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Abstract In this work, we present a redescription mining algorithm that uses Random
Forest of Predictive Clustering Trees (RFPCTs) for generating and iteratively improving
a set of redescriptions. The approach uses information about element membership in dif-
ferent queries, generated from a single constructed PCT, to explore redescription space,
while queries obtained from the Random Forest of PCTs increase candidate diversity. The
approach is able to produce highly accurate, statistically significant redescriptions described
by Boolean, nominal or numerical attributes. As opposed to current tree-based approaches
that use multi-class or binary classification, we explore the benefits of using multi-label
classification and multi-target regression to create redescriptions. Major benefit of the
approach, compared to other state of the art solutions, is that it does not require specify-
ing minimal threshold on redescription accuracy to obtain highly accurate, optimized set
of redescriptions. The process of Random Forest based augmentation and different modes
of redescription set creation are evaluated on three datasets with different properties. We
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use the same datasets to compare the performance of our algorithm to state of the art
redescription mining approaches.

Keywords Knowledge discovery · Redescription mining · Random forest · Predictive
clustering trees · World countries · Computer science bibliography · Bioclimatic niches

1 Introduction

Pattern mining (Agrawal et al. 1993; Giacometti et al. 2014; Han et al. 2007; Mooney
and Roddick 2013) aims at discovering descriptive rules learned from data. Redescription
mining (RM) (Ramakrishnan et al. 2004) shares this goal and is directed towards finding
different descriptions of patterns by using one or more disjoint sets of descriptive attributes
(these disjoint sets are also called views). The input to redescription mining algorithms
consists of one or more tables containing all attributes from the given view and their cor-
responding values for all elements contained in the dataset. One input example obtained
from the DBLP database (DBLP dataset 2010; Galbrun 2013), containing information about
authors of scientific papers, can be seen in Table 1.

Redescription mining is an unsupervised, descriptive knowledge discovery task. Simi-
larly as Association rule mining (Agrawal et al. 1993), it discovers associations between
attributes. However, instead of finding one-directional implication relations it finds bi-
directional equivalence relations. Association discovery in two-view data (van Leeuwen
and Galbrun 2015) finds both uni and bi-directional associations but is aimed at explain-
ing how these two views are related. Redescription mining is related to multi-view (Bickel
and Scheffer 2004) and multilayer (Gamberger et al. 2014) clustering, though the main goal
here is to find accurate redescriptions of interesting subsets of data, while clustering tends
to find clusters that are not always easy to interpret. Finding similarities between differ-
ent elements and connections between different descriptive attribute sets (views) ultimately
leads to better understanding of the underlying data. The output of redescription mining is a
set of redescriptions which are tuples of rules (logical formulas). The aim is to make these
rules understandable and interpretable.

We present one redescription example Rex = (q1ex , q2ex ), where q1ex = ¬UAI ∧
¬PKDD ∧ SEBD ∧ SIGMOD ∧ LPNMR and q2ex = Thomas Eiter ∧ Gianluigi Greco.
For all authors described by the redescription Rex it must be valid that they co-authored
a paper with Thomas Eiter and co-authored a (not necessarily the same) paper with Gian-
luigi Greco. They have also published at least one paper on conferences SEBD, SIGMOD
and LPNMR but have not published any papers in conferences PKDD and UAI. Interest-
ingly, Thomas Eiter and Gianluigi Greco have co-authored the paper Boosting Information
Integration: The INFOMIX System published in SEBD in 2005. This makes the group of
described authors very well connected in terms of co-authorship.

Applications of redescription mining Redescription mining is highly applicable in biol-
ogy, economy, pharmacy, ecology and many other fields, where it is important to understand
connections between different descriptors and to find regularities that are valid for different
element subsets. For instance, it might be interesting to associate gene functions with gene
locations in different genomes, to study similarities or differences in structure of different
organisms, to relate proteins and different chemical compounds to understand the effects of
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Table 1 Input example for the DBLP dataset

(a) View 1: Author-conference bipartite graph

Entity ISAAC FCT . . . PLILP

J.D.Tygar false false . . . false

. . . . . . .

. . . . . . .

. . . . . . .

JohnH.Reif true true . . . false

. . . . . . .

. . . . . . .

. . . . . . .

ChrisClifton true false . . . false

. . . . . . .

. . . . . . .

. . . . . . .

AthenaVakali false false . . . false

(b) View 2: Co-authorship network (self-authorship excluded)

Entity J.D.Tygar AdolfyHoisie . . . AthenaVakali

J.D.Tygar false false . . . false

. . . . . . .

. . . . . . .

. . . . . . .

JohnH.Reif true false . . . false

. . . . . . .

. . . . . . .

. . . . . . .

ChrisClifton true false . . . false

. . . . . . .

. . . . . . .

. . . . . . .

AthenaVakali false false . . . false

interactions, with potential application in design of new and more effective medicines, to
associate animal species habitats with weather locations, in order to obtain knowledge about
the effects of these conditions on habitats and co-habitats of different animal species, or to
associate authors of scientific papers with different scientific conferences to obtain groups
of related authors sharing some area of research. In these applications, implication relations,
as provided with association rule mining, are not strong enough to allow explaining the
underlying phenomena. Due to strong equivalence relations it produces, redescription min-
ing is well suited for relating a set of attributes, which are generally understood well (such
as questionnaires and various written or motorical tests devised by researchers) to a set of
attributes, containing different measurements (medical, biological) which are not always
understood well.
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Related work in redescription mining The field of redescription mining was intro-
duced in the work from Ramakrishnan et al. (2004) which presents a novel decision tree
- based redescription mining algorithm called the CARTwheels. The algorithm builds two
decision trees (one for each view) that are joined in the leaves. Redescriptions are found
by examining the paths from the root node of the first tree to the root node of the sec-
ond and the algorithm uses multi class classification to guide the search between the two
views. Other approaches for redescription mining include: the approach proposed by Zaki
and Ramakrishnan (2005) which uses a lattice of closed descriptor sets to find redescrip-
tions, the approach proposed by Parida and Ramakrishnan (2004) for mining exact and
approximate redescriptions based on relaxation lattice. Further, Gallo et al. (2008) present
the greedy algorithm and the MID (Mining Interesting Descriptors) algorithm based on
frequent itemset mining.

Galbrun and Miettinen (2012a) extend the greedy approach by Gallo et al. (2008) to
work on numerical data, thus increasing capabilities of redescription mining algorithms.
Galbrun and Kimming extend redescription mining to a relational (Galbrun and Kimmig
2014) setting, while Galbrun and Miettinen make extensions to allow interactive redescrip-
tion mining (Galbrun and Miettinen 2012c). Recently, two novel tree-based algorithms were
proposed by Zinchenko (2014). These approaches use decision trees in a non-Boolean set-
ting and present different methods of layer by layer tree construction, which allows making
informed splits based on nodes at each level of the tree.

Methodology In this work, we present a multi-target predictive clustering trees (PCTs)
(Blockeel 1998; Kocev et al. 2013) based redescription mining algorithm developed to cre-
ate a large number of diverse redescriptions. As in our previous work (Mihelčić et al. 2015a,
2015b), all created PCTs use multi-target classification or regression to find highly accu-
rate, statistically significant redescriptions, which differentiates it from other tree based
approaches, especially the CARTwheels approach. Using multi-target PCTs allows us to
build one model to find multiple redescriptions using nodes at all levels of the tree and due
to inductive transfer (Piccart 2012), multi-target trees can outperform single label classifica-
tion or regression trees. Each node in one separately created PCT model, used to guide the
search, represents a separate rule that is used in the construction of a PCT from the opposite
view. Generated redescriptions are used to iteratively improve and expand a redescription
set of user suggested, not necessarily fixed size (which alleviates the hard constraints on
redescription set size used in Mihelčić et al. 2015b). The algorithm presented in Mihelčić
et al. (2015b) has been extended to incorporate the random forest of PCTs as an augmenting
model. This increases the accuracy and diversity of produced redescriptions. The approach
relies on the fact that a great number of PCTs can be trained and converted to rules in
parallel. Thus, this augmented process can be executed very efficiently and almost at the
same running time, if executed in parallel threads, as the process containing only one PCT.
Additional benefit of the approach is that it allows creation of highly optimized redescrip-
tion sets without requiring users to constrain redescription accuracy. This is an advantage,
compared to current state of the art approaches, because it usually needs to be determined
through experimentation. Finally, rule minimization procedure, presented in our previous
work (Mihelčić et al. 2015b), allows reducing the number of attributes that describe a given
pattern without changing redescription accuracy or support. This allows obtaining shorter
rules even when using trees of bigger depth size.
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Structure After introducing the necessary notation (Section 2), we present the extended
algorithm and perform the run-time complexity analysis of redescription mining process
(Section 3). In Section 4, we evaluate algorithm extensions, compare its performance with
several state of the art approaches on three datasets with different properties and present
redescription examples obtained by these approaches. Finally, we conclude and outline
directions for future work in Section 5.

2 Notation and definitions

Redescription mining in general considers redescriptions constructed on a set of views
{W1,W2, . . . , Wn}, n ≥ 1, however we use only two views {W1,W2} since all current
redescription mining approaches use maximally two views. Using more than two views sig-
nificantly increases computational complexity and requires data containing several disjoint
sets of attributes describing the same set of elements. The corresponding attribute (variable)
sets are denoted by V1 and V2. Each view contains the same set of |E| elements and two
different sets of attributes of size |V1| and |V2|. Value W1(i, j) is the value of element ei

for the attribute aj in view W1. The data D = (V1, V2, E,W1,W2) is a quintuple of the
attribute sets, the element set, and the appropriate view mappings. A query (denoted q) is a
logical formula F containing attributes from V1 or V2 as variables and the set of elements
described by a query is called its support. A redescription R = (q1, q2) is defined as a pair
of queries, one for each view in the data and its support is the set of elements supported
by both queries that constitute this redescription: supp(R) = supp(q1) ∩ supp(q2). We
use attr(R) to denote the multiset of attributes used in the redescription R and attrs(R) to
denote the corresponding set of attributes. The accuracy of a redescription R = (q1, q2) is
measured with the Jaccard index (Jaccard similarity coefficient):

J (R) = |supp(q1) ∩ supp(q2))|
|supp(q1) ∪ supp(q2)|

The Jaccard index is not the only measure used in the field because it is possible to obtain
redescriptions with large support for which it is highly probable to have very good overlap
of their queries. In this cases it is preferred to have redescriptions that reveal some more
specific knowledge about the studied problem that is harder to obtain by random sampling
from the underlying data distribution. This is why we compute the statistical significance (p-
value) of each obtained redescription. The marginal probability of a query q1, q2 is denoted
as p1 = |supp(q1)||E| and p2 = |supp(q2)||E| respectively. We define the set of elements in the
intersection of the queries with o = supp(q1) ∩ supp(q2). The corresponding p-value
(Galbrun 2013) is defined as

pV (q1, q2) =
|E|∑

n=|o|

(|E|
n

)
(p1 · p2)

n · (1 − p1 · p2)
|E|−n

The p-value tells us if we can dismiss the null hypothesis that assumes that we obtained
a given subset of elements by joining two random rules with marginal probabilities equal
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to the fraction of covered elements. If the obtained p-value is lower than some predefined
threshold, called the significance level, then this null hypothesis should be rejected. This
estimate is optimistic when the assumption that all elements can be sampled with equal
probability does not hold (which is often the case in practice).

We use two redescription quality measures based on properties of a redescription set that
contains them. These measures, created with similar intuitions to those presented by Knobbe
and Ho (2006), provide information about the level of redundancy of a given redescrip-
tion with respect to described elements and attributes used in redescription queries in every
other redescription contained in the given redescription set. The measure providing infor-
mation about the redundancy of elements contained in the redescription support is called
the average redescription element Jaccard index and is defined as:

AEJ(Ri) = 1

|R| − 1
·

|R|∑

j=1

J (supp(Ri), supp(Rj )), i �= j

Analogously, the measure providing information about the redundancy of attributes con-
tained in redescription queries, called the average redescription attribute Jaccard index, is
defined as:

AAJ(Ri) = 1

|R| − 1
·

|R|∑

j=1

J (attrs(Ri), attrs(Rj )), i �= j

To emphasize importance of the redescription size from the point of understandabil-
ity (|attr(R)| ≥ 20 considered to be highly complex to understand), we calculate the
normalized redescription size as follows:

Rsize =
{ |attr(R)|

20 , |attr(R)| < 20
1 , 20 ≤ |attr(R)|

3 The CLUS-RM algorithm

In this section, we describe the algorithm for mining redescriptions named CLUS-RM. The
algorithm optimizes a redescription set of a size determined by redescription properties or
suggested by a user. It uses multi-target predictive clustering trees (PCTs) (Blockeel 1998;
Kocev et al. 2013) to create a cluster hierarchy that is used to explore the redescription space.
In addition, a random forest of predictive clustering trees is used to diversify the search and
to increase the overall redescription accuracy. We start by explaining the pseudo code of the
algorithm (Algorithm 1) and then go into details of each procedure in the algorithm.
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The algorithm starts by creating initial clusters for both views (line 2 and 3 in Algo-
rithm 1) which is achieved by transforming a non-labeled dataset into a labeled dataset
of positive, original elements (elements originally present in the dataset) and artificially
generated, negative elements (elements not originally present in the dataset but artificially
constructed and added to the dataset). For each element in the original view, we construct
one negative, synthetic element (see Fig. 2) in such a way so that the original correlations
among the attributes are broken. We achieve this by random shuffling of attribute values
between the elements. The procedure allows experimentation with the number of shuffling
steps and the number of attributes that are copied from the original elements to the artificial
element. Complete randomization is achieved when the number of shuffling steps equals
the number of attributes in the dataset and exactly one attribute value is copied to the arti-
ficial element at each step from a randomly chosen original element. The original elements
are assigned a target label of 1.0, while the artificial elements are assigned a target label
of 0.0 (see Table 2). Target label is used to give information to a supervised learning algo-
rithm, such as PCT, which elements were originally present in the data and which were
artificially constructed. The division between the original and the artificial elements (the
idea previously used in the work from Gamberger et al. 2014), allows us to construct a clus-
ter hierarchy, simultaneously creating descriptions of the original elements. The described
procedure is one possible way to construct the initial clusters; other approaches include
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Table 2 Creation of artificial elements for the random initialization procedure

Entity W1A1 W1A2 W1A3 Target Entity W2A1 W2A2 W2A3 Target

(a) Original dataset for view 1 (b) Original dataset for view 2

E1 1.1 2.5 3.4 E1 TRUE FALSE FALSE

E2 1.5 2.2 4.0 E2 TRUE TRUE FALSE

E3 5.5 −0.6 −0.2 E3 FALSE FALSE TRUE

E4 4.4 −0.2 2. E4 TRUE TRUE TRUE

E5 3.2 1.7 2.9 E5 TRUE FALSE TRUE

(c) Initial dataset for view 1 (d) Initial dataset for view 2

E1 1.1 2.5 3.4 1.0 E1 TRUE FALSE FALSE 1.0

E2 1.5 2.2 4.0 1.0 E2 TRUE TRUE FALSE 1.0

E3 5.5 −0.6 −0.2 1.0 E3 FALSE FALSE TRUE 1.0

E4 4.4 −0.2 2.0 1.0 E4 TRUE TRUE TRUE 1.0

E5 3.2 1.7 2.9 1.0 E5 TRUE FALSE TRUE 1.0

E1’ 4.4 2.5 2.9 0.0 E1’ TRUE FALSE TRUE 0.0

E2’ 3.2 −0.6 4.0 0.0 E2’ FALSE FALSE TRUE 0.0

E3’ 3.2 −0.6 2.9 0.0 E3’ TRUE TRUE TRUE 0.0

E4’ 4.4 −0.2 4.0 0.0 E4’ FALSE TRUE FALSE 0.0

E5’ 5.5 1.7 2.9 0.0 E5’ FALSE FALSE TRUE 0.0

For example, the artificial element E′
1 in view 1 is created by copying a value for attribute W1A1 from

original element E4, for attribute W1A2 from E1 and for attribute W1A3 from E5. Since the element E′
1 is

artificially created, it is assigned a target value 0.0

assigning a random target attribute or using clusters computed by some other clustering
algorithm. However, the initialization procedure used in our algorithm should preserve any
strong (specific) connections and correlations that exist in the original data which are broken
by using an approach that assigns random target labels.

After creating the initial dataset, we build predictive clustering trees on both views by
performing regression on the target label and using other attributes as descriptive (line 3
in Algorithm 1). The decision to use regression trees instead of decision trees is purely
technical, since it generates more rules because of the additional threshold associated with
the target variable. These trees are converted to rules (line 4 in Algorithm 1) that describe
element sets and are necessary for the next step of the algorithm. The rule lists RW1 and
RW2 contain generated rules, and a new rule is added to the list if it differs from all other
rules in a predefined number of attributes or if it describes a new unique element subset
(the ∪∗ operator in Algorithm 1). The iterative process of the algorithm begins right after
rule creation (line 6 in Algorithm 1). Here, we create targets based on the rules obtained in
the previous step or in the initialization step (line 9 in Algorithm 1). The rules obtained by
predictive clustering on W1 are used to build targets for clustering on W2 (denoted W1T1,
W1T2), and vice versa. For each element in the dataset we assign label 1.0 if the element
is described by some specific rule, otherwise 0.0 (see Table 3). For example, the attribute



J Intell Inf Syst

Table 3 Intermediate generation of labels based on discovered rules

E W1A1 W1A2 W1A3 W2T1 W2T2 E W2A1 W2A2 W2A3 W1T1 W1T2

(a) Dataset for view 1 (b) Dataset for view 2

E1 1.1 2.5 3.4 1.0 0.0 E1 TRUE FALSE FALSE 0.0 1.0

E2 1.5 2.2 4.0 1.0 0.0 E2 TRUE TRUE FALSE 0.0 1.0

E3 5.5 −0.6 −0.2 0.0 0.0 E3 FALSE FALSE TRUE 1.0 0.0

E4 4.4 −0.2 2.0 1.0 0.0 E4 TRUE TRUE TRUE 1.0 0.0

E5 3.2 1.7 2.9 1.0 1.0 E5 TRUE FALSE TRUE 1.0 1.0

W2T1 from dataset for view 1 represents the condition If W2A1 = T RUE (constructed on
dataset for view 2), which describes elementsE1,E2,E4,E5. By placing this target attribute
in the view 1 dataset, we guide the PCT construction (lines 9 and 10 in Algorithm 1) to
create a cluster containing and describing the same set of elements with descriptive variables
of view 1 (a choice that satisfies this condition is If W1A3 > 0).

Random forest of PCTs is constructed (line 11 in Algorithm 1) by using the same targets
as to construct the PCT used to guide the search (line 10 in Algorithm 1). PCTs in the for-
est represent a set of weak learners trained on subspaces of attributes with the purpose of
diversifying produced redescriptions and increasing their accuracy. The use of random for-
est has several advantages: 1) due to restricted size of the attribute subspace used to make
a split, it is able to avoid local optima, 2) it explores much larger number of attribute asso-
ciations (depending on the number of trees used in the forest) which is very important for
produced redescriptions. The number of PCTs to be used in a random forest and the size
of a random subspace are user defined parameters. The random subspace size is usually set
to

√
N or log2(N) in predictive tasks, where N equals the number of attributes contained

in the selected view. However, in redescription mining it is important to discover different
attribute interactions. Thus it is useful to have guarantees on attribute membership in differ-
ent random subspaces. We have computed the necessary size of a random subspace, given
a random forest of PCT with defined parameters, so that an arbitrary attribute occurs with a
given probability in at least one split of every tree in the forest. The subset size is computed
as: k = N · (1 − q

√
1 − p), where q = (2d − 1), d equals the average PCT depth and p

denotes the desired probability to evaluate an arbitrary attribute in at least one split of every
PCT in a random forest of given properties. Since, for very small number of attributes, this
number quickly drops to 0, the subset size equals k = max(�N ·(1− q

√
1 − p)�, �log2(N)�).

Assigning probability to attribute occurrence in at least one split of every tree in a forest
allows influencing accuracy and diversity of queries used to produce redescriptions. High
occurrence probability should be used on sparse datasets, when higher accuracy is required,
while using lower probability on dense datasets increases diversity and brings computa-
tional advantage since smaller subsets need to be evaluated. Random forest of PCTs can
be trained in parallel with minor loss in computation time, compared to the algorithm pre-
sented in our previous work (Mihelčić et al. 2015b). Rules obtained in the previous step
are combined into redescriptions (line 18 in Algorithm 1) if they satisfy a given set of con-
straints ConstSet . It consists of minimal Jaccard index (minJ ), maximum allowed p-value
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(maxPval), minimum and maximum support (minSupp, maxSupp) which have to be sat-
isfied for a redescription to be considered as a candidate for the redescription set. The default
value of 0.01 is used for p-value and a minimal support of 2 elements if corresponding
parameters are not specified. Specifying the Jaccard index constraint is optional. After per-
forming redescription creation and redescription set optimization, all queries produced by
the random forest models are discarded. Finally, queries of the resulting redescriptions are
minimized in line 19 of Algorithm 1 by using the query minimization procedure presented
in our previous work (Mihelčić et al. 2015b).

3.1 The procedure for creating redescriptions

The algorithm for creating redescriptions from rules (Algorithm 2) joins view 1 rules (or
their negation, if allowed by the user) with rules (or its negation) from view 2 (see Fig. 1
and line 2 in Algorithm 2). We distinguish three cases of creating redescriptions from rules
(expansion types):

1. Unguided initial: UInit ← ((SRW1 ∪ RW1) ×opSet\{∨}
ConstSet (SRW2 ∪ RW2))

2. Unguided: U ← ((SRW1 ∪ RW1newRuleI t
) ×opSet\{∨}

ConstSet (SRW2 ∪ RW2newRuleI t
))

3. Guided: G ← ((SRW1 ∪ RW1newRuleI t
) ×opSet\{∨}

ConstSet RW2oldRuleI t
) ∪

(RW1oldRuleI t
×opSet\{∨}

ConstSet (SRW2 ∪ RW2newRuleI t
))

The ×opSet
ConstSet operator denotes a Cartesian product of two sets, allowing the use of logi-

cal operators from opSet and leaving only those redescriptions that satisfy a given set of
constraints ConstSet . The unguided expansion allows obtaining redescriptions with more
diverse subsets of elements that can later be improved through the iteration process.

Fig. 1 Illustration of rule, redescription construction and iterations
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The algorithm finds first numRed redescriptions if the size is fixed by the user, or
max(20,numRed) redescriptions if the size is suggested or fully automatically determined
(line 4 in Algorithm 2). This minimal number of redescriptions is used to provide a set
which is not very large but still provides different information about the elements and
contains enough redescriptions to perform statistical analysis. After the minimal number of
distinct redescriptions is found, the set is iteratively improved by exchanging the redescrip-
tion with the worst comparative score with the newly created redescription (lines 3-21 in
Algorithm 2). Five different arrays (elF req, attrF req, redScoreEl, redScoreAt ,
redDstC) are used to incrementally improve and add redescriptions to the redescription set.
The element/attribute frequency arrays contain information about element/attribute occur-
rence in redescriptions from a redescription set. Redescription scores (line 9 in Algorithm 2)
are computed as redScoreEl(R) = ∑

e∈supp(R)(elF req[e] − 1), redScoreAt(R) =∑
a∈attr(R)(attrF req[a] − 1), redDstC(R) = ∑

e∈supp(R) δ0,elF req[e]−1. The score of a
new redescription (line 18 in Algorithm 2) is computed in the same way by using existing
frequencies from the set. For a redescription R′ such that Ri = argmaxR∈R score(R′, R),
where score(R′, R) = (

(1.0−R′.elSc+1.0−R′.atrSc+R′.J+
5

R′.eDC+R′.pV Sc)
5 −

(1.0−R.elSc+1.0−R.attrSc+R.J+R.eDC+R.pV Sc)
5 ) and the score(R′, Ri) > 0, all arrays are

updated so that the frequencies of elements described by Ri and attributes contained in its
queries are decreased by one, while the frequencies of elements and attributes associated
with R′ are increased (line 19 in Algorithm 2). The p-value score (R.pVSc) is computed as:

R.pV Sc =
{

log10(R.pval)
−17.0 if R.pval < 10−17

1.0 if R.pval ≥ 10−17

We linearise and normalize redescription p-values to obtain a score that is used as one cri-
teria in the optimization process with the aim of describing subsets of elements with queries
that are unlikely to be created easily by matching a pair of randomly constructed queries.
The R.eDC denotes the element exclusive coverage and is defined as the fraction of elements
that are described only by redescription R(R.eDC = redDstC(R)

|E| ). R.elSc and R.atSc

are obtained as a fraction of element frequencies for elements in redescription support or
attributes used in its queries to total frequency of all elements or attributes. The score is
defined to construct a redescription set by adding redescriptions that describe elements with
low frequency by using non frequent attributes (to disallow redundancy) and, at the same
time, finds as accurate and significant redescriptions as possible. Redescriptions describing
unexplored elements are rewarded in the process (since we would like to describe as much
elements as possible given the redescription set size). The score can be extended by defin-
ing importance weights for each criteria, providing users with the possibility to fine tune the
redescription set optimization process.

Element weighting has been used before in subgroup discovery (Gamberger and Lavrač
2002; Lavrač et al. 2004) to model covering importance for elements. Our approach is sim-
ilar but uses different weighting mechanism, adapts it to the redescription mining setting by
combining element and attribute weights and incorporates it into the framework of iterative
redescription set refinement in which some redescriptions can be replaced with more suit-
able candidates. The exclusive coverage has been used in the work from Knobbe and Ho
(2006) as one criteria for extracting a set of patterns.
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If redescription set size is automatically determined, for each R ∈ R the algorithm com-
putes sc(R) = minR′′∈R, R′′ �=R|score(R,R′′)| (lines 11 and 16 in Algorithm 2). Measures
of difference in quality characteristics between a given redescription and its closest neigh-
bour serve as a statistics used to determine which newly created redescription should be



J Intell Inf Syst

used to expand the redescription set (increase it in size). We compute the Tukey’s range
[Q1−k ·(Q3−Q1),Q3+k ·(Q3−Q1)]with k = 1.5 and denote the upper boundary as out .
For each newly created redescription R′, we compute sc(R′) = minR′′∈Rscore(R′, R′′).
If the redescription set contains a redescription with preferred quality score compared to
newly created redescription R′, the sc(R′) will be negative, thus the produced redescription
is not allowed to expand the redescription set. Alternatively, if a newly created redescrip-
tion has a positive score difference when compared to every redescription currently found
in the redescription set, we require its difference to be at least as great as the computed
value out from the set of score differences for redescriptions contained in the redescription
set (sc(R′) ≥ out). If this condition is satisfied, the redescription is added to the redescrip-
tion set, thus increasing its size (line 16 in Algorithm 2). Redescription satisfying this strict
criterion has an exceptional quality, compared to all other redescriptions in the set. This
can occur, for instance, if a redescription with maximal accuracy is found that describes a
part of element and attribute space not explored by any redescription from the redescrip-
tion set. If the required condition is not satisfied, newly created redescription is used to
optimize the redescription set, possibly replacing some existing member. We are very con-
servative in increasing redescription set size suggested by the user because small sets are
easier to explore thus preferable in redescription mining setting (Galbrun and Miettinen
2012a). The redescription set expansion follows the general algorithm structure defined in
the work by Bringmann and Zimmermann (2007), though instead of enumerating all pat-
terns, we optimize the set by creating and discarding a large number of redescriptions at each
iteration. This makes the proposed algorithm memory efficient and allows redescription set
optimization to be performed very quickly.

The algorithm can use three types of logical operators (disjunction, conjunction and
negation) where using disjunction operators increases redescription accuracy and support
(lines 22–33 in Algorithm 2). For a redescription R = (q1, q2), we find rules r that
maximize:

1. J (supp(q1 ∨ r)\supp(R), supp(q2)\supp(R))

2. J (supp(q1 ∨ ¬r)\supp(R), supp(q2)\supp(R))

3. J (supp(q1)\supp(R), supp(q2 ∨ r)\supp(R))

4. J (supp(q1)\supp(R), supp(q2 ∨ ¬r)\supp(R))

The rule r is found so that it covers elements that are supported by q2 but not by q1
(R.maxRef (r ′), r ′ ∈ RW1) and vice versa.

3.2 Algorithm time complexity

We train one predictive clustering tree model and a set of weak PCT learners contained in
the random forest. Work from Stojanova et al. (2012) shows that predictive clustering tree
construction has the worst time complexity of O(z · m · |E|2) to completely induce the
tree, where m denotes the number of descriptive variables in a selected view and z the total
number of internal nodes in the tree. The number of PCT models in a random forest is a
constant defined by the user which makes the complexity of training all PCT models equal
to O(z · m · |E|2) .

The elements are stored in the HashSet and the HashMap data structure with open
addressing which have the time complexity of O(1) for add, remove, contains and size
assuming the hash function behaves in a random enough manner (uniform hashing).

As described in our previous work (Mihelčić et al. 2015b), the initialization step has the
complexity of O(|E| · (|V1| + |V2|)), the PCT to rules transformation has the complexity
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of O(z), creation of redescriptions O(z2 · |E|) and O(z · d · |E|) if we have a balanced
tree, where d equals the tree depth, which is a constant. Updating the attribute and element
frequency tables and the total redescription scores has the complexity of O(|E| + d) in
average case and O(z2 · (|E| + d)) in the worst case when the set size grows proportionally
with the number of created redescriptions. The computation of rules containing negation
and disjunction operators has a complexity of O(z · |E|).

The minimization procedure has the time complexity of O(|R| · ((a + a′) · |E| + (a3 +
a′3) · |E|)), where a, a′ represent the number of attributes in redescription rules which are
constrained with the tree depth d (or a constant multiple of d in case of rules containing
disjunctions). Since we have a an expandable set of redescriptions, the greatest possible
number of redescriptions is a multiple of z2. Thus, the worst case time complexity of the
minimization procedure is O(z2 ·d3 · |E|2) or O(z2 · |E|2) since d is a constant. In practice,
due to very strict constraints, the size of a redescription set is very close to user suggested
value and can be considered a constant. Thus, the average time complexity is O(d3 · |E|) or
O(|E|), since d is a constant.

The total algorithm average time complexity equals: O(z · (|V1| + |V2|) · |E|2 + z2 · |E|)
while the worst time complexity, assuming inadequate hashing function and a large resulting
redescription set, is O(z · (|V1| + |V2| + z) · |E|2).

Optimizations that could speed up computing redescriptions include Local Sensitive
Hashing (Cohen et al. 2000) and the use of rule indexing that allows combining only those
rules certain to cross the user defined thresholds if redescription accuracy constraints are
defined.

4 Algorithm evaluation and comparison

In this section, we evaluate different extensions of the CLUS-RM algorithm and com-
pare redescriptions produced by our algorithm with the current state of the art algorithms
ReReMi (Galbrun 2013), Split trees and Layered trees (Zinchenko 2014). The algo-
rithms are compared on three datasets with different properties. Since the Split trees
and the Layered trees algorithms do not work with data containing missing values, we
make comparison analysis only with the ReReMi algorithm on the Country dataset. On
this dataset, we evaluate redescription accuracy by using two different measures: the
pessimistic Jaccard index and the query - non missing Jaccard index presented in our
previous work (Mihelčić et al. 2015b). We use the notation from Galbrun and Miettinen
(2012a) to denote E1,1 = supp(q1) ∩ supp(q2), E1,0 = supp(q1)\supp(q2), E0,1 =
supp(q2)\supp(q1), E1,? = supp(q1) ∩ missing(q2), E?,1 = missing(q1) ∩ supp(q2),
where R = (q1, q2) and missing(q) represents a set of elements containing miss-
ing values for some attribute in q. Pessimistic Jaccard index is defined as: Jpes(R) =

|E1,1|
|E1,0|+|E0,1|+|E1,1|+|E1,?|+|E?,1|+|E0,?|+|E?,0|+|E?,?| and the query-non missing Jaccard index

as: Jqnm(R) = |E1,1|
|E1,0|+|E0,1|+|E1,1|+|E1,?|+|E?,1| . These two measures are used because they

guarantee that each element found in redescription support has defined values for all
attributes in a whole query, if only conjunction operators are used, or in a part of a query
describing this element subset, if all operators are used. Query non-missing Jaccard is
more optimistic than pessimistic Jaccard (Jpess ≤ Jqnm), because it disregards elements -
having undefined value for both redescription queries. We used the Siren tool (Galbrun and
Miettinen 2012b) to perform redescription mining with ReReMi, Split trees and Layered
trees algorithms.
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4.1 Evaluation data

Evaluations and comparisons are performed on three datasets with different characteristics.

– The Country dataset (http://unctadstat.unctad.org/EN/, http://data.worldbank.org/)
(Gamberger et al. 2014) describes 199 different countries in the year 2012. The dataset
has two views, both containing numerical attributes with possible missing values. The
first view contains 49 attributes with country information obtained from the World
Bank. The second view contains 312 attributes obtained from the UNCTAD database
representing the ratio of import and export of a commodity compared to total import or
export of a country in the year 2012.

– The Bio dataset (Mitchell-Jones et al. 1999; Hijmans et al. 2005; Galbrun 2013)
describes 2575 geographical locations in Europe. The dataset contains information
about climate conditions (48 numerical attributes) for a certain location and the infor-
mation about the presence of mammal species (194 boolean attributes) on these
locations. The climate condition attributes contain average, maximum, minimum
temperature and average monthly precipitation.

– The DBLP dataset (DBLP dataset 2010; Galbrun 2013) contains information about
authors of scientific papers (6455 authors in total). The first view describes the author-
conference bipartite graph (304 boolean attributes) and the second view describes the
co-authorship network (6455 boolean attributes). This dataset is very sparse which
makes it hard to find highly accurate redescriptions.

4.2 Algorithm parameters

In this section we explain all the parameters, constraints on redescriptions (Table 4) and
settings used to perform evaluations and comparisons with various redescription mining
algorithms.

Table 4 Constraints on redescriptions used by all current RM algorithms

Constraint Value range Usual method of selecting a value

minimal Jaccard index [0, 1] This parameter is obtained by experimentation. While the goal
is to get as highly accurate redescriptions as possible, it is
sometimes necessary to lower the initially set minimal Jaccard
index to obtain redescriptions. In general, higher Jaccard index
increases redescription accuracy but decreases diversity

maximal p-value [0, 1] This parameter is usually set to one of the two values: 0.05 or
0.01 since it denotes the significance level used as a threshold
to accept redescriptions

minimal support [1, |E|] This parameter is usually set to values > 1, since describ-
ing only one entity is rarely interesting. Setting the threshold
is domain specific. It depends on what kind of groups with
respect to the size might be interesting to the domain expert.
Redescriptions with very large support (> 0.8 · |E|) usually
have lower theoretical and empirical statistical significance
since it is easier to obtain high accuracy by random sampling
of queries with such a large support. Also, these queries con-
tain large part of the value distribution for the attributes used in
its queries thus random permutation of values between entities
has smaller effect on the accuracy of such redescriptions

http://unctadstat.unctad.org/EN/
http://data.worldbank.org/
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For all algorithms, we used maximal p-value threshold of 0.01 (the strictest significance
level). The minimal Jaccard index was set to 0.2 level for the DBLP dataset (based on
results presented in Galbrun (2013), Table 6.1, p. 46), 0.6 level for the Bio dataset (based on
results in Galbrun (2013), Table 7, p. 301) and 0.5 level for the Country dataset (obtained
by experimentation). Minimal support was set to 10 elements for the DBLP (based on
Galbrun (2013), p. 46) and the same value is used for the Bio dataset. Minimal support is
set to 5 elements for the Country dataset, since this dataset contains substantially smaller
amount of elements and redescriptions describing properties of 5 different countries still
seem interesting.

The algorithm specific parameter values used to create redescriptions are listed below.

– CLUS-RM - allows specifying maximum support which was set to 5036 for the DBLP
dataset, 2060 for the Bio dataset and 120 for the trade dataset. Since it is possible
to obtain redescriptions that describe all elements in the dataset by using disjunction,
conjunction and negation operators, we set the maximum support to disallow such
redescriptions. We used the average tree depth 8 for all datasets (this effectively deter-
mines the maximal number of attributes occurring in produced rules). 120 iterations
were performed on the Bio and the DBLP dataset and 800 iterations on the Country
dataset. Larger number of iterations produces larger variety of redescriptions. Since the
Country dataset is much smaller than the DBLP and the Bio dataset, we could run larger
number of iterations with smaller execution times than those obtained on the DBLP and
the Bio dataset. We used regression trees in all experiments with random forest con-
taining 50 trees (our estimate is that middle-sized workstations and smaller servers are
already capable of running 50 threads in parallel, thus we used maximally 50 trees in
the forest).

– ReReMi - we used LHS/RHS max number of variables = 15,min contribution = 3,min
uncovered = 200. For the DBLP dataset we set max number of pairs = 1000, Batch
output = 10 and Batch capacity = 50, for the Bio dataset we used max number of pairs
= 200. Batch output and Batch capacity parameters were at their default values 1 and 4
respectively. For the view containing numerical values we used the default values. We
also created redescription sets with the ReReMi algorithm that used only conjunction
and literal level negation operators by using equivalent values of other setup parameters
as to construct sets that were generated by using all operators. On the Country dataset,
we used max product buckets = 200, max number of pairs = 1000, for the set in which
we allowed using only logical conjunction operator and max number of pairs = 500 in
case in which we mined redescriptions by using all logical operators.

– Split trees and Layered trees - we used max rounds = 1000, and max tree depth = 15.

Explanations of all parameters used for the ReReMi, Split trees and Layered trees algo-
rithm can be seen on the web page of the tool Siren: http://siren.gforge.inria.fr/ static/
miner confdef.xml. Values for parameters min contribution and min uncovered were set
after discussion with the authors of the tool, parameters specifying maximal number of
attributes, bathc output, capacity and maximal number of pairs were increased compared
to default values to obtain larger number and more accurate redescriptions. After obtaining
redescriptions with the ReReMi, Split trees and Layered trees algorithm, we used the Filter
redundant redescriptions option to remove duplicate and redundant redescriptions with the
max overlap option equal to 0.99.

http://siren.gforge.inria.fr/_static/miner_confdef.xml
http://siren.gforge.inria.fr/_static/miner_confdef.xml
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For the evaluation of the CLUS-RM algorithm extensions, we use the same algorithm
parameters as specified earlier. The exception is the number of iterations for the DBLP
dataset which is set to 40. Also, we optimize a set containing 200 redescriptions.

4.3 Evaluating CLUS-RM extensions

In this section, we evaluate the effects of (a) using random forest based augmentation and (b)
redescription set creation of user suggested size without specifying redescription accuracy
constraints. First, we create a redescription set by using CLUS-RM with one PCT by using
parameters specified in Section 4.2. Next, we use random forest based augmentation, with
identical parameters and 50 trees in the forest, to optimize the set of the same size. The final
experiment uses random forest based augmentation with identical parameters as before but
without specifying redescription accuracy constraints and by allowing set expansion. In all
experiments, we fix one random initialization for the initial step and use it to obtain all
redescription sets. Also, random seeds of PCTs and the random forest is preserved between
the experiments. In this way, we can explore the effects of different modifications made to
the original CLUS-RM algorithm.

The experimental results related to the described extensions are presented in Figs. 2, 3, 4
and 5.

4.3.1 Effects of using random forest based augmentation

The evaluation on the Country data, presented in Fig. 2, reveals that using random forest
based augmentation in fact decreases redescription set accuracy. The Country dataset con-
tains a small number of elements, thus the algorithmmanages to create very optimized set by
using only one PCT. The large number of additional, diverse, redescriptions created with the
random forest of PCTs is used to describe elements that are not described often in the set by
using different subsets of attributes. This is reflected by lower average element and attribute
Jaccard index in the set produced with the algorithm using random forest based augmen-
tation. The algorithm iteratively describes the fraction of elements that can be described
very accurately until the occurrence frequency of these elements in redescriptions does not
become to high. When this happens, a number of accurate redescriptions are replaced with
redescriptions that increase diversity but have lower accuracy. According to the one - tailed
Mann - Whitney U test of statistical significance, the redescription set produced by using
random forest tends to contain redescriptions with smaller average element (significant with
p = 0.01381) and attribute Jaccard index (significant with p < 2.2 · 10−17) when query
non-missing Jaccard was used and with smaller average attribute Jaccard index (significant
with p = 1.6·10−9) when pessimistic Jaccard was used. Additional benefit of using random
forest based augmentation on this set is that the produced set tends to have smaller query
size in redescriptions (significant with p = 0.01677) when query non-missing Jaccard was
used and (significant with p = 8.4 · 10−14) when pessimistic Jaccard was used.

To show that using random forest also increases the number of highly accurate redescrip-
tions, we perform an additional experiment on the Country data by using query non-missing
Jaccard index as accuracy measure. In this experiment, we set very strict accuracy threshold
(minimal Jaccard index ≥ 0.9) required for redescription to be considered as a candidate
to optimize redescription set. We return all distinct, highly accurate redescriptions cre-
ated by CLUS-RM in 300 algorithm iterations by using one PCT and a PCT with random
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Fig. 2 Comparisons of redescription sets of size 200 produced by CLUS-RM using one PCT (CL-E), a PCT
and a random forest containing 50 PCTs (CLRF-50T-E), and the CLUS-RM with flexible set size without
specifying redescription accuracy using a PCT and a random forest containing 50 PCTs (CLRF-50T-F). The
comparison is performed on the Country data

forest of PCTs. The change of number of highly accurate redescriptions through iterations
are presented in Fig. 3 and the comparative histogram displaying redescription accuracy
distribution is shown in Fig. 4.

The results presented in Figs. 3 and 4 demonstrate the superior number of highly accurate
redescriptions created by CLUS-RM algorithm augmented with random forest containing
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Fig. 3 Comparison of number of produced redescriptions with accuracy ≥ 0.9 by the CLUS-RM and the
augmented variant with random forest containing 50 PCTs

50 PCTs. The difference between the number of generated highly accurate redescriptions
increases at each algorithm iteration.

Using random forest based augmentation to create redescriptions on the Bio dataset,
presented in Fig. 5, allows creating redescription set containing redescriptions that tend to
have higher accuracy (p = 3.96 · 10−11) than those produced when only one PCT is used.
It also tends to have smaller average attribute Jaccard index (p = 5.1 · 10−5).

On the DBLP dataset (see Fig. 5), using random forest allows creating redescription
set that tends to contain redescriptions with higher accuracy (p = 0.01088) than those
produced when only one PCT is used. Average element and attribute Jaccard index tend
to be lower in the redescription set produced by using random forest, both with p < 2.2 ·
10−16. Redescription query size tends to be lower in the redescription set produced by using
random forest (p = 0.04614).

The experimental results presented in Figs. 2 and 5 suggest that using random forest
in CLUS-RM allows creating redescription sets with significantly lower average attribute
Jaccard index on all used datasets which is important for exploring different associa-
tions. The same experiments suggest that it often results in obtaining significantly smaller

Fig. 4 Redescription accuracy distribution comparison between a set created by CLUS-RM and the
augmented variant with random forest with 50 PCTs
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Fig. 5 Comparisons of redescription sets of size 200 produced by CLUS-RM using one PCT (CL-E), a PCT
and a random forest containing 50 PCTs (CLRF-50T-E), and the CLUS-RM with flexible set size without
specifying redescription accuracy using a PCT and a random forest containing 50 PCTs (CLRF-50T-F). The
comparison is performed on the Bio data (left) and the DBLP data (right)

redescription queries which is important for redescription understandability. The results
presented in Figs. 3, 4 and 5 show that it significantly increases redescription accuracy.

Since our method optimizes multiple objective criteria, it is not always possible to obtain
domination even when the number of highly accurate redescriptions increases. This is vis-
ible from the results presented in Figs. 2, 3 and 4. Here we can see that although the
method augmented with random forest produces significantly larger number of highly accu-
rate redescriptions, the overall redescription accuracy in the optimized redescription set
decreases. The reason for this is that the benefits of describing larger number of diverse ele-
ments from the dataset by using more diverse attributes using redescriptions with smaller
queries outweighs the benefits of adding more accurate but redundant and more complex
redescriptions. On the DBLP dataset, the augmented model outperforms the basic algorithm
on all measures (though it has slightly smaller redescription support).
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4.3.2 Effects of creating redescription set of variable size without specifying accuracy
constraints

The automatic set expansion procedure used on the Country dataset (Fig. 2) increased the
size of redescription set from initial 200 to 218 when query non-missing Jaccard was used.
10 redescriptions out of 18 have the maximal accuracy 1.0. The difference in accuracy
between the set obtained by setting the redescription accuracy threshold and the set obtained
without setting the threshold is not statistically significant. When pessimistic Jaccard was
used, the procedure increased the size of redescription set with 35 additional redescriptions.
However, the trade-off between accuracy and diversity resulted in lowering redescription
accuracy to increase the element and attribute diversity.

The redescription accuracy in the set created without specifying accuracy constraints on
the Bio dataset (Fig. 5) is not significantly different from that created with the fixed accuracy
threshold.

On the DBLP dataset (Fig. 5), the difference in accuracy between redescription set cre-
ated by specifying redescription accuracy threshold and the set created without specifying
this threshold is not statistically significant.

The results on all datasets, with the exception of using pessimistic Jaccard on the Coun-
try dataset, demonstrate that no significant drop in redescription accuracy occurs when
redescription accuracy threshold is not set. The drop in accuracy occurs because of the
trade-off between diversity, query size and accuracy.

4.4 Comparison with state of the art methods

Redescription mining algorithm comparison was mainly done in the literature by selecting
and discussing properties of individual redescriptions. We try to make objective evaluation
of redescription sets produced by different algorithms by using the same set of redescription
constraints. Another condition we imposed is to have the same size of the final redescription
sets. This is done by first finding redescription set with the ReReMi, Split trees, Layered
trees algorithm, and then forcing the same size of the redescription set on the CLUS-RM,
since it produces much more redescriptions than these algorithms.

The results are divided based on usage of logical operators. In the first experiment we
allow using disjunctions, conjunctions, negations (DCN) and in the second experiment only
conjunctions and negations (CN). For the generated redescription sets, we plot comparative
boxplots for the Jaccard index, the log10 of the p−value, the average element and attribute
Jaccard index and the redescription query size. We also compute the Man-Whitney U test
to assess the statistical significance of the difference in algorithm performance. We only
analyse redescription sets containing at least 10 redescriptions satisfying constraints. As a
consequence, we can not make comparisons with Split trees and Layered trees algorithm in
the CN mode on the DBLP and Bio dataset, and with Layered trees algorithm on the DBLP
dataset in the DCN mode. We perform comparisons on the Country data only with ReReMi
algorithm - by using only conjunction operator in CN mode. Other algorithms can not work
on data containing missing values.

4.4.1 Comparison on the Country dataset

Comparative results on the Country dataset that contains missing values are obtained by
optimizing Jpes with ReReMi algorithm and recalculating the score for each redescription
to Jqnm. An optimized redescription set with the CLUS-RM was also created by using the
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pessimistic Jaccard index as one of the optimization criteria. The resulting sets are compared
based on several quality criteria.

The results in Fig. 6 show that the redescription set produced by our approach has higher
median for redescription accuracy when all operators are used and query non-missing Jac-
card is used to evaluate redescription accuracy. A slightly broader distribution is a result
of redescription diversification. The Mann-Whitney U test of statistical significance shows
that the set produced with CLUS-RM tends to contain more accurate redescriptions (sig-
nificant with p = 4.545 · 10−5), it also tends to contain more significant redescriptions
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Fig. 6 Comparison of redescription sets produced by CLUS-RM and ReReMi algorithms on the Country
dataset. Redescription accuracy is evaluated with the query non-missing Jaccard index
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(significant with p = 2 · 10−9). The redescription set produced by the CLUS-RM tends
to contain redescriptions with lower average element and attribute Jaccard index and with
smaller query size (significant with p < 2.2 · 10−16). Redescriptions in the set produced
by the CLUS-RM tend to contain redescriptions with smaller support (significant with p <

2.2 · 10−16). When only conjunction operators are allowed and query non-missing Jaccard
is used, all measured quality criteria, except the average element Jaccard index, show that
redescription set produced by CLUS-RM has significant advantage over ReReMi produced
set. p-values obtained with one - tailed Mann-Whitney U test, presented in redescription
quality criteria order as in Fig. 6, are pJ = 1.9 · 10−7, psupp = 9.9 · 10−5, ppV al =
1.3 · 10−6, pEJ = 0.795, pAJ = 9.3 · 10−15, psize = 0.0007. Redescription set (DCN)
produced by ReReMi has the element coverage (EC) 1.0, the attribute coverage (AC) 0.35
and the set (CN) has EC = 0.53, AC = 0.36. The redescription set (DCN) produced by
CLUS-RM has EC = 0.99 and AC = 0.59 and the set (CN) has EC = 0.56, AC = 0.36.

When pessimistic Jaccard index is used (Fig. 7) to evaluate redescription accuracy, the
redescription set created by CLUS-RM contains redescriptions that tend to have lower accu-
racy compared to ReReMi algorithm (p = 0.01559), they tend to have smaller support
(p = 8.84 · 10−16), lower redescription p-value (p = 3.88 · 10−07), lower average ele-
ment (p = 2.076 · 10−14) and attribute (p < 2.2 · 10−16) Jaccard index and smaller
redescription query size (p < 2.2 · 10−16). When only conjunction operators are used,
the CLUS-RM produced set contains redescriptions that tend to have higher redescription
accuracy (p = 7.873 · 10−7), larger redescription support (p = 0.00074), lower redescrip-
tion p-value (p = 4.956 · 10−6), lower average attribute Jaccard index (p = 0.02652) and
smaller redescription query size (p = 0.001727). Redescription set created by CLUS-RM
by optimizing pessimistic Jaccard index has EC = 1.0 and AC = 0.5 in the DCN mode,
and EC = 0.39 and AC = 0.31 in the CN mode. The element coverage is slightly lower
compared to ReReMi produced redescription set in the CN mode while the attribute cover-
age is comparable in CN mode and higher for CLUS-RM in the DCN mode. While ReReMi
returned 2 redescriptions with Jpess = 1.0, CLUS-RM produced redescription set with 15
such redescriptions.

4.4.2 Comparison on the Bio dataset

Comparison results of redescription sets produced by CLUS-RM and ReReMi algorithm on
the Bio dataset are presented in Fig. 8.

The comparison results on the Bio dataset suggest that redescription set created by
CLUS-RM contains redescriptions that tend to have higher accuracy compared to ReReMi
algorithm (p = 1.599 · 10−5) when all logical operators are used to create redescrip-
tions. They also tend to have lower redescription p-values (p = 2.052 · 10−9), lower
average element (p < 2.2 · 10−16) and attribute (p = 7.24 · 10−8) Jaccard index as
well as smaller redescription query size (p = 0.03107). However, they also tend to have
smaller redescription support (p < 2.2 · 10−16). Our approach finds many redescrip-
tions closer to minimal support boundary on the Bio dataset which complements ReReMi
redescriptions that have a drift towards redescriptions with maximum support as reported
in the work from Galbrun (2013). When only conjunction operators are used to create
redescriptions, our approach created redescription set that tends to contain more accurate
redescriptions (p = 8.31 · 10−15), lower average element (p = 1.403 · 10−15) and attribute
(p = 7.666 · 10−16) Jaccard index and smaller redescription query size (p = 6.156 · 10−5).
It also tends to contain redescriptions with smaller redescription support (p = 1.71 ·10−15).
The redescription set produced with ReReMi algorithm has EC = 1.0 and AC = 0.39 in
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Fig. 7 Comparison of redescription sets produced by CLUS-RM and ReReMi algorithms on the Country
dataset. Redescription accuracy is evaluated with the pessimistic Jaccard index

DCNmode while CLUS-RM produced redescription set hasEC = 0.93 andAC = 0.59. In
the CNmode, the ReReMi produced redescription set hasEC = 0.98 andAC = 0.37 while
CLUS-RM produced redescription set has EC = 0.95 and AC = 0.52. The redescrip-
tion sets produced with ReReMi and CLUS-RM have comparable element coverage but the
redescription set produced with CLUS-RM has higer attribute coverage.

The comparison results of redescription sets produced by CLUS-RM, Split trees and
Layered trees algorithm on the Bio dataset is available in Fig. 9.
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Fig. 8 Comparison of redescription sets produced by CLUS-RM and ReReMi algorithms on the Bio dataset

We perform comparisons of redescription sets created by CLUS-RM, Split trees and Lay-
ered trees algorithms by using all logical operators to construct redescriptions. The results
suggest that the redescription set produced by CLUS-RM contains redescriptions that tend
to have higher accuracy (p = 2.738 · 10−15), lower redescription p-value (p = 0.02165),
lower average element (p = 2.464 · 10−11) and attribute (p = 3.47 · 10−16) Jaccard
index and smaller redescription query size (p = 0.02877) compared to the redescription
set created by Split trees algorithm. However, CLUS-RM produced redescription set also
contains redescriptions that tend to have a smaller support (p = 1.092 · 10−14). The CLUS-
RM produced redescription set has EC = 0.75 and AC = 0.57 while the Split trees
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Fig. 9 Comparison of redescription set produced by CLUS-RM with the set produced by Split trees (left)
and Layered trees (right) on the Bio dataset

algorithm produced redescription set with EC = 0.98 and AC = 0.32. The redescrip-
tion set produced with CLUS-RM contains redescriptions that tend to have higher accuracy
(p = 2.978 · 10−7), lower redescription p-value (p = 0.04076), lower average element
(p = 5.691 · 10−8) and attribute (p = 0.01856) Jaccard index and smaller redescription
query size (p = 0.0006035) compared to redescription set created by Layered trees algo-
rithm. The redescription set produced by the CLUS-RM algorithm contains redescriptions
that tend to have smaller support than redescriptions contained in the redescription set pro-
duced by the Layered tree algorithm (p = 1.721 · 10−8). The redescription set produced by
CLUS-RM algorithm has EC = 0.74 and AC = 0.45 while the redescription set produced
by Layered trees algorithm has EC = 1.0 and AC = 0.53.

Lower element coverage in CLUS-RM produced redescription set compared to
redescription sets produced by Layered trees and Split trees algorithms is the consequence
of a relatively small redescription set size: 49 and 30 redescriptions.
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4.4.3 Comparison on the DBLP dataset

The comparison results of redescription sets produced by CLUS-RM, ReReMi and Split
trees algorithm on the DBLP dataset is available in Fig. 10. The DBLP dataset is very sparse
and it is difficult to produce many highly accurate redescriptions. The results suggest that
the redescription set produced by CLUS-RM algorithm contains redescriptions that tend to
have higher accuracy (p < 2.2 ·10−16) and higher redescription support (p = 1.23 ·10−10),
smaller redescription query size (p = 0.005913) compared to redescription set produced
by the ReReMi algorithm when all logical operators were used to create redescriptions.
Though, the redescription set produced by CLUS-RM contains redescriptions that tend to
have higher redescription p-value (p = 2.466·10−14) and average element (p < 2.2·10−16)
and attribute (p < 2.2 · 10−16) Jaccard index. The redescription set produced by CLUS-
RM has EC = 0.99 and AC = 0.06 while the redescription set produced by ReReMi
has EC = 0.781 and AC = 0.326. Since the authors form examples and attributes in this
dataset, one potential explanation for smaller attribute coverage by CLUS-RM is that it con-
centrated the search to parts of DBLP network that can be described very accurately which
constrained the diversity of authors and conferences occuring in redescription queries. This
conclusion is also indicated by the higher attribute and element Jaccard index of the pro-
duced redescriptions which is visible on all performed experiments on this dataset. When
only conjunction operators were used, the redescription set produced by CLUS-RM con-
tains redescriptions that tend to have higher accuracy (p < 2.2 · 10−16), though they tend
to have smaller support (p = 2.133 · 10−5), higher element (p < 2.2 · 10−16) and attribute
(p < 2.2 · 10−16) Jaccard index and larger redescription query size (p = 9.94 · 10−15). The
redescription set produced by the CLUS-RM algorithm has EC = 0.044 and AC = 0.028
while redescription set produced by ReReMi has EC = 0.188 = and AC = 0.044.

The comparison with the redescription set produced by Split trees algorithm, available
in Fig. 10 (right), shows that redescription set produced by CLUS-RM algorithm contains
redescriptions that do not have significant difference in accuracy, support and redescription
p-value compared to redescriptions contained in the set created by Split trees algorithm.
They tend to have redescriptions with smaller query size (p = 1.145 · 10−7) but they also
tend to have larger average element (p = 0.0003779) and attribute (p = 1.516 · 10−8)
Jaccard index. The redescription set produced by CLUS-RM has EC = 0.067 and AC =
0.028 while redescription set produced by Split trees has EC = 0.085 and AC = 0.049.

The results presented in this section lead us to conclude that the CLUS-RM algo-
rithm outperforms other redescription mining approaches in the CN mode with respect to
redescription accuracy. With the exception of the DBLP data, it also tends to have smaller
average attribute Jaccard index, smaller redescription p-values and smaller query size. In the
DCN mode, the approach outperformed other approaches in redescription accuracy, with
the exception of the ReReMi algorithm when pessimistic Jaccard index is used to evaluate
redescriptions on the Country dataset, and the Split trees on the DBLP dataset, where the
difference in accuracy is not statistically significant.

The majority of produced redescriptions by the CLUS-RM contain conjunction and
negation operators as opposed to redescriptions produced by other approaches that mostly
contain disjunction operators. CLUS-RM uses disjunction operators sparingly by design
because it requires redescriptions to have the accuracy larger than the minimal accuracy
threshold in order to apply disjunction operator. This disallows CLUS-RM to create differ-
ent disjunction - based redescriptions that describe unrelated parts of element space (and
can have very high accuracy). Such redescriptions are found by ReReMi algorithm which
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Fig. 10 Comparison of redescription sets produced by CLUS-RM and ReReMi algorithms (left), and the
CLUS-RM and Split trees algorithm (right) on the DBLP dataset

is discussed by Galbrun (2013). This affects the number of highly accurate redescriptions
produced by the CLUS-RM compared to other approach in DCN mode.

4.5 Redescription examples

In this section, we present top two redescriptions, by accuracy, found by each approach
on the datasets used for evaluation. If there are multiple candidates with the same accu-
racy we choose redescriptions with shorter query size or smaller p-value. We compare
these redescriptions by their structure and quality. The explanation of the meaning of these
redescriptions along with a list describing all used attributes in redescription queries of these
examples can be seen in Online resource 1.
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4.5.1 Examples produced on the Country dataset

Redescriptions presented in Table 5 show that both CLUS-RM and ReReMi managed
to find two redescriptions with maximal accuracy 1.0 with both Jaccard index variants.
Redescriptions found by CLUS-RM have lower p-value and larger support. Structurally,

Table 5 Examples produced by RM algorithms on the Country dataset

Redescriptions J supp p-value Algorithm

0.1 ≤ PG ≤ 1.1 ∧ 64.4 ≤ POP15−64 ≤ 1.0 11 2.2 · 10−12 CLUS-RM (Jqnm)

68.1 ∧ 51.7 ≤ CC ≤ 171.0

0.2 ≤ E/I41 ≤ 2.2 ∧ 0.3 ≤ E/I61 ≤ 4.9∧
0.6 ≤ E/I80 ≤ 1.3 ∧ 0.0 ≤ E/I95 ≤ 0.5

7.3 ≤ CR COV ≤ 100 ∧ 15.5 ≤ P64 ≤ 1.0 14 1.5 · 10−13 CLUS-RM (Jqnm)

21.1 ∧ −2.4 ≤ BAL ≤ 14.4 ∧ 73.3 ≤
EMSF ≤ 91.5 ∧ 6.2 ≤ ST ≤ 166.6

0.0 ≤ E/I46 ≤ 0.95 ∧ 0.7 ≤ E/I83 ≤ 4.3∧
17.0 ≤ I26 ≤ 26.0 ∧ 10.0 ≤ I14 ≤ 22.0

1.1 ≤ AGR F ≤ 7.8 ∧ 3.1 ≤ M ≤ 6.2∧ 1.0 8 6.4 · 10−11 CLUS-RM (Jpess )

34.1 ≤ EIM ≤ 49.4

1.1 ≤ E/I92 ≤ 2.3 ∧ 9.0 ≤ E91 ≤ 16.0 ∧
0.5 ≤ E/I20 ≤ 1.4 ∧ 1.0 ≤ I71 ≤ 1.0

0.1 ≤ PG ≤ 0.7 ∧ 17.2 ≤ P64 ≤ 20.8 ∧ 1.0 7 2.4 · 10−10 CLUS-RM (Jpess )

13.7 ≤ RP ≤ 32.1

3.0 ≤ E66 ≤ 6.0 ∧ 1.0 ≤ E/I14 ≤ 1.1

M ≤ 95.5 ∧ 75.9 ≤ LF ∧ 1.9 ≤ PG 1.0 10 6.3 · 10−12 ReReMi (Jqnm)

((94.0 ≤ I97 ≤ 99.0 ∧ E/I69 ≤ 0.03) ∨ 31.0 ≤
E22 ≤ 34.0 ∨ 5.382 ≤ E/I43 ≤ 7.813) ∧
1.0 ≤ E37

M ≤ 6.2 ∧ 15.3 ≤ P64 ≤ 17.8169 1.0 13 3.4 · 10−13 ReReMi (Jqnm)

(2.0 ≤ I82 ≤ 2.0 ∨ 0.7 ≤ E/I85 ≤ 1.6) ∧
1.0 ≤ E76 ≤ 3.0 ∧ 0.5 ≤ E/I25 ≤ 1.4 ∧ 0.4 ≤
E/I71 ≤ 1.8

21.6 ≤ RP ≤ 37.5 ∧ 74.2 ≤ CR COV ∧ 1.0 6 9.7 · 10−10 ReReMi (Jpess )

45.0 ≤ LF ≤ 53.5

69.0 ≤ E13 ≤ 86.0 ∧ I33 ≤ 0.0 ∧ 0.1 ≤
E/I38 ≤ 1.0 ∧ 0.3 ≤ E/I66 ≤ 6.9

85.7 ≤ LM ∧ 40.8 ≤ P14 ≤ 43.5 ∧ 2.5 ≤ 1.0 5 4.6 · 10−9 ReReMi (Jpess )

PG ≤ 3.3

4.0 ≤ E72 ≤ 11.0 ∧ 1.0 ≤ I60 ∧ 3.0 ≤ I66 ≤
4.0 ∧ 1.1 ≤ E/I45
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redescriptions created with CLUS-RM contain only conjunction operators, while two
redescriptions produced by ReReMi contain complex queries containing conjunction and
disjunction operators. This makes CLUS-RM produced redescriptions easier to understand.
Redescriptions produced by CLUS-RM contain longer queries describing countries by using
general country information (the first presented query in the pair) while ReReMi produced
redescriptions contain longer queries describing countries by their trading patterns (the
second presented query in the pair).

Redescriptions produced by CLUS-RM mostly describe European countries. Top two
most accurate redescriptions produced by ReReMi and presented in Table 5 are not as homo-
geneous as redescriptions produced by CLUS-RM with respect to location of described

Table 6 Examples produced by RM algorithms on the Bio dataset

Redescriptions J supp p-value Algorithm

¬(−8.3 ≤ t∼4 ) 0.95 36 0.0 CLUS-RM (Bio)

PB

−8.4 ≤ t∼11 ≤ −5.98 ∧ 6.6 ≤ t∼6 ≤ 11.1 ∧ 1.0 15 0.0 CLUS-RM (Bio)

78.9 ≤ p7 ≤ 104.2 ∧ 14.4 ≤ t+7 ≤ 18.8

¬M ∧ B ∧ EWV ∧ W ∧ LS ∧ NB

4.7 ≤ t+3 ≤ 19.8 0.88 1726 0.0 CLUS-RM (Bio)

¬M ∨ C

−11.9 ≤ t+3 ≤ −7.3 0.97 36 0.0 ReReMi (Bio)

PB

((((−12.2 ≤ t−1 ∨ t+7 ≤ 13.5 ∨ −12.2 ≤ t∼2 ≤ 0.98 2294 0.0 ReReMi (Bio)

−11.8 ∨ 13.3 ≤ t∼8 ≤ 13.8 ∨ −2.4 ≤ t∼11 ≤
−1.7 ∨ −7.6 ≤ t∼12 ≤ −7.5) ∧ −12.6 ≤ t−3 ≤
−11.0) ∨ 1.2 ≤ t+4 ≤ 1.2) ∧ −2.4 ≤ t+3 ≤
−1.5) ∨ −6.5 ≤ t+2 ≤ −6.4 ∨ −4.58 ≤ t∼4 ≤
−4.55 ∨ 12.5 ≤ t∼6 ≤ 12.5

¬ GRBV ∧ ¬W

(64.8 ≤ p∼
10 ∧ p∼

8 ≤ 2.2) ∨ (34.4 ≤ p∼
4 ∧ p∼

9 ≤ 1.0 10 0.0 Spl. Trees (Bio)

14.9 ∧ 2.2 ≤ p∼
8 )

CSM

(−16.7 ≤ t∼3 ∧ t∼3 ≤ −11.2) 0.97 36 0.0 Spl. Trees (Bio)

PB

16.6 ≤ t+7 ∨ (16.6 ≤ t+7 ∧ 10.8 ≤ t+9 ) 0.97 2370 9.5 · 10−15 Lay. Trees (Bio)

(LW ∧ ¬AF) ∨ (LW ∧ AF ∧ EH) ∨
(¬LW ∧ ¬AF)

t+3 ≤ −7.0 0.95 36 0.0 Lay. Trees (Bio)

PB
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countries. They describe countries located in Africa, Asia and Europe. A detailed descrip-
tion of the meaning of these redescriptions along with the interpretation and confirmations
from domain knowledge can be seen in Section S2.1 of the Online resource 1.

4.5.2 Examples produced by RM algorithms on the Bio dataset

Table 6 contains top two redescriptions (by accuracy) produced by each approach on the
Bio dataset.

The exact locations used as examples in this dataset can be seen in Galbrun (2013), p. 50,
Figure 6.1. On this dataset, we provide one additional redescription created by CLUS-RM
as example of a redescription with large support. This redescription contains disjunction
and negation operators. However, the top two redescriptions created by CLUS-RM contain
only conjunction and negation operators. Presented redescriptions created by ReReMi and
Layered trees contain all three logical operators and redescription examples created by Split
trees algorithm contain conjunctions and disjunctions.

Redescriptions, presented in Table 6, with large support (>1000 locations) are very
uninformative because they contain negations of mammal species inhabiting geographical
locations. All four algorithms discovered redescription describing habitats in Europe of the
Polar Bear but use temperature in different months to provide information about the weather
conditions on these locations. A detailed description of the meaning of these redescriptions

Table 7 Examples produced by RM algorithms on the DBLP dataset

Redescriptions J supp p-value Algorithm

¬HICSS ∧ ISWC ∧ ¬ICWS ∧ EC − Web 0.83 10 0.0 CLUS-RM (DBLP)

AM ∧ CS ∧ DO

SEBD ∧ SIGMOD ∧ LPNMR 0.67 10 0.0 CLUS-RM (DBLP)

T E ∧ GG

SEBD ∧ LPNMR ∧ SIGMOD 0.67 10 0.0 ReReMi (DBLP)

T E ∧ GT

EC − Web ∧ ISWC 0.65 11 0.0 ReReMi (DBLP)

DO ∧ SH

(IT CC ∧ ISWC ∧ ¬EC − Web) ∨ 0.76 13 0.0 Spl. Trees (DBLP)

(¬HICSS ∧ ISWC ∧ EC − Web)

CS

(ICIP (1) ∧ OT MW ∧ ¬EC − Web) ∨ 0.74 14 0.0 Spl. Trees (DBLP)

(¬HICSS ∧ ISWC ∧ EC − Web)

SH

ISWC ∧ ¬HICSS ∧ ¬SIGIR 0.85 11 0.0 Lay. Trees (DBLP)

(SH ∧ CS ∧ ¬AG) ∨ (¬SH ∧ YSA)

IT CC ∧ SEBD ∧ ¬WET ICE 0.81 13 0.0 Lay. Trees (DBLP)

(GM ∧ ¬AMa) ∨ (¬GM ∧ EM))
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along with the interpretation and confirmations from domain knowledge can be seen in
Section S2.2 of the Online resource 1.

4.5.3 Examples produced by RM algorithms on the DBLP dataset

Table 7 contains top two redescriptions (by accuracy) produced by each approach on the
DBLP dataset.

Structurally, CLUS-RM and ReReMi produced the most understandable redescriptions
containing only conjunction and (CLUR-RM) negation operators. Split trees and Layered
trees use all operators to create redescriptions which requires analysing queries in parts to
understand the relationship of parts of a query to the corresponding part of redescription
support which it describes.

A detailed description of the meaning of these redescriptions along with the interpreta-
tion and confirmations from domain knowledge can be seen in Section S2.3 of the Online
resource 1.

We can see from the example tables (Tables 6 and 7) that the most accurate redescriptions
created by the approaches on the Bio and the DBLP dataset have large similarities. All four
approaches found a set of locations corresponding to a habitat of a Polar Bear on the Bio
dataset but used different climate indicators to describe the weather on these locations. All
algorithms discovered very similar sets of co-authors using slightly different authors and
conferences in redescription queries.

5 Conclusions

This work introduces a novel redescription mining algorithm which optimizes a redescrip-
tion set of user suggested size. The algorithm is based on multi-target predictive clustering
trees, which allows using element coverage by rules constructed on one view as targets for
the construction of rules from the other view. One predictive clustering tree is used to cre-
ate rules that are employed to guide the search, while additional random forest of predictive
clustering trees is used to construct rules that increase redescription accuracy and diversity.
Produced redescriptions incrementally improve the redescription set by using a predefined
set of criteria (the Jaccard index, the p-value, the element and the attribute Jaccard index and
the exclusive coverage). The ability to construct many different redescriptions and use them
to optimize a redescription set differentiates the approach from currently proposed solutions
and enables removing some user-defined constraints from the redescription mining process
which is a desirable property (Galbrun 2013). The most important constraint not required by
our approach is the Jaccard index threshold which is often determined by experimentation.
Moreover, our approach expands the redescription set in very conservative manner which
reflects the goal to present accurate and understandable redescription set of a user sug-
gested size. Using random forest as the augmentation model decreases attribute redundancy
and increases overall redescription accuracy in the output redescription sets in majority of
experiments. It also increases the number of produced highly accurate redescriptions.

The results of algorithm comparisons show that our approach outperforms other
approaches with respect to redescription accuracy when disjunction operators are not used
in redescription construction. When all operators are used, CLUS-RM outperforms other
approaches in majority of comparisons with respect to redescription accuracy. The final
redescription sets contain redescriptions with smaller support, though the overall element
and attribute coverage is comparable to other approaches. In general, CLUS-RM creates
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many different redescriptions of various support which can be obtained by increasing
minimal support constraint or increasing the redescription set size.

We have demonstrated the advantages of our approach over current state of the
art methods and provided exhaustive analysis that shows it creates many complemen-
tary redescriptions to those produced by currently proposed approaches. The produced
redescriptions by our approach are structurally different, mostly containing conjunction
operators in redescription queries and using disjunction operators only to improve accu-
racy of those redescriptions with accuracy above some predefined threshold. This increases
understandability and eliminates (if high enough threshold is defined) creation of redescrip-
tions describing unrelated parts of element space. Finally, we show that among top two
redescriptions by accuracy, our approach has comparable performance with respect to other
approaches. Among the example redescriptions, several redescriptions produced by differ-
ent approaches have a large similarity in described elements and contain related queries.
This is especially visible on the DBLP and the Bio dataset.
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