases: the rule refinement and
the rule selection phase. Typically, different types of heuristics are used for
classification rule induction and subgroup induction. Researchers usually
choose one heuristic and use the same heuristic in the two phases of the rule
construction process: (i) a heuristic is used to evaluate rule refinements, i.e.
to select which of the refinements (specializations) of the current rule will be
further explored, and (ii) the same heuristic is used in rule selection to decide
which of the constructed rules will be added to the rule set. For learning
classification rules, Stecher et al. (2014) proposed to use separate heuristics
for each of the two rule construction phases, and suggested that in the
refinement phase, so-called inverted heuristics should be used for evaluating
the relative gain obtained by refining the current rule. The key idea of these
heuristics is that while most conventional rule learning heuristics, such as
the Laplace or the m-estimate, anchor their evaluation on the empty rule
that does not cover any examples, inverted heuristics anchor the point of
view on the base rule, which is more appropriate for a top-down refinement
process.

In this paper, we test the utility of inverted heuristics in the context of
subgroup discovery as well as in the context of classification rule learning.
For this purpose we have developed two new beam search rule learning algo-
rithms, named DoubleBeam-SD for subgroup discovery and DoubleBeam-
RL for classification rule learning, respectively. The algorithms allow to
combine various heuristics for rule refinement and rule selection, with the
goal of determining their optimal combination, and, in consequence, learn
rules with better coverage and better descriptive power without compro-
mising rule accuracy. The introduction of two separate beams enlarges the
search space, enabling the learner to find rule sets that are more accurate as
well as more interesting to the end user. For example, physicians appreciate
rules that are highly accurate when used in patient classification, but prefer
understandable rules that precisely characterize the patients in terms of the
features that distinguish the patients from the control group.

We compare the double beam search algorithms to state-of-the-art sub-

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

group discovery and rule learning algorithms by experimentally evaluating
them on the UCI data sets, using the same data sets as in previous research
of Stecher et al. (2014). All the competitors are used with their default pa-
rameters from their corresponding software platforms. In order to determine
useful default configurations for our algorithms, we employ a data set hold-
out methodology for parameter setting with the goal of finding the optimal
configuration without tuning the algorithms to a particular data set.

The rest of this paper is organized as follows. Section 2 provides the nec-
essary background on rule learning and subgroup discovery, followed by the
introduction of the coverage space and an illustrative example, explaining
the advantages of using inverted heuristics in rule refinement. It also sum-
marizes the findings of Stecher et al. (2014) concerning the use of inverted
heuristics in rule learning. Section 3 is concerned with subgroup discovery
presenting the DoubleBeam-SD algorithm and its variants, followed by a
description of the experimental setting and the obtained results. Section 4
outlines the DoubleBeam-RL algorithm for classification rule learning, fol-
lowed by a description of the experimental setting, and the presentation of
experimental results. Finally, Section 5 presents the conclusions and ideas
for further work.

2. Rule learning: Background and related work

Rule learning is a standard symbolic data analysis technique used for
constructing understandable models and patterns. Its main advantage over
the other data analysis techniques is its simplicity and comprehensibility of
its outputs. Rule learning has been extensively used both in predictive and
descriptive rule learning settings, where by applying different rule evalua-
tion heuristics different trade-offs between the consistency and coverage of
constructed rules can be achieved.

This section first presents a short overview of classification rule learning
and subgroup discovery. It introduces the coverage space used as a tool for
studying the properties of different heuristics and presents the idea of using
two separate heuristics for rule refinement and rule selection illustrated on
a selected UCI data set. The section ends with the description of closely
related work regarding the use of inverted heuristics in classification rule
learning.

2.1. Classification rule learning

The task of classification rule learning is to find models which would
ideally be complete (cover all positive examples, or at least most of the

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

positives), and consistent (not cover any negative examples, or at most a
very small number of negatives). Multi-class classification problems can
be dealt with by using the one-versus-all approach, which learns one rule
set for each class, where the examples labeled with the chosen class are
considered as positive target class examples, and all examples of other classes
as negatives.

There are numerous classification rule learning algorithms, the most pop-
ular being AQ, CN2 and Ripper. The AQ algorithm (Michalski, 1969), which
was the first to propose the covering algorithm for rule set construction, is
a top-down beam search algorithm that uses a random positive example
as a seed for finding the best rule. The CN2 algorithm (Clark and Niblett,
1989) combines the ideas from the AQ algorithm and the decision tree learn-
ing algorithm ID3 (Quinlan, 1983), given the similarity of rule learning to
learning decision trees, where each path from the root of the tree to a tree
leaf can be viewed as a separate rule. It constructs an ordered decision list
by learning rules describing the majority class examples in the training set.
Once the learned rule is added to the decision list, all the covered examples,
both positive and negative, are removed from the training data set, and the
rule induction process is continued on the updated training set. Ripper (Co-
hen, 1995) is the first rule learning algorithm that effectively overcomes the
overfitting problem and is thus a very powerful rule learning system. The
algorithm constructs rule sets for each of the class values. Initially, the train-
ing data set is divided into a growing and a pruning set. Rules are learned
on the growing set, and then pruned on the pruning set by incrementally
reducing the error rate on the pruning set. A pruned rule is added to the
rule set if the description length of the newly constructed rule set is at most
d bits longer (a parameter) than the already induced rule set. Otherwise,
the rule learning process is stopped. Similarly to the CN2 algorithm, when
a new rule is added to the rule set, all the instances covered by that rule
are removed from the growing set. In addition to pruning the rules before
adding them to induced rule set, Ripper prevents rules overfitting in a post-
processing phase in which the learned rule set is optimized and the selected
rules are re-learned in the context of the other rules. FURIA (Hühn and
Hüllermeier, 2009) is a classification rule learning algorithm which extends
the Ripper algorithm by learning fuzzy rules.

Despite its long history, rule learning is still actively researched and rou-
tinely applied in practice. For example, Napierala and Stefanowski (2015)
use rule learning with argumentation to tackle imbalanced data sets, and
Ruz (2016) explores the order of instances in seeding rules to improve the
classification accuracy. Minnaert et al. (2015) discuss the importance of

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

proper rule evaluation measures for improving the accuracy of classifica-
tion rule learning algorithms. They also introduce multi-criteria learning
and investigate a Pareto front as a trade-off between comprehensibility and
accuracy of rule learners.

In a line of research started by Parpinelli et al. (2002), rule learning
is turned into an optimization problem using an ant colony optimization
approach. The initial rule learning algorithm, named Ant-Miner, worked
for nominal attributes only, but was later improved by Pičulin and Robnik-
Šikonja (2014) to efficiently handle numeric attributes. Classification rule
learning has been a vivid topic of research also in inductive logic program-
ming and relational data mining. For example, Zeng et al. (2014) developed
the QuickFOIL algorithm that improves over the original FOIL algorithm
(Quinlan and Cameron-Jones, 1993).

Learning rules can be regarded as a search problem (Mitchell, 1982).
Search problems are defined by the structure of the search space, a search
strategy for searching through the search space, and a quality function (a
heuristic) that evaluates the rules in order to determine whether a candidate
rule is a solution or how close it is to being a solution to be added to the
rule set, i.e. the final classification model. The search space of possible
solutions is determined by the model language bias (Fürnkranz et al., 2012).
In propositional rule learning, the search space consists of all the rules of
the form targetClass← Conditions, where targetClass is one of the class
labels, and Conditions is a conjunction of features. Features have the form
of Ai = vij (attribute Ai has value vij).

For learning a single rule, most learners use one of the following search
strategies: general-to-specific (top-down hill-climbing) or specific-to-general
(bottom-up), where the former is more commonly used. Whenever a new
rule is to be learned, the learning algorithm initializes it with the universal
rule r>. This is an empty rule that covers all the examples, both positive
and negative. In the rule refinement phase, conditions are successively added
to this rule, which decreases the number of examples that are covered by
the rule. Candidate conditions are evaluated with the goal of increasing
the consistency of the rule while maintaining its completeness, i.e. a good
condition excludes many negative examples and maintains good coverage on
the positive examples.

Heuristic functions are used in order to evaluate and compare different
rules. Different heuristics implement different trade-offs between these two
objectives. While CN2 and Ripper use entropy as the heuristic evaluation
measure, numerous other heuristic functions have been proposed in rule
learning—for a variety of heuristics and their properties the interested reader

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is referred to (Fürnkranz et al., 2012). The most frequently used heuristics
in rule learning are:

Precision:
hprec(p, n) =

p

p+ n
(1)

Laplace:

hlap(p, n) =
p+ 1

p+ n+ 2
(2)

m-estimate:

hm-est(p, n,m) =
p+m · P

P+N

p+ n+m
(3)

where, for a given rule, arguments p and n denote the number of positive
and negative examples covered by the rule (i.e. the true and false positives,
respectively), and P and N in Equation (3) denote the total number of
positive and negative examples in the data set. Given that these heuristics
concern the problem of selecting the best of multiple refinements of the
same base rule (the empty rule, universal rule), the values P and N can be
regarded as constant, so that the above functions may be written as h(p, n)
depending only on the true and false positives.

Table 1 compares the DoubleBeam-RL classification rule learning al-
gorithm (introduced in Section 4) to the state-of-the-art classification rule
learners that were used in the experiments. CN2 and DoubleBeam-RL are
beam search algorithms, while Ripper and SC-ILL are greedy algorithms,
adding conditions to the rules which maximize their respective heuristics.
The DoubleBeam-RL and SC-ILL algorithms use separate heuristics adapted
for the refinement and selection phase of the rule learning process. Ripper
is the only considered classification rule learning algorithm which employs
rule pruning and optimization of rule sets in post-processing. The algo-
rithms use different stopping criteria; for example, Ripper uses a heuristic
based on minimum description length (MDL) principle.

2.2. Subgroup discovery

The goal of data analysis is not only building prediction models, but
frequently the aim is to discover individual patterns that describe regularities
in the data (Wrobel, 1997; Kralj Novak et al., 2005; Fürnkranz et al., 2012).
This form of data analysis is used for data exploration and is referred to as
descriptive induction. Subgroup discovery is a form of descriptive induction.
The task of subgroup discovery is to find subgroups of examples which are

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Separate Stopping Rule Post-
Algorithm Type of search refinement criterion pruning processing

heuristic

CN2 beam no no beam no no
improvement

Ripper greedy no MDL yes yes

no negative
SC-ILL greedy yes examples no no

covered

DoubleBeam-RL beam yes maxSteps no no

Table 1: Comparison of the DoubleBeam-RL algorithm to the state-of-the-art classification
rule learners CN2, Ripper and SC-ILL.

sufficiently large while having a significantly larger distribution of target
class instances than the original target class distribution.

Like in classification rule learning, individual subgroup descriptions are
represented as rules in the form targetClass ← Conditions, where the
targetClass is the target class representing the property of interest, and
Conditions is a conjunction of features that are characteristic for a selected
group of individuals.

Subgroup discovery is a special case of the more general task of rule
learning. Classification rule learners have been adapted to perform sub-
group discovery with heuristic search techniques drawn from classification
rule learning. These algorithm also apply constraints, which are appropriate
for descriptive rule learning. The research in the field of subgroup discovery
has developed in different directions. Exhaustive methods, which include
EXPLORA (Klösgen, 1996), SD-MAP (Atzmüller and Puppe, 2006) and
APRIORI-SD (Kavšek et al., 2003), guarantee the optimal solution given
the optimization criterion. The APRIORI-SD algorithm draws its inspira-
tion from the association rule learning algorithm APRIORI (Agrawal and
Srikant, 1994), but restricts it to constructing rules that have only the target
variable (the property of interest) in their head, with weighted relative accu-
racy (WRACC), defined in Equation (5), used as a measure of rule quality.
In order to improve the inferential power of the subgroup describing rules,
the APRIORI-SD algorithm uses a post-processing step to reduce the gen-
erated rules to a relatively small number of diverse rules. This reduction
is performed using the weighted covering method proposed by Gamberger
and Lavrač (2000). When a rule is added to the induced rule set, weights

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of examples covered by the rule are decreased. This allows the method
to prioritize rules which cover yet uncovered examples, thus promoting the
coverage of diverse groups of examples.

While the APRIORI-SD algorithm adapts the process of association rule
learning to the context of subgroup discovery, the SD subgroup discovery
algorithm (Gamberger and Lavrač, 2002) performs heuristic beam search,
where rule quality is estimated using the generalization quotient heuristic

hg(p, n, g) =
p

n+ g
, (4)

where p is the number of true positives, n is the number of false positives, and
g is the generalization parameter. High-quality rules will cover many target
class examples and a low number of non-target examples. The number of
tolerated non-target examples covered by a rule is regulated by the general-
ization parameter. For small g, more specific rules are generated while for
bigger values of g the algorithm constructs more general rules. The inter-
pretation of the rules produced by the SD algorithm is improved using the
above mentioned weighted covering method in post-processing (Gamberger
and Lavrač, 2000).

CN2-SD (Lavrač et al., 2004) is a beam search algorithm, which adapts
the CN2 (Clark and Niblett, 1989) classification rule learner to subgroup
discovery. CN2-SD has introduced a weighted covering algorithm, where
examples that have already been covered by one of the learned rules are not
removed from the training data set, but instead their weights are decreased.
The authors propose and compare different measures for rule evaluation.
They argue that the most important measure for subgroup evaluation is
weighted relative accuracy (WRACC), referred to as unusualness, defined as
follows

WRACC(p, n) =
p+ n

P +N
·
(

p

p+ n
− P

P +N

)
(5)

This measure reflects both the rule significance and rule coverage, as sub-
group discovery is interested in rules with significantly different class distri-
bution than the prior class distribution that cover many instances. WRACC
is the measure of choice in our experimental work on subgroup discovery for
comparing the quality of the induced subgroup describing rules.

Subgroup discovery was used also in the context of semantic data mining.
Adhikari et al. (2014) have explained mixture models by applying semantic
subgroup discovery system Hedwig (Vavpetič et al., 2013) to structure the
search space and to formulate generalized hypotheses by using concepts from
the given domain ontologies.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Separate Stopping Post-
Algorithm Type of search refinement criterion processing

heuristic

APRIORI-SD exhaustive no minSup, minConf yes

SD beam no no beam yes
improvement

CN2-SD beam no no beam no
improvement

DoubleBeam-SD two beams yes maxSteps optional

Table 2: Some properties of subgroup discovery algorithms DoubleBeam-SD, APRIORI-
SD, SD, and CN2-SD.

Table 2 compares the DoubleBeam-SD algorithm (introduced in Section
3) to the state-of-the-art subgroup discovery algorithms APRIORI-SD, CN2-
SD, and SD, which were used in the experiments. The latter algorithms use
only a single heuristic for rule evaluation, designed to optimize the selection
of best rules. The DoubleBeam-SD algorithms can use pairs of different
heuristics (see Section 2.4) which can be applied to estimate rule quality
in both the refinement and selection phases of the rule learning process.
The DoubleBeam-SD algorithm stops the learning process after a predeter-
mined number of steps (maxSteps). The SD and CN2-SD algorithms stop
when there are no improvements of rules in the beam, i.e. when newly in-
duced rules have lower quality than the rules already included in the beam.
APRIORI-SD uses minimal support and coverage as the stopping criteria.

2.3. Coverage space

Fürnkranz and Flach (2005) introduced the coverage space as a formal
framework for analyzing and visualizing the behavior of rule learning heuris-
tics. The coverage space (Fürnkranz and Flach, 2005; Fürnkranz et al.,
2012), referred to as the PN space when initially introduced by Gamberger
and Lavrač (2002), enables us to plot the number of covered positive ex-
amples (true positives p) over the number of covered negative examples
(false positives n). This results in a rectangular plot with values {0,1,...,N}
(where N is the total number of negative examples) on the horizontal axis
and {0,1,...,P} (where P is the total number of positive examples) on the
vertical axis. Figure 1 shows a coverage space visualization. The principle
of coverage spaces can be used to plot individual rules, as well as entire
theories or models composed of a rule set or a decision list.

There are four points of special interest in a coverage space:

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 1: Visualization of coverage space with P (total of positives) and N (total of
negatives).

- (0, 0) marks the empty theory, denoted by r⊥. This theory covers no
positive and no negative example.

- (0, P) is the perfect theory which covers all positive and none of the
negative examples.

- (N, 0) is the opposite theory. It covers all negative, but no positive
examples.

- (N,P) is the universal theory, denoted by r>. This theory covers all
the examples, regardless of their label.

The ultimate goal of learning is to reach the point of perfect theory in
the coverage space, i.e. the point (0, P). This will rarely be achieved in a
single step. A set of rules will need to be constructed in order to achieve this
objective. The purpose of heuristics used for rule evaluation is to determine
how close a given rule is to this ideal point.

An isometric of a heuristic h is a line (or curve) in the coverage space
that connects all points (p,n) for which h(p, n) = c for some constant value
c. Several properties of heuristics can be seen from isometrics. As an exam-
ple, Figure 2 shows the isometrics of precision, hprec. These isometrics show
that regarding precision all rules that cover only positive examples (points
on the P -axis) achieve the best quality score, and all rules that cover only
negative examples (points on the N -axis) achieve zero score. All other iso-
metric values are obtained by rotation around the origin (0, 0) for which
the value of hprec is undefined. Figure 2 presents also the disadvantage of
precision, which is its inability to discriminate between rules with high and
low coverage. For illustration, a rule that covers only one positive example

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: Isometrics for precision.

and no negative example will have better evaluation than a rule that covers
a hundred positive examples and only one negative example.

The commonly used top-down strategy for rule refinement can be viewed
as a path through the coverage space. Figure 3 illustrates rule refinement,
where each point on the path corresponds to one further condition conjunc-
tively added to the rule body. The path starts at the upper right corner,
(N , P), with the universal rule r>. By adding conditions to the rule, the
number of covered positive and negative examples decreases and the path of
the rule continues towards the origin (0, 0), which corresponds to the empty
rule r⊥.

p⟵true.

N(0,0)

P

Figure 3: A path in the coverage space of a top-down specialization of a single rule. For
simplicity, a comma is used to represent the conjunction operator.

2.4. Inverted heuristics

Rule learning algorithms rely on heuristic measures to determine the
quality of the induced rules. Stecher et al. (2014) propose to distinguish

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

between rule refinement and rule selection heuristics in inductive rule learn-
ing. They argue that the nature of the separate-and-conquer rule learning
algorithms opens up a possibility to use two different heuristics in the two
fundamental steps of the rule learning process, i.e. rule refinement and rule
selection. Using the coverage space they motivate separate evaluation of
candidates for rule refinement and the selection of rules for the final the-
ory. Stecher et al. (2014) further argue that the rule refinement step in
a top-down search requires inverted heuristics, which can result in better
rules. Such heuristics evaluate rules from the point of the current base rule,
instead of the empty rule. In this way, while successively adding features
to the rule (refinement), the learner favours rules with higher coverage of
positive examples and thereby gives chance to rules with higher coverage to
be finally selected with the selection heuristics.

Representations of the inverted heuristics in the coverage space reveal
the following relationship with the basic heuristic:

4(p, n) = h(N − n, P − p) (6)

where p and n denote the number of positive and negative examples covered
by the rule, and P and N are not constant but depend on the predecessor
of the currently constructed rule. For example, in the example illustrated
in Figure 5, in the first step N and P correspond to the initial top-right
corner (N , P) in the coverage space, but when refined to rule p ← a, the
top-right corner is moved to point B . The values of N and P will change
respectively. Additionally, on the refinement path, N and P will be updated
with the (N ,P) coordinates of values of point C , D , and E , respectively in
each next refinement iteration. Each of these points represent the base rule
from which we observe the improvements of the consequent refinements.

Stecher et al. (2014) adapt the three standard heuristics for rule induc-
tion (introduced in Section 2.1): precision, Laplace, and m-estimate. The
effect on these three heuristics is that the isometrics of their inverted vari-
ants do not rotate around the origin of the coverage space, but rotate around
the point in the coverage space representing the base rule (the predecessor of
the currently constructed rule). Consequently, the inverted heuristics have
the following forms:

Inverted precision:

4prec(p, n) =
N − n

(P +N)− (p+ n)
, (7)

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

N

P

(0,0)

Figure 4: Isometrics of inverted precision.

Inverted Laplace:

4lap(p, n) =
N − n+ 1

(P +N)− (p+ n− 2)
, (8)

Inverted m-estimate:

4m-est(p, n,m) =
N − n+m · P

P+N

(P +N)− (p+ n−m)
. (9)

The inverted heuristics are not suited for rule selection. They do favor rules
with high coverage but are also tolerant to covering negative examples. The
isometrics of inverted precision in Figure 4 illustrate this propery.

For classification rule learning, Stecher et al. (2014) have shown that
the combination of Laplace heuristic hlap used in the rule selection step
and the inverted Laplace heuristic 4lap used in the rule refinement step
outperformed other combinations in terms of average classification accuracy.
An interesting side conclusion from (Stecher et al., 2014) is that the usage of
inverted heuristics in the rule refinement phase produces on average longer
rules, which are claimed to be better for explanatory purposes.

We illustrate the advantage of using inverted heuristics in the refinement
phase on the UCI (Lichman, 2013) mushroom data set. In Figure 5 we show
the path in coverage space of top-down specialization of two rules for the
class poisonous using different heuristics. Table 3 shows the descriptions
of the coverage space points shown in Figure 5. The red path shows the
top-down specialization of a rule using the hlap heuristic. From all of the
refinements of the universal rule, the refinement odor = f has the steepest
gradient from the origin (0, 0). Therefore, this rule is selected for further
refinement. However, since the number of covered positive examples is n = 0,

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the refinement process is terminated and the rule odor = f is also selected
in the selection phase, covering 2160 positive and no negative examples.

The green path shows the top-down specialization of a rule using the
4lap heuristic. This heuristic prefers rules with high coverage of positive
examples. It gives preference to rule refinements with the smallest angle
between the line of the refinement and the horizontal axis, i.e. angles α,
β, and γ in Figure 5. Top-down specialization continues until there are no
covered negative examples or there are no possible refinements. In Figure 5
the refinement stops at point F, where rule veil-color = w, gill-spacing = c,
bruises? = f, ring-number = o, stalk-surface-above-ring = k is constructed,
covering a total number of 2,192 positive examples and no negative examples.
Using only a single selection heuristics this rule would be preferred to the
rule depicted with the red path, but it is not achievable as a different choice
was made already in the first step.

In summary, inverted heuristics prefer rules with high coverage of pos-
itive examples. The top-down specialization of a rule is steadily removing
negative examples and some positive examples. This leaves the possibility
that an additional refinement will construct a rule with the same or a higher
number of covered positive examples than a rule constructed using a single
heuristics which immediately maximizes its value.

D

C

E

Figure 5: Comparison of rule refinement paths using standard heuristic and the inverted
one. The red path shows rule constructed using hlap. The green path shows rule refinement
using 4lap.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Point Rule p n

U p ← true. 3,916 4,208
A p ← odor = f. 2,160 0
B p ← veil-color = w. 3,908 4,016
C p ← veil-color = w, gill-spacing = c. 3,804 2,816
D p ← veil-color = w, gill-spacing = c, bruises? = f. 3,188 160
E p ← veil-color = w, gill-spacing = c, bruises? = f, ring-number = o. 3,152 144
F p ← veil-color = w, gill-spacing = c, bruises? = f, ring-number = o, 2,192 0

stalk-surface-above-ring = k.

Table 3: Description of coverage space points from Figure 3, illustrated on the mushroom
data set, using target class p (poisonous).

2.5. Relation to previous work

Our work is closely related to previous work in rule learning and sub-
group discovery. In particular, it explores the recommended approach by
Stecher et al. (2014) for separation of rule refinement and rule selection
and the use of different heuristics in the classification rule learning context.
While rule induction algorithms and subgroup discovery algorithms typi-
cally use the same heuristic for rule refinement and rule selection, Stecher
et al. (2014) argued that the nature of the separate-and-conquer algorithms
offers the possibility of separating the two rule construction phases and their
evaluation using two different heuristics.

In this paper we investigate the separation of the rule refinement and rule
selection phase in both subgroup discovery and classification rule learning.
Along with the phase separation we introduce two beams, each consisting
of the best rules according to the refinement and selection heuristic, respec-
tively.

Contrary to the approach of Stecher et al. (2014), where they compare
the selection quality of the best rule refinement to the rule with the best
selection quality, we compare the selection quality of all refined candidate
rules to the selection quality of the best rules for selection (current selection
beam members). In this way we expand the space of possible candidates
for selection and increase the possibility of choosing a candidate with good
selection quality, which might have been omitted in the refinement phase
using the Stecher et al. (2014) approach. Additionally, our algorithm for
rule learning builds rule sets for each target class of a given data set. This is
different from the approach taken in (Stecher et al., 2014) where unordered
decision lists are constructed.

This paper also significantly extends our previous work (Valmarska et al.,
2015), where we reported on the initial findings regarding the use of inverted
heuristics in subgroup discovery. In this paper, we introduce an additional
heuristic, WRACC, which consequently proves to improve over other heuris-

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tics in several settings. In addition, we propose a different approach to al-
gorithm comparison, by first determining the default parameters for each
algorithm and then comparing the algorithms on new data sets, using the
default parameters. The establishment of default parameters is valuable for
future users of the algorithms, as it offers a solid starting point for their use.
In addition to the subgroup discovery algorithm, in this paper we also in-
troduce a novel classification rule learning algorithm based on double beam
and compare it to the state-of-the-art rule learning algorithms.

3. DoubleBeam Algorithm for Subgroup Discovery

The previously observed favorable properties of inverted heuristics in a
classification setting provide a motivation to test the idea in the subgroup
discovery context. For this purpose, we developed the DoubleBeam-SD sub-
group discovery algorithm1, which combines separate refinement and selec-
tion heuristics with the beam search. In the same fashion, we integrated the
beam search and two separate heuristics in the classification rule learning
setting, which we discuss in Section 4.

Contrary to conventional beam-search based algorithms such as CN2-
SD (Lavrač et al., 2004), the DoubleBeam-SD algorithm for subgroup dis-
covery maintains two separate beams, the refinement beam and the selec-
tion beam. Upon initialization, each beam is filled with the best single-
condition rules according to their refinement and selection quality, respec-
tively. The algorithm then enters a loop. In each iteration, rules of the
form targetClass ← Conditions from the refinement beam are refined by
adding features to the Conditions part of the existing rules. The resulting
new rules are added to the refinement beam, which is ordered according to
the refinement quality. Newly produced rules are then evaluated accord-
ing to their selection heuristic and the selection beam is updated with the
rules whose selection quality is better than the selection quality of the rules
already stored in the beam. The algorithm exits the loop after the maxi-
mally allowed number of steps is reached. Another purpose of storing several
rules in the selection beam is to allow post-processing where only the non-
redundant subset of rules is retained (Gamberger and Lavrač, 2002). The
DoubleBeam-SD algorithm is outlined in Algorithm 1.

In order to induce descriptions for subgroups of data instances which
have not yet been covered by the previously constructed rules, we employ

1Code is available on github at https://github.com/bib3rce/RL_SD.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Input: : E = P ∪N
E is the training set, |E| its size,
tc is target class,
P are positive examples (of class tc),
N are negative examples (of classes 6= tc).

Output: : subgroup descriptions
Parameters: : minSupport,

rbw is refinement beam width,
sbw is selection beam width,
rh is refinement heuristic,
sh is selection heuristic
maxSteps is maximal number of steps

1 CandidateList← all feature values or intervals

2 for each candidate in CandidateList do
3 evaluate candidate with rh
4 evaluate candidate with sh

5 end

6 sort CandidateList according to the rh

7 for i = 0 to rbw do
8 RB[i]← CandidateList[i]
9 end

10 sort CandidateList according to the sh

11 for i = 0 to sbw do
12 SB[i]← CandidateList[i]
13 end

14 step← 1

15 do
16 refinedCandidates← refine RB with CandidateList
17 replace RB with refinedCandidates using rh
18 updateSelectionBeam(SB, refinedCandidates, sh)
19 step← step + 1

20 while step ≤ maxSteps;
21 return SB

Algorithm 1: DoubleBeam-SD algorithm.

weighted covering, which reduces the weight of covered positive examples but
does not remove them entirely. This required a modification of the method
for updating the selection beam. Each time a positive example is covered by
a rule that is already in the selection beam, the instance coverage count is
increased and consequently the instance weight is decreased, which results in
reducing the probability that the covered examples would be covered again
by the rules constructed in the following iterations of the algorithm.

In this work, we used the harmonic and geometric weights for instance
weighting. We also implemented removal of the already covered positive
instances by assigning weight 0 to every instance already covered by some
rule in the selection beam (method zero weight). Equations (10), (11) and

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(12) show how the weight of a covered example is updated depending on the
number of rules that cover it.

Geometric weight:
wg(di) = αk, (10)

where k is the number of rules that have already covered example di;

Harmonic weight:

wh(di) =
1

k + 1
, (11)

where k is the number of rules that have already covered example di;

Zero weight:
wz(di) = 0, (12)

if example di is covered by at least one rule in the selection beam.

The weighted value of positive examples covered by a rule r (weighted
number of true positives) is calculated using Equation (13).

wTP (r) =

|E|∑

i=1

w(di) · c
{
c = 1 if r covers di;

c = 0 otherwise.
(13)

Note that zero weight can be understood as removing covered positive ex-
amples from the data set. This is not the same as no weighting, which means
that instances are retained in the data set. As we use the selection beam,
which keeps all the interesting subgroups, and the algorithm takes care that
beam entries are not duplicated, no weighting might be sufficient. However,
a practical reason to introduce instance weighting are possible redundancies
in the attribute set. Without weighting we might get several different but re-
dundant descriptions of the same instances in the beam, which unnecessary
fill the beam and reduce the search space. The code of the updateSelec-
tionBeam method is outlined in Algorithm 2.

Function getBestRule returns the rule with the best selection qual-
ity on the data set with updated weights. The selection quality of a rule
is calculated according to the chosen selection heuristics. Function up-
dateWeights updates the weights of the covered positive examples. The
weights are updated according to the desired weight type i.e. geometric,
harmonic or zero.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 Method updateSelectionBeam(SB, refinedCandidates, sh)

// current data

2 cData← P ∪N

// candidates for selection

3 cs← ∪SB
// new selection beam

4 nSB ← {}

5 resetWeights(cData)

6 for i = 0 to sbw do
7 bestRule← getBestRule(cs, cData, sh)
8 cs← remove(cs, bestRule)
9 nSB{i} ← bestRule

10 cData← updateWeights(cData, bestRule)

11 end

12 SB ← nSB

Algorithm 2: Method for updating the selection beam.

3.1. Experimental setting

For the purpose of algorithm evaluation, we use different combinations of
refinement and selection heuristics, constituting the following DoubleBeam
subgroup discovery variants:

SD-ILL (Inverted Laplace, Laplace), using (4lap,hlap) heuristics combina-
tion pair,

SD-IPP (Inverted Precision, Precision), using (4prec,hprec),

SD-IMM (Inverted M-estimate, M-estimate), using (4m-est,hm-est),

SD-IGG (Inverted Generalization quotient, Generalization quotient), us-
ing (4g,hg),

SD-GG (Generalization quotient, Generalization quotient), using (hg,hg),
and

SD-WRACC (WRACC), using (hWRACC, hWRACC).

For the purpose of annotation, we prefix the variants of our DoubleBeam-
SD with SD. The hg heuristic is the generalization quotient proposed in
(Gamberger and Lavrač, 2002) (Equation 4), while 4g is its inverted variant

defined as 4g = N−n
P−p+g . The weighted relative accuracy (WRACC) heuristic

is defined in Equation (5). It was introduced in (Lavrač et al., 2004) to

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Tuning data sets C E A F Evaluation data set C E A F

breast-cancer 2 286 10 41 contact-lenses 3 24 5 9
car 4 1,728 7 21 futebol 2 14 5 27
glass 7 214 10 31 ionosphere 2 351 35 157
hepatitis 2 155 20 41 iris 3 150 5 14
horse-colic 2 368 23 72 labor 2 57 17 42
hypothyroid 2 3,163 26 60 mushroom 2 8,124 23 116
idh 3 29 5 14 primary-tumor 22 339 18 37
lymphography 4 148 19 52 soybean 19 683 36 99
monk3 2 122 7 17 tic-tac-toe 2 958 10 27
vote 2 435 17 32 zoo 7 101 18 134

Table 4: Number of classes (C), examples (E), attributes (A), and features (F) of the 20
data sets used in the experiments.

measure the unusualness of the induced subgroup describing rules. Note
that WRACC is identical to its inverted variant (Stecher et al., 2014).

We compare three state-of-the-art subgroup discovery algorithms (SD,
CN2-SD, and APRIORI-SD) and the proposed DoubleBeam-SD algorithm
with six combinations of refinement and selection heuristics (SD-ILL, SD-
IPP, SD-IMM, SD-IGG, SD-GG, and SD-WRACC). We test the
DoubleBeam-SD algorithm with each of the six combinations of refinement
and selection heuristics, both with and without using the weighted covering
algorithm, and with and without using rule subset selection in the post-
processing step described in (Gamberger and Lavrač, 2002). This resulted
in 48 different combinations of the DoubleBeam-SD algorithm (6 refine-
ment/selection combinations × 2 post-processing/no × 4 weighting/no).

We use SD, CN2-SD and APRIORI-SD implementations of algorithms
that are available in the ClowdFlows platform (Kranjc et al., 2012). We
use the same 20 UCI classification data sets as (Stecher et al., 2014) (see
Table 4). In order to determine suitable settings, we randomly split the data
sets into two groups: we use 10 randomly chosen data sets (shown on the
left-hand side of Table 4) to determine default parameters of all competing
methods, and the remaining 10 data sets (shown on the right-hand side of
Table 4) to compare the best settings. The tuning of parameters is described
in Section 3.2, while the methods comparison is presented in Section 3.3.

To compare the speed and scalability of the algorithms, we use the UCI
adult data set which consists of 32,561 instances and 14 attributes. We do
not use cross-validation on this data set but split it into training and test
sets of different sizes.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Heuristics combination Overall rank Average rank Post-processing Weight type

WRACC 1 7.30 no none
IMM 2 7.45 yes none
GG 3 8.15 no none
IGG 9 15.50 no none
ILL 14 19.95 yes none
IPP 21 24.45 no zero

Table 5: Chosen variants of the DoubleBeam-SD algorithm. The overall rank is the rank
of the algorithm among the 48 variants.

3.2. Default parameter setting

We use the 10 left-hand side data sets from Table 4 for setting default
parameters of the algorithms. The SD algorithm and the APRIORI-SD
algorithm are both trained using rule subset selection in the post-processing
step, as described in (Gamberger and Lavrač, 2002). Originally, the CN2-SD
algorithm does not use rule selection in the post-processing.

The algorithms are initially tested with 10-fold double-loop cross-validation
on each of the 10 data sets used for parameter tuning (named tuning data
sets in the rest of this paper). For each algorithm (both the newly proposed
algorithms as well as the existing algorithms SD, CN2-SD and APRIORI-
SD), a grid of possible parameter values is set in advance. The value of
minSup is set to 0.01. Each training set of a given cross-validation itera-
tion is additionally split into an internal training and testing subset. For
each algorithm, models were built using the internal training subset and
the parameters from its own parameter grid. Parameters maximizing the
value of unusualness of the produced subgroups on the internal test subest
are then chosen for building a model using the whole training set. In the
evaluation, we use the subgroup discovery evaluation statistics proposed in
(Kralj Novak et al., 2005) (originally implemented in the Orange data min-
ing environment (Demšar et al., 2013)): coverage, support, size, complexity,
significance, unusualness (WRACC), classification accuracy, and AUC.

We compute average ranks of the 48 combinations of the DoubleBeam-
SD algorithm with respect to the unusualness (WRACC) of the produced
subgroup describing rules. For each combination of refinement and selection
heuristics of algorithms described in Section 3.1 we chose the algorithm
setting that had the best average ranking. The chosen algorithm settings
are shown in Table 5.

The default set of parameters for each algorithm consists of the param-
eters which were chosen in the 10-fold double-loop cross-validation testing
phase. This default set of parameters is used for cross-validation testing of

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Data sets SD CN2-SD APRIORI-SD SD-ILL SD-IPP-w-z SD-IMM SD-WRACC SD-GG SD-IGG

contact-lenses 0.032 0.071 0.027 0.039 0.035 0.021 0.047 0.081 0.081
futebol 0.000 0.009 0.005 0.005 0.003 0.015 0.000 0.006 0.005
ionosphere 0.099 0.111 0.000 0.083 0.032 0.105 0.133 0.105 0.107
iris 0.090 0.200 0.142 0.159 0.167 0.146 0.175 0.148 0.148
labor 0.080 0.102 0.041 0.081 0.085 0.085 0.098 0.095 0.094
mushroom 0.088 0.163 0.000 0.133 0.029 0.134 0.191 0.146 0.131
primary-tumor 0.011 0.009 0.008 0.006 0.006 0.017 0.019 0.014 0.014
soybean 0.025 0.037 0.000 0.035 0.036 0.043 0.037 0.035
tic-tac-toe 0.022 0.021 0.029 0.024 0.029 0.024 0.041 0.028 0.029
zoo 0.037 0.097 0.000 0.094 0.065 0.096 0.100 0.099 0.094

Table 6: Ten-fold cross-validation WRACC results for subgroup discovery algorithms with
default parameters. The best values for each data set are written in bold. We compare
existing SD, CN2-SD and APRIORI-SD algorithms with the proposed DoubleBeam algo-
rithms with different refinement and selection heuristics.

the subgroup discovery algorithms on the remaining 10 data sets.

3.3. Experimental results

The WRACC values obtained from the 10-fold cross-validation testing
on the 10 evaluation data sets with selected default parameters are shown in
Table 6. These values are averaged over all the classes for every particular
data set.

The results of the Nemenyi test following the Friedman test for statisti-
cal significance of differences between average values of WRACC are shown
in Figure 6. It is evident that SD-WRACC algorithm produces the most
interesting subgroups, which are statistically more unusual than the ones
produced by the two state-of-the-art algorithms, the SD algorithm and the
APRIORI-SD algorithm. However, there are no statistically significant dif-
ferences between the six chosen variants of the DoubleBeam-SD algorithm
and the CN2-SD algorithm. The DoubleBeam-SD algorithm with the com-
bination (hg,hg) produces statistically more unusual subgroups than the
ones produced by the APRIORI-SD algorithm. The rest of the variants of
the DoubleBeam-SD algorithm do not produce subgroup describing rules
which are statistically more interesting than the ones produced by any of
the tested algorithms.

Experimental results reveal that algorithms which use WRACC as their
heuristic (the SD-WRACC algorithm and the CN2-SD algorithm) produce
rules which describe more interesting subgroups. The underperformance of
the other considered variants of the DoubleBeam-SD algorithm is due to
their respective heuristics, which are specialized towards finding prediction
rules and not unusual rules.

The results of the Nemenyi test following Friedman test for statistical
significance of differences of the average rule sizes are shown in Figure 7.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SD-WRACC (2.40)

CN2-SD (3.15)

SD-GG (3.65)

SD-IMM (4.45)

SD-IGG (4.55)

SD-ILL (5.90)

SD-IPP-w-z (6.00)

SD (7.35)

APRIORI-SD (7.55)

CD = 3.80

9 8 7 6 5 4 3 2 1

Figure 6: Nemenyi test on ranking of subgroup discovery algorithms regarding average
WRACC values with a significance level of 0.05.

The DoubleBeam-SD algorithm with the combination (hg,hg) produces sub-
groups which are on average described by the longest rules. The SD-GG al-
gorithm generates subgroups described by rules that are statistically longer
only than the ones produced by the SD algorithm and the SD-IPP algorithm
with zero-weight covering. There is no statistical evidence that the SD-GG
algorithm produces longer rules than other evaluated algorithms. Conse-
quently, these results do not confirm that the DoubleBeam-SD algorithm
with inverted refinement heuristic produces statistically longer subgroup
descriptions than all other subgroup discovery algorithms. This is slightly
surprising taking into account the findings of (Stecher et al., 2014) in the
classification rule learning setting.

Table 7 presents the performance of subgroup discovery algorithms on
the adult data set in terms of their WRACC score. We split the data set in
the 70:30 ratio, leading to 22,793 training and 9,768 testing instances. The
SD-WRACC algorithm produced the most interesting rules, followed by the
CN2-SD algorithm. The results are in accordance with the results presented
in Figure 6. The algorithms SD-ILL, SD, APRIORI-SD and SD-GG gen-

SD-GG (2.65)

SD-ILL (3.30)

SD-WRACC (3.70)

SD-IMM (4.60)

SD-IGG (4.80)

CN2-SD (5.50)

APRIORI-SD (5.85)

SD (6.80)

SD-IPP-w-z (7.80)

CD = 3.80

9 8 7 6 5 4 3 2 1

Figure 7: Nemenyi test on ranking of average rule sizes for subgroup discovery algorithms
in the second experimental setting with a significance level of 0.05. Note that algorithms
are ordered according to the average length of generated rules—rank 1 would indicate the
algorithm producing the longest rules.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Measure SD CN2-SD APRIORI-SD SD-ILL SD-IPP-w-z SD-IMM SD-WRACC SD-GG SD-IGG

WRACC 0.023 0.043 0.041 0.011 0.012 0.028 0.076 0.025 0.024
ARL 2.800 2.150 2.700 2.800 1.300 2.100 2.100 2.600 2.500

Table 7: Performance comparison of subgroup discovery algorithms using WRACC score
and average rule length (ARL) on the UCI adult data set. The data set is split in 70:30
ratio. Rules are induced using the default parameters.

erated the longest rules; the SD-ILL and SD-GG algorithms produced the
longest rules also on data sets from Figure 7.

Figure 8 presents the training times of subgroup discovery algorithms
with different numbers of training instances from the adult data set. The
APRIORI-SD algorithm is the slowest, followed by the SD-IPP-w-z and
CN2-SD algorithms. The other subgroup discovery algorithms are compa-
rable in terms of training time and allow for processing of relatively large
data sets.

To the users of subgroup discovery algorithms we recommend the use of
the SD-WRACC algorithm with the selection beam width set to 5, and no
example weighting or post-processing. Results show that this algorithm on
average outperforms other subgroup discovery algorithms considered in this
work.

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

5000	 10000	 15000	 20000	 25000	

Pr
oc
es
so
r	(

m
e	
[s
]	

APRIORI-SD	

CN2-SD	

SD	

SD-ILL	

SD-IPP-w-z	

SD-IMM	

SD-WRACC	

SD-GG	

SD-IGG	

Figure 8: Comparison of training times for subgroup discovery on the adult data set. The
horizontal axis shows the number of training instances and the vertical axis shows the
training time in seconds.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4. DoubleBeam Algorithm in Classification Rule Learning

The idea of using two separate heuristics for rule refinement and selection
as well as using inverted heuristics in refinement phase was proposed and
successfully tested by Stecher et al. (2014). The previous section shows that
this idea can also be successful in subgroup discovery, where we tested it
using a double beam search approach. As Stecher et al. (2014) do not use
beam search in rule learning, an obvious extension is to use double beam
also in classification rule learning.

In order to test the influence of different selection heuristics, refinement
heuristics, selection beam width, and refinement beam width, we imple-
mented a DoubleBeam classification rule learning (DoubleBeam-RL) algo-
rithm. This algorithm is adaptation of the DoubleBeam-SD algorithm. It
uses a combination of refinement and selection heuristics for each phase of
rule learning. The algorithm has two beams, the selection beam and the
refinement beam, where during the process of generating rules it holds po-
tential candidates for refinement and selection, based on their selection and
refinement quality. For learning a decision list, it employs the commonly
used separate-and-conquer strategy (Fürnkranz, 1999): each time a rule is
generated for a given target class, the positive examples covered by the rule
are removed from the data set. The algorithm continues to learn new rules
for the same target class on the updated data set as long as rules with a
minimal acceptable quality are induced, i.e. if the rule covers more positive
than negative examples and covers more positive examples than a chosen
threshold (in our case a threshold of 2). The final result is a rule set with
acceptable rules for the given target class.

Basically, for learning a single rule, a single beam (in the refinement
phase) is sufficient, unless we want to produce a collection of rules which
are post-processed later. If not, we shall set the selection beam width to
1, as we do in our experiments. The DoubleBeam-RL algorithm is outlined
in Algorithm 3. The function for generating a single rule when a data
set, selection heuristics, refinement heuristics, selection beam width, and
refinement beam width are given is outlined in Algorithm 4.

4.1. Experimental setting

We perform experimental evaluation in two steps. In the first step we
determine default parameters for the five best combinations of refinement
and selection heuristics on the same randomly chosen 10 data sets in the
left-hand side of Table 4. In the second step, we use 10 fresh data sets (the
right-hand side of Table 4) to compare these five best configurations with

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Input: : E = P ∪N
E is the training set, |E| its size,
tc is target class,
P are positive examples (of class tc),
N are negative examples (of classes 6= tc).

Output: : R, (R is rule set for tc)
Parameters: : rh is refinement heuristic,

sh is selection heuristic,
rbw is refinement beam width,
sbw is selection beam width.

// rule set for target class tc
1 R← {}

// current data

2 cData← E

3 do
4 rule← generateRule(cData, tc, rh, sh, rbw, sbw)
5 R← R + rule
6 cData← removePositiveCovered(cData, rule, tc)

7 while not satisfied ;

8 return R

Algorithm 3: DoubleBeam-RL algorithm.

1 Function generateRule (dataset, tc, rh, sh, rbw, sbw)

// candidates for best rule

2 bRC ← DoubleBeam-SD(dataset, tc, rh, sh, rbw, sbw)

3 bestRule← getBestRule(bRC)

4 return bestRule

Algorithm 4: Function for generating rules using two heuristics.

two state-of-the-art algorithms for rule learning, Ripper (Cohen, 1995) and
CN2 (Clark and Niblett, 1989). We use the Weka (Hall et al., 2009) imple-
mentation of Ripper and the Orange (Demšar et al., 2013) implementation
of the CN2 algorithm. For both algorithms we use the default parameters set
by their software platforms, respectively. For comparison, we also include
the results from the best performing algorithm from Stecher’s (Stecher et al.,
2014) experimental work, named SC-ILL.

The quality of the induced rules is measured in terms of the classification
accuracy (CA). The process of parameter tuning and variant selection is
described in Section 4.3. We also report the average rule length of produced
rules.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2,192 p ← veil-color = w, gill-spacing = c, bruises? = f, ring-number = o,

stalk-surface-above-ring = k.

864 p ← veil-color = w, gill-spacing = c, gill-size = n, population = v,

stalk-shape = t.

336 p ← stalk-color-below-ring = w, ring-type = p, stalk-color-above-ring = w,

ring-number = o, cap-surface = s, stalk-root = b, gill-spacing = c.

264 p ← stalk-surface-below-ring = s, stalk-surface-above-ring = s,

ring-type = p, stalk-shape = e, veil-color = w, gill-size = n, bruises? = t.

144 p ← stalk-shape = e, stalk-root = b, stalk-color-below-ring = w, ring-number = o.

72 p ← stalk-shape = e, gill-spacing = c, veil-color = w, gill-size = b,

spore-print-color = r.

44 p ← stalk-surface-below-ring = y, stalk-root = c.

Table 8: Decision list learned for class p (poisonous) in the mushroom data set using
Stecher’s approach with refinement heuristic 4lap and selection heuristic hlap. The number
of positive examples covered by each rule is also shown. No rule covers any of the negative
examples.

4.2. Illustrative example

We compare our approach with the approach of Stecher et al. (2014) with
an illustrative example. For the purpose of this comparison, we chose the
same set of attributes used in the mentioned work. Rules in both decision
lists are generated with 4lap as the refinement heuristic and hlap as the
selection heuristic. The width of both refinement and selection beam is set
to 1. Figure 8 shows the decision list learned for the class poisonous on
the data set mushroom using the algorithm presented in (Stecher et al.,
2014), whereas Figure 9 presents the rule set learned by our DoubleBeam
rule learning algorithm.

Results from Tables 8 and 9 suggest that our approach tends towards
finding even more complete rules than the approach taken by Stecher et al.
(2014). The algorithm produces on average shorter rules which include more
or the same number of examples. The DoubleBeam-RL algorithm is able
to detect features that do not contribute to the overall improvement of the
rules. Such example is the bruises? = f feature. In the first rule from
Stecher’s decision rule, the 2,192 covered examples are covered by the con-
junction of the following features: veil-color = w, gill-spacing = c,

ring-number = o, stalk-surface-above-ring = k. Feature bruises?

= f was selected during the refinement phase, but does not contribute any-
thing to the final result.

This difference is due to the nature of the applied algorithms. Stecher’s
approach is to refine a rule using the inverted heuristics until there are only
positive examples covered and then returns the best rule on the refinement
path. This approach leads to eliminating possible refinements of a certain
rule due to their lower refinement quality, even though their selection quality

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is very high; in our case, one of the possible refinements has even better
selection quality than the final rule, chosen by the Stecher’s approach. The
DoubleBeam-RL algorithm on the other hand, considers the selection quality
of the refined candidates and the rules already in the selection beam. It
simultaneously checks for rules with best refinement and selection quality
and keeps track of all the best rules found in the refinement process.

As an example, consider rules from Table 3. After the universal rule
is refined, the best candidate for further refinement in both approaches is
p ← veil-color = w. The DoubleBeam-RL algorithm saves this rule as

a candidate for refinement, but chooses rule p← odor = f as its candidate
for best rule. In the next iteration, once more the two algorithms have the
best candidate for refinement, p ← veil-color = w, gill-spacing = c.

There is no change in the selection beam of the DoubleBeam-RL algorithm,
where the selection quality of p ← odor = f (1.000) is better than the
selection quality of p ← veil-color = w, gill-spacing = c (0.575).
In the third step, best rule for refinement is p ← veil-color = w,

gill-spacing = c, bruises? = f. Both algorithms will continue with
the refinement of this rule, however, the selection beam of the DoubleBeam-
RL algorithm will be updated with a refinement of p← veil-color = w,

gill-spacing = c, leading to rule p← veil-color = w, gill-spacing

= c, stalk-surface-above-ring = k, whose selection quality is the same
as the selection quality of the rule already stored in the beam (1.000). When
the DoubleBeam-RL algorithm is faced with choosing between two rules with
the same selection quality, it always chooses the rule that has covered more
positive examples. In case the decision is not straight-forward, it chooses
the shortest among the rules in question. The top-down specialization will
continue for both algorithms. The algorithm proposed by Stecher will stop
when there are only positive examples covered or there is no possible further
refinement. At the end, the algorithm will return the rule with the best se-
lection quality among all the rules on the refinement path. As it is evident
from our example, this will result with longer rules which can have lower
coverage than the rules selected by the DoubleBeam-RL algorithm. The
DoubleBeam-RL algorithm stops after a predefined number of steps, and
returns the rule with the best selection quality among all the investigated
refinements.

4.3. Default parameter setting

In the experiments performed to determine the default parameter values
for the DoubleBeam-RL algorithm, we use all combinations of the following
heuristics in refinement and selection phase:

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2,228 p ← p ← gill-spacing = c, veil-color = w, stalk-surface-above-ring = k.

864 p ← gill-color = b .

336 p ← stalk-color-above-ring = w, gill-spacing = c, stalk-root = b,

stalk-color-below-ring = w, gill-attachment = f, cap-surface = s,

ring-number = o, ring-type = p.

264 p ← stalk-shape = e, bruises? = t, gill-size = n, gill-attachment = f,

stalk-surface-above-ring = s, stalk-surface-below-ring = s, ring-type = p.

144 p ← stalk-shape = e, bruises? = f, stalk-root = b, stalk-color-below-ring = w,

gill-attachment = f.

72 p ← stalk-shape = e, spore-print-color = r.

8 p ← veil-color = y.

Table 9: Rule set learned for the class p (poisonous) in the mushroom data set using
DoubleBeam rule learning algorithm with refinement heuristic 4lap, selection heuristic
hlap, and both refinement and selection beam width set to 1. The number of positive
examples covered by each rule is shown on the left. No rule covers any negative examples.

- Laplace hlap - L,

- Inverted Laplace 4lap - IL,

- Precision hprec - P,

- Inverted Precision 4prec - IP,

- M-estimate hm-est - M,

- Inverted -M-estimate 4m-est - IM, and

- Weighted Relative ACCuracy hWRACC - W.

As an example, the abbreviation RL-ILL indicates that 4lap was used as a
refinement heuristic, and hlap as a selection heuristic in the DoubleBeam-RL
algorithm. This resulted in 49 variants of the DoubleBeam-RL algorithm.
Each variant is tested on the same 10 randomly chosen data sets that were
used for parameter tuning in the subgroup discovery context.

The value of the selection beam width is fixed to 1 in all variants (see
Section 4). In order to select the default width of the refinement beam
for each variant of the DoubleBeam-RL algorithm, we perform a 10-fold
double-loop cross-validation of each variant on each of the tuning data sets
from Table 4. Each tuning data set is divided into training and test set.
Each training data set is additionally split into internal training and test
subset. A separate model is induced on the internal training subset for each
of the possible parameter values. These models are then evaluated using
the internal test subset. The parameter values that maximize the value of
classification accuracy are chosen as parameters for the construction of the
model using the initial training data set. The final cross-validation value

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of classification accuracy (CA) for each fold is calculated using the model
induced with the chosen best parameters and the corresponding test data
set.

For each heuristic combination we collected the best parameters for re-
finement beam width across the tested 10 data sets. The most frequently
selected parameter was chosen as a default parameter for the considered
combination. Our experiments showed that for each variant of the rule
learning algorithm, the most accurate rules are induced when we use refine-
ment beam width with value 1. This means that the selected best param-
eters make our algorithm identical to the rule learning algorithm proposed
in (Stecher et al., 2014), with the exception that our algorithms can select
the best rule from each refinement step (line 2 of Algorithm 4 and line 18
of Algorithm 1), while in (Stecher et al., 2014) only the final refined rule is
selected. This seemingly small difference leads our algorithm to form shorter
rules with better coverage and affects also the classification accuracy as pre-
sented in Section 4.4.

Out of the 49 variants of the DoubleBeam-RL algorithm, we eventu-
ally selected the following five variants, which had the best average rank
performance on the 10 tuning data sets: RL-MM (hm-est,hm-est), RL-ILM
(4lap,hm-est), RL-WM (hWRACC,hm-est), RL-IPM (4prec,hm-est), and RL-PM
(hprec,hm-est).

4.4. Experimental results

We compare the selected best rule learning algorithm (using the five
chosen variants of rule selection heuristics) with two state-of-the art algo-
rithms, Ripper and CN2, and the best performing algorithm from Stecher
et al. (2014)’s work, named SC-ILL. The classification accuracy (CA) values
obtained from the 10-fold cross-validation testing on the 10 evaluation data
sets from the right-hand side of Table 4 with default parameters are shown
in Table 10.

The Friedman test for statistical differences in CA showed that there
are no significant differences between the algorithms which is confirmed by
the confidence intervals of the Nemenyi test in Figure 9. Nevertheless, the
approach taken by Stecher et al. (2014) yields the best results (average rank
is 3.00). Three of our five chosen variants of the DoubleBeam-RL algorithm
have a better average rank than the Ripper algorithm. The chosen variants
of our algorithm for rule learning on average perform better than the CN2
algorithm.

An interesting observation is that among all the algorithms with two
heuristics, the one with the least search performs best i.e. the Stecher

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Data sets RL-MM RL-ILM RL-WM RL-IPM RL-PM Ripper SC-ILL CN2

contact-lenses 0.750 0.750 0.750 0.750 0.750 0.750 0.875 0.683
futebol 0.700 0.700 0.700 0.700 0.700 0.571 0.571 0.800
ionosphere 0.900 0.861 0.858 0.875 0.914 0.897 0.932 0.906
iris 0.920 0.920 0.920 0.920 0.920 0.953 0.953 0.893
labor 0.773 0.820 0.720 0.820 0.827 0.771 0.825 0.720
mushroom 0.999 1.000 1.000 1.000 0.997 1.000 1.000 1.000
primary-tumor 0.401 0.407 0.410 0.395 0.345 0.392 0.360 0.345
soybean 0.921 0.908 0.903 0.909 0.852 0.915 0.924 0.883
tic-tac-toe 0.982 0.976 0.892 0.974 0.980 0.978 0.976 0.818
zoo 0.872 0.892 0.882 0.892 0.823 0.871 0.921 0.961

Table 10: Ten-fold cross-validation CA results for rule learning with default parameters.
Best values are written in bold.

et al. (2014) approach. The explanation for this could be the over-searching
phenomenon (Quinlan and Cameron-Jones, 1995; Janssen and Fürnkranz,
2009), which indicates that the amount of search shall be adjusted specifi-
cally to a data set and search heuristics employed.

The results of the Friedman test and post-hoc Nemenyi test for statistical
significance of differences between average rule length of rules induced by the
chosen variants of the DoubleBeam-RL algorithm and the state-of-the-art
algorithms for classification rule learning are shown in Figure 10. The results
suggest that the variant that uses the inverted heuristic in refinement phase,
RL-IPM, induces rules which are statistically longer than the rules induced
by the standard refinement heuristic, RL-PM. The results in Figure 10 are
in accordance with the conclusions drawn by Stecher et al. (2014). The ap-
proach taken by Stecher et al. (2014), SC-ILL, produces longest rules, while
the CN2 algorithm produces rules with the shortest average rule length.
These rules are significantly shorer than the rules produced by the SC-ILL,
the Rl-IPM, and the RL-ILM algorithm. Note the the average rule length is
calculated as the ratio between the sum of all conditions across all induced

SC-ILL (3.00)

RL-MM (4.15)

RL-ILM (4.25)

RL-IPM (4.40)

Ripper (4.60)

RL-PM (5.00)

RL-WM (5.15)

CN2 (5.45)

CD = 3.32

8 7 6 5 4 3 2 1

Figure 9: Nemenyi test on ranking of classification accuracy values with a significance
level of 0.05.

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SC-ILL (1.80)

RL-IPM (2.50)

RL-ILM (3.60)

RL-WM (4.20)

RL-MM (5.05)

Ripper (5.10)

RL-PM (6.80)

CN2 (6.95)

CD = 3.32

8 7 6 5 4 3 2 1

Figure 10: Nemenyi test on ranking of average classification rule length with a significance
level of 0.05.

rules and the total number of rules in the model.
Table 11 shows the performance comparison of classification rule learning

algorithms on the adult data set in terms of classification accuracy and
average rule length. Results reveal that all versions of the DoubleBeam-RL
algorithm produce rules with better classification accuracy than the CN2
algorithm. Three DoubleBeam-RL algorithms (RL-ILM, RL-WM, and RL-
IPM) slightly outperform the Ripper algorithm. Comparison of the results
obtained with the algorithms RL-IPM and RL-PM confirm the conclusions
of Stecher et al. (2014): when an inverted heuristic is used in the refinement
phase, the produced rules tend to be longer and have better classification
accuracy.

Figure 11 presents the training times of classification rule learning al-
gorithms with different numbers of training instances from the adult data
set. The times can only give a rough picture of the algorithms’ performance,
as the algorithms are not implemented on the same platform: we use the
Ripper implementation from Weka, CN2 from Orange, the other algorithms
are implemented in Python. The training times of the SC-ILL algorithm are
not included due to excessive time consumption of the algorithm. Figure 11
shows that the Ripper algorithm is the fastest classification rule learner.
Algorithms RL-IPM and RL-ILM have almost identical training times and
are the most inefficient. An interesting observation is that DoubleBeam-RL

Measure RL-MM RL-ILM RL-WM RL-IPM RL-PM Ripper SC-ILL CN2

CA 0.834 0.851 0.852 0.854 0.835 0.845 / 0.815
ARL 2.909 2.824 1.938 2.684 1.214 4.333 / 2.531

Table 11: Comparison of classification accuracy (CA) and average rule length (ARL) of
classification rule learning algorithms on the UCI adult data set. Data set is split in 70:30
ratio. Models are induced using estimated default parameters. SC-ILL results are not
included as its training took more than 5 hours of CPU time.

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

algorithms, which use inverted heuristics in their refinement phase, produce
slightly more accurate models (Table 11) than their Laplace counterparts at
the cost of being less efficient. Figure 11 reveals that algorithms RL-ILM,
RL-IPM, RL-MM, and RL-WM may use less time in spite of larger train-
ing set. Further investigation revealed relatively large variance of measured
times. For specific points the mentioned algorithms produce models with
fewer rules and fewer conditions.

0	

50	

100	

150	

200	

250	

300	

5000	 10000	 15000	 20000	 25000	

Pr
oc
es
so
r	(

m
e	
[s
]	

RL-ILM	

RL-IPM	

RL-MM	

RL-PM	

RL-WM	

CN2	

Ripper	

Figure 11: Comparison of training times for classification rule learning algorithms on the
adult data set. The horizontal axis shows the number of training instances and the vertical
axis shows the training time in seconds.

Based on our experimental work, there can be no clear recommendation
for the user which algorithm to use, as the differences in classification accu-
racy are not statistically significant. However, several algorithms with two
heuristics produces on average more accurate rules than Ripper and CN2,
the most accurate being SC-ILL and RL-MM. For large data sets where
computational efficiency is crucial, Ripper is clearly the best choice.

5. Conclusions

This paper introduces two new algorithms for rule learning, one for sub-
group discovery and one for classification rule learning. Both algorithms

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

use beam search and offer the possibility to use separate heuristics for rule
refinement and rule selection.

The experiments were performed on 20 UCI data sets. The performance
of each of the considered algorithms depends on its parameters. In or-
der to systematically choose the default parameters for each algorithm, we
initially performed 10-fold double-loop cross-validation training on 10 ran-
domly chosen data sets. The conclusions about the performance of the
discussed algorithms are obtained after ten-fold cross-validation testing on
the remaining 10 data sets, which have not been used for parameter tuning
and are exclusively used for algorithm evaluation.

The experiments indicate that the subgroup describing rules created us-
ing the SD-WRACC algorithm are more interesting than the subgroups
induced by other state-of-the-art subgroup discovery algorithms. The differ-
ence between most of the algorithms are not statistically significant, however
SD-WRACC and CN2-SD produce statistically significantly more interest-
ing rules than SD and APRIORI-SD.

In the context of classification rule learning we proposed a new, the
DoubleBeam-RL algorithm, which offers the possibility for using separate
rule refinement and selection heuristics. Among the tested 49 variants of
refinement and selection heuristics inside the DoubleBeam-RL algorithm
and their comparison with Ripper and CN2, the best performing variants in
terms of classification accuracy were the algorithms that use the m-estimate
as their selection heuristic. In particular, the best performing variant of the
DoubleBeam-RL algorithm was the variant that uses the m-estimate both
as its selection and refinement heuristic. The differences are, however, not
statistically significant. The algorithms which use inverted heuristic perform
slightly better than the algorithms using the standard heuristics (RL-IPM
and RL-ILM compared to RL-PM and RL-WM). All five of our algorithms
perform better than the CN2 algorithm, and three of our algorithms perform
better than the Ripper algorithm.

The main advantage of DoubleBeam-SD and DoubleBeam-RL algorithms
is their ability to use separate heuristics for the refinement and selection
phase of rule learning. Different heuristics can take advantage of the data
properties and contribute to better rules (rules with improved unusualness
or rules with improved accuracy). The experimental results suggest that
both algorithms provide rules with comparable or better quality than those
obtained by the state-of-the-art algorithms for rule learning and subgroup
discovery, respectively. The use of two beams in combination with separate
heuristics for each phase of the learning processes widens the algorithms’
search space thus improving the probability of finding better quality rules.

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

However, this also increases the chances of data overfitting, an aspect which
our algorithms do not explicitly address at this point.

In contrast to the APRIORI-SD algorithm which uses exhaustive search,
the DoubleBeam-SD algorithm is a heuristic search algorithm (similar to the
SD and the CN2-SD algorithm). Despite being faster than the APRIORI-
SD algorithm and ability to handle medium size data sets, the current
DoubleBeam-SD algorithm is still not able to handle large data sets, due
to space and time complexity. In fact, this is one of the main disadvantages
of all rule learning algorithms using a covering approach. Lower memory
consumption could be achieved with more efficient data structures, while
significant speedups could be gained with instance sampling and feature
subset selection, as well as with parallelization of the algorithms. Due to
two beams, large degree of parallelization could be achieved with Double-
Beam algorithms.

While our DoubleBeam-SD and DoubleBeam-RL algorithms show promis-
ing results, their increased search power demands further research in terms
of stopping criteria and rule pruning heuristics. Using a post-processing
rule pruning step similar to the Ripper is a promising research direction.
We plan to explore also the rule pruning method proposed by Sikora (2011).

Experimental results on subgroup discovery revealed the advantage of
using WRACC over the traditional rule learning heuristics in obtaining in-
teresting subgroups. We believe that developing new heuristics specialized
for the detection of interesting subgroups is a promising research path.

Subgroup discovery is a useful approach in the analysis of medical data.
In line with our work on Parkinson’s disease data (Valmarska et al., 2016),
we plan a case-study comparing results of different subgroup discovery al-
gorithms on Parkinson’s disease patients data set. In order to increase the
interpretability of the induced subgroup describing rules we also plan on
presenting a method for subgroup visualization. In this way we will as-
sist experts (e.g. physicians) in their decision whether a certain subgroup
discovery rule is interesting and relevant for their work.

Acknowledgments

The authors acknowledge the financial support from the Slovenian Re-
search Agency (research core fundings No. P2-0209 and P2-0103). This
research has received funding from the European Unions Horizon 2020 re-
search and innovation programme under grant agreement No. 720270 (HBP
SGA1). We would like to thank Julius Stecher for interesting discussions on
inverted heuristics.

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

Adhikari, P. R., Vavpetič, A., Kralj, J., Lavrač, N., and Hollmén, J.
(2014). Explaining Mixture Models through Semantic Pattern Min-
ing and Banded Matrix Visualization. In Discovery Science - 17th In-
ternational Conference, DS 2014, Bled, Slovenia, October 8-10, 2014.
Proceedings, pages 1–12.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association
rules in large databases. In VLDB’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994, Santiago
de Chile, Chile, pages 487–499.

Atzmueller, M. (2015). Subgroup discovery. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 5(1):35–49.

Atzmüller, M. and Puppe, F. (2006). SD-map - A fast algorithm for ex-
haustive subgroup discovery. In Proceedings of Knowledge Discovery in
Databases, PKDD 2006, pages 6–17.

Bay, S. D. and Pazzani, M. J. (2001). Detecting group differences: Mining
contrast sets. Data Mining and Knowledge Discovery, 5(3):213–246.

Bibal, A. and Frénay, B. (2016). Interpretability of machine learning mod-
els and representations: an introduction. In Computational Intelligence
and Machine Learning, Proceedings of European Symposium on Artifi-
cial Neural Networks ESANN 2016, pages 77–82.

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine
Learning, 3:261–283.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the
Twelfth International Conference on Machine Learning, pages 115–123.

Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič,
M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M.,
Umek, L., Žagar, L., Žbontar, J., Žitnik, M., and Zupan, B. (2013).
Orange: Data mining toolbox in Python. Journal of Machine Learning
Research, 14:2349–2353.

Dong, G. and Li, J. (1999). Efficient mining of emerging patterns: Discov-
ering trends and differences. In Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
1999, pages 43–52.

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Fürnkranz, J. (1999). Separate-and-conquer rule learning. Artificial Intelli-
gence Review, 13(1):3–54.

Fürnkranz, J. and Flach, P. A. (2005). ROC ’n’ rule learning - Towards a bet-
ter understanding of covering algorithms. Machine Learning, 58(1):39–
77.

Fürnkranz, J., Gamberger, D., and Lavrač, N. (2012). Foundations of Rule
Learning. Springer.

Gamberger, D. and Lavrač, N. (2002). Expert-guided subgroup discov-
ery: Methodology and application. Journal of Artificial Intelligence
Research, 17:501–527.

Gamberger, D. and Lavrač, N. (2000). Confirmation Rule Sets. In Pro-
ceedings of Principles of Data Mining and Knowledge Discovery, 4th
European Conference, PKDD 2000, pages 34–43.

Grosskreutz, H. and Rüping, S. (2009). On subgroup discovery in numerical
domains. Data Mining and Knowledge Discovery, 19(2):210–226.

Hall, M. A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I. H. (2009). The WEKA data mining software: An update.
SIGKDD Explorations, 11(1):10–18.

Hühn, J. and Hüllermeier, E. (2009). Furia: an algorithm for unordered
fuzzy rule induction. Data Mining and Knowledge Discovery, 19(3):293–
319.

Janssen, F. and Fürnkranz, J. (2009). A re-evaluation of the over-searching
phenomenon in inductive rule learning. In Proceedings of the 2009 SIAM
International Conference on Data Mining, pages 329–340. SIAM.

Kavšek, B., Lavrač, N., and Jovanoski, V. (2003). APRIORI-SD: adapting
association rule learning to subgroup discovery. In Advances in Intelli-
gent Data Analysis V, 5th International Symposium on Intelligent Data
Analysis, IDA, pages 230–241.

Klösgen, W. (1996). Explora: A multipattern and multistrategy discovery
assistant. In Advances in Knowledge Discovery and Data Mining, pages
249–271.

Kralj Novak, P., Lavrač, N., and Webb, G. I. (2009). Supervised descriptive
rule discovery: A unifying survey of contrast set, emerging pattern and
subgroup mining. Journal of Machine Learning Research, 10:377–403.

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Kralj Novak, P., Lavrač, N., Zupan, B., and Gamberger, D. (2005). Exper-
imental comparison of three subgroup discovery algorithms: Analysing
brain ischemia data. In Proceedings of the 8th International Multicon-
ference Information Society, pages 220–223.

Kranjc, J., Podpečan, V., and Lavrač, N. (2012). ClowdFlows: A cloud
based scientific workflow platform. In Proceedings of Machine Learning
and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2012, pages 816–819.

Lavrač, N., Kavšek, B., Flach, P. A., and Todorovski, L. (2004). Subgroup
discovery with CN2-SD. Journal of Machine Learning Research, 5:153–
188.

Lavrač, N., Železný, F., and Flach, P. A. (2002). RSD: Relational subgroup
discovery through first-order feature construction. In Proceedings of the
12th International Conference on Inductive Logic Programming, pages
149–165.

Lichman, M. (2013). UCI machine learning repository.

Michalski, R. S. (1969). On the quasi-minimal solution of the general cov-
ering problem. In Proceedings of the Fifth International Symposium on
Information Processing.

Minnaert, B., Martens, D., De Backer, M., and Baesens, B. (2015). To
tune or not to tune: rule evaluation for metaheuristic-based sequential
covering algorithms. Data Mining and Knowledge Discovery, 29(1):237–
272.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence,
18(2):203–226.

Napierala, K. and Stefanowski, J. (2015). Addressing imbalanced data
with argument based rule learning. Expert Systems with Applications,
42(24):9468 – 9481.

Parpinelli, R. S., Lopes, H. S., and Freitas, A. A. (2002). Data mining with
an ant colony optimization algorithm. IEEE Transactions on evolution-
ary computation, 6(4):321–332.

Pičulin, M. and Robnik-Šikonja, M. (2014). Handling numeric attributes
with ant colony based classifier for medical decision making. Expert
systems with applications, 41(16):7524–7535.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Quinlan, J. and Cameron-Jones, R. (1995). Oversearching and layered search
in empirical learning. In Proceedings of the 14th international joint
conference on Artificial intelligence, IJCAI’95, volume 2, pages 1019–
1024. Morgan Kaufmann Publishers Inc.

Quinlan, J. R. (1983). Learning efficient classification procedures and their
application to chess end games. Machine learning. An artificial in-
teligence approach.

Quinlan, J. R. and Cameron-Jones, R. M. (1993). FOIL: A midterm report.
In Proceedings of Machine Learning: European Conference on Machine
Learning - ECML 1993, pages 3–20.

Ruz, G. A. (2016). Improving the performance of inductive learning clas-
sifiers through the presentation order of the training patterns. Expert
Systems with Applications, 58:1 – 9.

Sikora, M. (2011). Induction and pruning of classification rules for pre-
diction of microseismic hazards in coal mines. Expert Systems with
Applications, 38(6):6748–6758.

Stecher, J., Janssen, F., and Fürnkranz, J. (2014). Separating rule refine-
ment and rule selection heuristics in inductive rule learning. In Pro-
ceedings of Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD 2014, pages 114–129.

Valmarska, A., Miljkovic, D., Robnik-Šikonja, M., and Lavrač, N. (2016).
Multi-view Approach to Parkinson’s Disease Quality of Life Data Anal-
ysis. In Springer, Lecture Notes in Computer Science.

Valmarska, A., Robnik-Šikonja, M., and Lavrač, N. (2015). Inverted heuris-
tics in subgroup discovery. In Proceedings of the 18th International
Multiconference Information Society.

Vavpetič, A., Novak, P. K., Grčar, M., Mozetič, I., and Lavrač, N. (2013).
Semantic Data Mining of Financial News Articles. In Proceedings of
the 16th International Conference Discovery Science, DS 2013, pages
294–307.

Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups.
In Proceedings of the First European Symposium on Principles of Data
Mining and Knowledge Discovery, PKDD 1997, pages 78–87.

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Zeng, Q., Patel, J. M., and Page, D. (2014). Quickfoil: Scalable inductive
logic programming. Proceedings of Very Large Databases Conference,
8(3):197–208.

41

