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Abstract: Knowledge discovery, especially in the field of literature mining,
is often involved in searching for some interconnecting concepts between
two different literature domains, which might bring new understanding
of both domains. This paper presents a new approach to discovering
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dependencies between different biological domains based on copula analysis
of literature mining results. More specifically, we have explored dependencies
between literature from the domains of plant defence response and
redox potential. Copula analysis of triplets, which are extracted by
Bio3graph tool, shows that dependencies exist between these two domains
indicating a potential for cross-domain literature exploration. Bio3graph
is a rule-based natural language processing tool which extracts relations
in the form (subject, predicate, object) triplets. It is publicly available
at http://ropot.ijs.si/bio3graph/software/. Copula analysis was performed by
using Clayton and Frank fully nested copulas and the software is publicly
available at: http://source.ijs.si/bmileva/copulasfordexapps.git.

Keywords: triplets; relation extraction; modelling the domain dependence;
redox potential; plant defence; knowledge discovery; literature mining; fully
nested copulas.
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1 Introduction

In nature plants sense various harmful conditions, against which they have developed a
certain immune mechanism. This mechanism, named plant response to stress, exhibits
some differences depending on the type of the stressful stimulus. We distinguish
generally between abiotic and biotic types of stress, which both impact plant survival.
Abiotic stress is defined as a negative influence of non-living factors, such as extreme
temperatures, winds, draught, floods, etc. on the plant. Biotic stress refers, on the other
hand, to the damage that different living organisms, such as fungi, insects, weeds and
various pathogens make to the plant. The result of the pathogen attack is the production
of several phytohormones, among which the most crucial for the plant survival are
salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) (Reymond and Farmer, 1998).

Mou et al. (2003) have showed that connection exists between accumulation of SA
in the cell, challenged by pathogens, and changes in redox (or reduction) potential.
Redox potential is defined as a tendency of a certain molecule to acquire electrons
which reduces consequentially its oxidative status. Many biological reactions, including
the plant immune reactions, are of oxidation/reduction reaction type where one reacting
component gets oxidised (releases electrons) and the other one gets reduced (gains
electrons). Oxidation reactions often release various free radicals which can trigger
chain reactions. These chain reactions, known as ‘oxidative stress’, might harm or even
destroy the cell. Redox components, which carry fundamental information on cellular
redox state, terminate these chain reactions by removing free radical intermediates, and
inhibit other oxidation reactions. Redox potential is defined as a tendency of a certain
molecule to acquire electrons. Fundamental information on cellular redox state is carried
by redox components, which terminate particular chain reactions known as ‘oxidative
stress’ that might harm or even destroy the cell.

There are evidences that the key redox components in the cell, such as NAD+,
NADP, glutathione, ascorbate, etc. influence gene expression triggered by biotic and
abiotic stress responses (Noctor, 2006). Foyer and Noctor (2005) proposed a model
for redox homeostasis where interaction of reactive oxygen species (ROS) plays a
role of an interface between the signals coming from the metabolism and the ones
triggered by the environment stimuli. SA mediates PATHOGEN-RELATED (PR) gene
expression by altering the cellular redox potential, thereby activating transcription via
the transcriptional coregulator NPR1 (Caarls et al., 2015). Tada et al. (2008) suggested
that redox signals are expressed via SNO and cytosolic thioredoxins (TRXs), which are
direct catalysers of NPR1 oligomer-monomer transformation, where changes in NPR1
activity are influenced by SA. Moreover, study by Fobert and Després (2005) confirms
that glutathione increase, in response to pathogen attack, causes reduction and activation
of NPR1.

A better understanding of the dependencies between domains of redox potential and
plant defence is needed, having in mind that the influence of redox potential is still
underestimated in agronomic practice (Husson, 2013). To address this challenging task
we propose a new procedure, motivated by cross-domain literature mining research,
introduced below. Knowledge discovery process (KDP), especially by using the
approach of literature mining, often searches for some interconnecting concepts between
the two different domains. For example, the KDP between domain A and domain C
might bring new understanding of the two domains. Swanson (1986) has defined the
ABC approach, which investigates whether agent A is connected with phenomenon C
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by discovering complementary structures through interconnecting phenomenon B. If
the domains A and C are known in advance, this process is named the ‘closed
discovery process’ (Swanson, 1986). In this paper, we explore dependencies in published
scientific literature of two biological domains: the domain of plant defence response
to pathogen attack (domain A) and the domain of redox potential (domain C). We
define literature common to both domains as bridging domain B. Next we provide two
copula-based models that describe the domain dependences. The first model describes
the dependences that exist between domains A and C, and the second model describes
the dependences that exist among domains A, B and C. The results show that both
models are supplementary. The contributions of this paper are twofold. First, linear
methods have been widely used to model nonlinearity in small datasets. Here we model
the dependencies by applying copula functions (Nelsen, 2006) which determines also
nonlinear dependencies between variables. Second, we search for the dependencies
between the biological domains, which have not been previously approached in such a
way.

The proposed procedure to cross-domain literature mining follows a two-stage
approach. We firstly identify important biological components and their interactions,
extracted in the form of triplets (subject, predicate, object) by natural language
processing (NLP) method. Secondly we use copula functions on the extracted triplets
to describe dependences between the domain of plant defence and the domain of redox
potential. In continuation we provide the background methodologies regarding NLP for
relation extraction in the form of triplets, and different copula functions.

2 Background methodologies

2.1 NLP methods

Biological information related to the plant defence and redox potential in plants is
vastly stored in scientific literature, which can be either explored manually, which is
a time-consuming process, or by applying automated NLP methods. In the domain
of biology, many NLP tools have been developed that enable automatic extraction of
relations between biological components (check bioNLP community1 for the arising
list of NLP tools in the biology field). A wide range of machine learning techniques
[including the naive Bayes classifier (Craven and Kumlien, 1999), support vector
machines (Donaldson et al., 2003), clustering (Hasegawa et al., 2004), etc.], rule-based
systems [GeneWays (Rzhetsky et al., 2004), Chilibot (Chen and Sharp, 2004), PLAN2L
(Krallinger et al., 2009), Bio3graph (Miljkovic et al., 2012)], and co-occurrence
approaches have been used for relations extraction in systems biology. The closest to
our Bio3graph triplet extraction approach is the GeneWays system (Rzhetsky et al.,
2004), which enables the extraction, analysis, visualisation and integration of molecular
pathway data, but the system is not publicly available. On the other hand, Bio3graph
(Miljkovic et al., 2012) is publicly available and supports the extraction, construction
and visualisation of the network topology based on the predefined component and
reaction vocabularies.
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2.2 Copula functions

In probability theory, a copula is defined as a multivariate probability distribution
function that is used to describe the dependences between random variables (Joe, 1997;
Nelsen, 2006). Copula functions have been successfully used in various fields such as
biology (Kim et al., 2008), industry (Mileva Boshkoska et al., 2015), decision making
(Mileva-Boshkoska and Bohanec, 2012), etc. To use copulas, we firstly represent the
domains as random variables, whose values are the triplet occurrences, and then we
model their interdependence. Triplets can be considered as occurrences of events of a
random variable, where the random variable is one literature domain. We are interested
in the following problem. Given the number of triplet occurrences in domain A and
domain C, can we say something about their interdependence expressed via domain B?
Hence, we are only interested in those triplets that occur in all three domains.
Occurrences of triplets in one domain and their absence in another domain at the
same time, lead us to the conclusion that there is no dependence between the domains
regarding the given triplet.

3 Materials and methods

The literature for domains of plant defence, redox potential and their intersection was
retrieved in the form of full-text articles from the PubMed Central (PMC)2 database.
Then, for the relation extraction was used Bio3graph tool, which is implemented as
a reusable workflow of NLP components for information extraction from biological
literature in a format compatible with systems biology formalisms, and workflow
components for graph construction and visualisation. Next, the obtained triplets are
filtered regarding the domains of interest and are manually validated by expert to obtain
only true positive triplets. The second step of our approach is the use of different copula
functions to explore the dependencies between the two biological domains. The Figure 1
presents the overview of the proposed methodology.

Figure 1 Schematic representation of the methodologyDiscovering dependencies through triplet extraction and copulas 5
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Figure 1 Schematic representation of the methodology

[MBBDJ15], decision making [MBB12], etc. To use copulas, we firstly represent the
domains as random variables, whose values are the triplet occurrences, and then we model
their interdependence. Triplets can be considered as occurrences of events of a random
variable, where the random variable is one literature domain. We are interested in the
following problem. Given the number of triplet occurrences in domain A and domain C,
can we say something about their interdependence expressed via domain B? Hence, we are
only interested in those triplets that occur in all three domains. Occurrences of triplets in
one domain and their absence in another domain at the same time, lead us to the conclusion
that there is no dependence between the domains regarding the given triplet.

3 Materials and methods

The literature for domains of plant defence, redox potential and their intersection was
retrieved in the form of full-text articles from the PubMed Central database. Then, for
the relation extraction was used Bio3graph tool, which is implemented as a reusable
workflow of NLP components for information extraction from biological literature in a
format compatible with systems biology formalisms, and workflow components for graph
construction and visualisation. Next, the obtained triplets are filtered regarding the domains
of interest and are manually validated by expert to obtain only true positive triplets.
The second step of our approach is the use of different copula functions to explore the
dependencies between the two biological domains. The Figure 1 presents the overview of
the proposed methodology.

3.1 Literature retrieval

In this study we have used full-text scientific papers stored at PubMed Central (PMC)
Open Access Subset (OA). It is a constantly growing collection of publications which are
accessible under a Creative Commons or similar license. The OA scientific publications

PubMed Central is a database of full-text biomedical scientific papers that are accessed free of charge.
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3.1 Literature retrieval

In this study we have used full-text scientific papers stored at PMC Open Access
Subset (OA). It is a constantly growing collection of publications which are accessible
under a Creative Commons or similar license. The OA scientific publications are
available for data mining, text mining, and information extraction using automated
processing pipelines. To facilitate computer processing, the Open Archives Initiative
service and the FTP service allow downloading full-text XML as well as images, PDF,
and supplementary data files for all articles in the OA subset.

3.2 Triplet extraction with Bio3graph

Bio3graph is a rule-based NLP system which extracts relations in the form of triplets
(subject, predicate, object) (Miljkovic et al., 2012). In biological texts, this triplet
structure refers to the form (component 1, reaction, component 2). The Bio3graph
includes text mining, information extraction, graph construction and graph visualisation
steps, providing reusability and repeatability. An integral part of this tool is a domain
specific vocabulary that is composed of two parts: a list of components and a list
of reactions together with their synonyms. The components vocabulary consists of
all genes, their short names and synonyms for the model plant Arabidopsis thaliana
obtained from TAIR database (Swarbreck et al., 2008). Arabidopsis thaliana is a model
plant, which is the most used for studies in the field of plant physiology and therefore
has the most completed genomics data. Furthermore, the vocabulary for the reaction
types contains synonyms for the three reaction types: activation, inhibition and binding.
Separate files for each reaction type in both the passive and the active verb form
are available in supporting information S4 (Miljkovic et al., 2012). Given the list of
components, Bio3graph detects subject and object as component 1 and component 2,
while the predicate represents the relation between the components as defined in the
vocabulary of reaction types. For example, an activation reaction type is presented as:
(MPK3, activates, EIN3). These triplets are more informative for systems biologists
than, for example, the information obtained from co-occurrence approaches. The later
obtain only the information whether component 1 and component 2 are related, but they
do not extract the relation type. For this reason, we have selected triplets as a first step
in our cross-domain literature mining methodology.

3.3 Copulas

In probability theory, the dependence between random variables is completely defined
by their joint distribution function. The joint distribution function H(x, y) for two
random variables (r.v.) X and Y , specified on the same probability space, defines the
probability of a random event in terms of both X and Y . It is given by:

H(x, y) = P [0 ≤ X ≤ x, 0 ≤ Y ≤ y] (1)
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where P is a probability function. To find the joint distribution function in analytical
form, we use the Sklar’s theorem (Sklar, 1959) which proves that the joint distribution
function of two r.v. is equal to the copula of their uniform distributions on the unit
interval [0, 1].

Theorem 1 (Sklar’s theorem): Let H be a bivariate distribution function with marginal
distribution functions u1 = F (x) and u2 = G(y). Then copula C exists such that for all
x, y ∈ R :

H(x, y) = C(F (x), G(y)) = C(u1, u2) (2)

If F (x) and G(y) are continuous, then C is unique; otherwise C is uniquely determined
on Range(F )×Range(G). Conversely, if C is a copula and F (x) and G(y) are
distribution functions, then the function H defined by equations (1) and (2) is a joint
distribution function.

Copulas are functions that manage to formulate the multivariate distribution in such
a way that various general types of dependences including the nonlinear one may be
captured. We focus on two families of bivariate Archimedean copulas: Clayton and
Frank, which we extend to multivariate ones.

3.3.1 Archimedean bivariate copulas

A class of well-known copulas are the Archimedean bivariate copulas. They are
constructed using functions called generator functions. The usage is mainly motivated
by their convenient properties, such as symmetry and associativity.

Here we focus on Clayton and Frank Archimedean copulas. Their mathematical
forms are presented in Table 1. In Table 1, the notation φθ(t) represents a so called
generator function that is responsible for constructing the copula function.

Table 1 Different Archimedean copulas, their generator functions φ, borders of θ parameter

Copula type Cθ(u, v) φθ(t) θ

Clayton
[
max

(
u−θ + v−θ − 1, 0

)]−1/θ 1

θ

(
t−θ − 1

)
[−1,∞) \ {0}

Frank −1

θ
ln
(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
− ln e−θt − 1

e−θ − 1
(−∞,∞) \ {0}

3.3.2 Multivariate copulas

Table 1 presents only bivariate copulas. However, there are several approaches that
describe procedures for constructing multivariate copulas (MVCs) (Fischer et al., 2009).
We adopt the one described by Berg and Aas (2009) which uses nesting technique
applied on bivariate Archimedean copulas to obtain a multivariate one. When nesting is
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performed so that in each level the former copula is coupled with a new input variable,
we obtain a copula known as fully nested Archimedean constructions (FNACs), such as
the one presented in Figure 2. The basic construction element in the FNAC represents
the bivariate copula. As shown in Figure 2, firstly the two nodes u1 and u2 are coupled
forming a bivariate copula C1(u1, u2) with parameter θ1. In the next step C1 is coupled
with u3 into C2(u3, C1) with parameter θ2 (Savu and Trede, 2006):

C2(u3, C1(u1, u2)) (3)

The only condition so that equation (3) represents a valid copula expression is:

θ1 ≥ · · · ≥ θn (4)

The condition given in equation (4) means that the most nested copula (see copula C2

in Figure 2 must have the highest value of the dependence parameter θ. The higher
values of θ mean higher dependence between the variables.

Figure 2 Fully nested Archimedean copula

4 Results and discussion

The keywords for obtaining literature from PMC database were defined by biology
experts resulting in over 30.000 full text articles. This literature was clustered into
domains A, C and the bridging domain B, as explained in Section 4.1. Next, relations
in the form of triplets were extracted by the Bio3graph tool, where we considered for
further analysis only the triplets which appear in all three domains. In the last step of
our approach copula functions revealed several dependency connections between the
domains.

4.1 Retrieved literature

In order to obtain relevant literature from PMC database two queries were constructed.
The queries present combination of MeSH terms and keywords that the domain experts
considered important. The first query related to the domain of plant defence response,
contains the following set of keywords:
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"arabidopsis thaliana"[All Fields] AND
( "defence"[All Fields] OR
"defense"[All Fields] OR
"ethylene"[All Fields] OR
"jasmonate"[All Fields] OR
"jasmonic acid"[All Fields] OR
"salicylate"[All Fields] OR
"salicylic acid"[All Fields] OR
"pathogen"[All Fields] OR
"virus"[All Fields])

and resulted in 14,859 scientific papers. Using the following second set of keywords
from the domain of redox potential:

("redox"[All Fields] OR
"reduction"[All Fields] OR
"oxidation"[All Fields]) AND
("potential"[All Fields] OR
"state"[All Fields])

19,262 PMC articles were retrieved. From the two queries we formed three domains
of biological papers (see Figure 3). Domain A includes papers identified exclusively
by the first query. Domain C includes papers identified only by the second query. The
domain B, to which we also refer as a bridging domain, contains 1,865 articles that
were retrieved by both queries.

Figure 3 Diagram of the domains defined in this study (see online version for colours)

Notes: The middle domain is bridging domain B, containing 1,865 papers which belong to
the intersection two queries: for the plant defence response and for the redox
potential. Left domain is domain A counting 12,994 scientific articles and belongs
strictly to the domain of plant defence response. Domain C, the right one, contains
17,397 biological papers which belong solely to the domain of redox potential.

4.2 Extracted triplets

The result of using the Bio3graph triplet extraction algorithm is a set of 7,733 unique
triplets, identified from the total of 11,492 extracted triplets. Since the objective of
the study is to explore the connections between domains, only a group of 20 triplets
appeared in all three domains and we have filtered them out to proceed with their



70 D. Miljkovic et al.

validation. The evaluation of triplets was manual and resulted in 8 triplets which were
true positive3 (see Table 2). The rest of 12 triplets were false positive4. False positive
triplets obtained by Bio3graph were of obvious type, therefore it was not needed to
introduce the validation procedure with several annotators and explore the degree of
inter-annotator agreement. For example, from sentence “Light induces CCA1 and LHY
expression and represses TOC1.” the triplet {CCA1, inhibits, TOC1} was extracted,
where actually the subject in the sentence is light, and not CCA1.

All relations found by the triplet extraction algorithm are of the ‘activation’ type.
Table 2 gives a summary of the automatically extracted relations between the biological
components, providing the numbers of occurrences where each triplet was evaluated
as true positive. Moreover, we have selected true positive triplets which exist only
in domains A and C, where they do not appear in the domain B. These triplets are
of particular interest for the cross-domain knowledge discovery since they appear in
two totally separated domains. A summary of these triplets is provided in Table 3,
where second and third column show number of occurrences in the domains A and C
respectively. Tables 2 and 3 are used for the dependency analysis with copulas.

4.3 Detected domain dependencies through copulas

Here we explore first the dependencies between A, B and C domains and then the
dependencies A and C domains excluding the bridging B domain.

4.3.1 Dependencies between A, B and C domains

To use copulas we firstly sorted triplets, according to the number of their occurrences
in the domain of interest, which is the domain C (redox potential). In domain C, the
number of occurrences of selected triplets is ones, twice or three times, as shown in the
last column of Table 2. Based on this information, all triplets in Table 2 are grouped
in three groups, as shown in the first column. The triplets IDs are given in the second
column of Table 2, while the number of triplets occurrences in domains A and B are
shown in the fourth and fifth columns of Table 2 consecutively. Observing Table 2, we
may conclude the following. There is a positive correlation between domains A and B
in groups 1 and 3. However, it is unclear what their mutual dependency with the domain
of interest (domain C) is. Also a clear pattern of occurrences of triplets in different
groups cannot be determined.

To provide an initial description of the mutual dependence we apply the copula
functions. The question that we have to answer in order to use copula functions is how
to rank the triplets meaningfully, so that we can apply copulas? Since we are interested
in those triplets that occur in domain C, we have ranked them according to their number
of occurrences in the domain of interest. We expect that those that occur more frequently
in the domain of interest, i.e., domain C, can be found also more frequently at least in
one of the domains A and C and hence would be good candidates for representing a
dependence structure between the domains. From mathematical point of view, the values
of domains A, B and C may get any discrete value from the space Ω = {1, 2, 3, . . . , N}.
Consequently, domains may be considered as discrete random variables and therefore
are suitable for the application of copulas. Using this approach, we have performed
MVC simulations, and we provide the obtained results in Table 4.
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Table 2 True positive triplets, which are extracted with Bio3graph from all three domains and
are sorted and grouped according to their number of occurrences in the domain C
(redox potential)
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Table 3 True positive triplets, which are extracted with Bio3graph from domains A and C
and in the same time these triplets do not appear in the domain B

Extracted Triplet occurrences Triplet occurrences
triplet in domain A in domain C

flowering locus t, activates, leafy 1 1
cyanase, activates, b-box domain protein 1 1 1
flowering locus t, activates, agamous-like 8 2 1
arabidopsis thaliana ataxia-telangiectasia 1 2
mutated, activates, atnbs1
arabidopsis thaliana protein-serine kinase 1, 1 2
activates, ribosomal protein s6
aprr9, inhibits, atcca1 5 1
aprr9, inhibits, late elongated hypocotyl 6 1
aprr7, inhibits, atcca1 6 1
aprr7, inhibits, late elongated hypocotyl 6 1
arabidopsis thaliana general control 0n- 4 1
repressible 2, activates,
arabidopsis thaliana eukaryotic translation
initiation factor 3 subunit f
arabidopsis thaliana eukaryotic translation 2 1
initation factor 4e1, binds,
cucumovirus multiplication 2
agd10, activates, atrad51 1 1
aterf3, activates, aterf1 2 1
arabidopsis thaliana ataxia-telangiectasia 1 4
mutated, activates, arabidopsis
thaliana breast cancer susceptibility1
atrad50, activates, arabidopsis thaliana 1 2
ataxia-telangiectasia mutated
arabidopsis meiotic recombination 11, 1 2
activates, arabidopsis thaliana
ataxia-telangiectasia mutated
atnbs1, activates, arabidopsis thaliana 1 2
ataxia-telangiectasia mutated
arabidopsis thaliana fk506-binding 1 1
protein 12, binds, target of rapamycin
enhancer of ag-4 2, activates, ag 1 1
arabidopsis thaliana sulfotransferase 1, 3 1
binds, pp2a
atvps34, activates, atpip2 2 5
atvps34, activates, pip3 2 8
3’-phosphoi0sitide-dependent protein 1 1
kinase 1, activates, akt1
hac1, activates, atbzip 1 1
aba insensitive 3, activates, microrna 159 3 1
arabidopsis thaliana constitutive 1 1
photomorphogenic 1, activates, elongated
hypocotyl 5
aha1, activates, matrix metalloproteinase 1 1
maturation of rbcl 1, binds, rbcl 1 1
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Table 4 Results from FNACs

No. Copula type Coupling order
θ1 θ2of domains in MVC

1 Clayton FNAC 1-3-2 (B-C-A) 2.4226 2.1971
2 Frank FNAC 1-3-2 (B-C-A) 5.9512 3.6572
3 Frank FNAC 1-2-3 (B-A-C) 5.5649 3.8307
4 Clayton FNAC 1-2-3 (B-A-C) 3.1204 1.6065
5 Frank FNAC 2-3-1 (A-C-B) condition (4) unfulfilled
6 Clayton FNAC 2-3-1 (A-C-B) condition (4) unfulfilled

The first column in Table 4 represents the type of copula function that we have applied.
The next column gives the order of coupling the domains in bivariate copulas. Using the
Frank FNAC we model the dependences between intersection domain B and domain A
vs. domain C, represented as (1-2-3) in Table 4; the dependencies between bridging
domain B and domain C on one side and domain A on the other, represented as (1-3-2)
in Table 4; and dependencies of domain A and C versus B represented as (2-3-1). The
last two columns represent the values of θ1 and θ2, for cases where θ1 ≥ θ2.

In Table 4, values θ1 = 2.4226 and θ1 = 5.9512 obtained with Clayton and Franc
copulas, respectively, show a strong dependency between domains B and C. This
observation is in line with the observed positive correlation from Table 2.

The values of θ1 = 5.5649 vs. θ1 = 5.9512, which are obtained for coupling
domain B-A, and domains B-C, respectively, show that the dependence between
domains B and C is stronger than between domains B and A when using Frank FNACs.
On the other hand, value θ2 = 3.8307 which is higher than θ2 = 3.6572 uncovers that
the overall dependency is higher, when we first couple domains B-A and then add
domain C. Such values show that dependences that exist among the three domains can
be better observed when looking at the domain C on one hand and A-B domains on the
other, compared to the case when we look at domain A versus B-C domains.

Unlike the Frank copula, which best models values around the mode, Clayton copula
models the left tails, or small values of the distributions. The values of θ1 = 2.4226
and θ1 = 3.1204 which are obtained for coupling domain B-C, and domains B-A,
respectively, show that the left tail dependence between domains B-A is stronger
than between domains B-C. The values θ2 = 2.1971 which is higher than θ2 =
1.6065 uncovers that the overall left tail dependency is higher, when we first couple
domains B-C and then add domain A. This is of interest as we are looking exactly for
triplets that occur rarely, however have a biological significance in other domains.

The last two rows in Table 4 give information about copula types and coupling
order of domains for which a valid copula cannot be constructed due to unfulfilled
condition (4). In particular, we refer to modelling dependencies using Clayton FNAC
for the coupling order of domain 2-3-1 (A-C-B) and with Frank FNAC for the coupling
order of domain 2-3-1 (A-C-B). These information reveal that modelling the domains A
and C with domain B, using the data from Table 2 is not possible with Clayton and
Frank copulas.

The PDFs of the Clayton copulas for θ1 and θ2 are given in Figures 4 and 5,
respectively. Such functions could be used for predicting the occurrences of triplets in
different domains, as presented in Figure 7(b).
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Figure 4 PDF for the Clayton copula for θ1 (see online version for colours)
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Figure 5 PDF for the Clayton copula for θ2 (see online version for colours)
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Figure 6 Probability density function for Clayton copula built on domains A and C as given
in Table 3 (see online version for colours)
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Figure 7 Predicting the values in domain C, (a) Clayton copula (b) Frank copula (see online
version for colours)
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Notes: Z-axis are regression values obtained as a function of values in domains A and B.
The models are obtained using the Clayton copula (left) and Frank copula (right).

4.3.2 Dependencies between A and C domains

Another possibility is to observe data only from domains A and C excluding the bridging
domain B. Such data are provided in Table 3. To check on the linear correlation between
the two datasets in Table 3, we calculated the Pearson coefficient which is −0.1392.
The low negative value of the Pearson coefficient depicts very weak negative linear
correlation. Thus, we propose to use copulas to depict the nonlinear dependency between
the two domains. For that purpose, we built Clayton copula with θ = 3.3050 and Frank
copula with θ = −7.4437 on these data as given in Table 5.

Table 5 Results from bivariate copulas on data in Table 2

No. Copula type Coupling order
θ

of domains in MVC

1 Clayton A-C 3.3050
2 Frank A-C −7.4437

The negative value of the θ parameter of the Franks copula depicts the negative
dependency between these two domains. The probability density function for Clayton
copula built on domains A and C as given in Table 3 is presented in Figure 6. It is
used to describe the left tail dependences. Unlike Frank copula, Clayton copula does not
depict the negative dependence, which means that it does not assign probability to joint
opposite behaviour in the tails of the variable distributions. The value of θ = 3.3050
models the positive dependence in the left tails of the two variables.

5 Conclusions

This paper presents an approach to discovering dependencies between different
biological domains based on the copula analysis of the results obtained from relation
extraction. In the illustrative example on the domains of plant defence response and
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redox potential we show that dependencies exist between these two domains indicating
a potential for further exploration. In future work, we plan to broaden our analysis by
using also some other text mining approaches, for example co-occurrence, which might
provide more triplets than the currently used Bio3graph. The presented approach can be
extended to any other biomedical domain.
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Notes

1 http://www.bionlp.org/.

2 PubMed Central is a database of full-text biomedical scientific papers that are accessed free
of charge.

3 True positive triplets are triplets correctly extracted by the triplet extraction algorithm.

2 False positive triplets are ones extracted by the triplet extraction algorithm, but which do
not correspond to the form {subject, predicate, object} in the sentence.


