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Abstract
The field of bisociative literature-based discovery aims at mining scientific literature 
to reveal yet uncovered connections between different fields of specialization. This 
paper outlines several outlier-based literature mining approaches to bridging term 
detection and the lessons learned from selected biomedical literature-based discov-
ery applications. The paper addresses also new prospects in bisociative literature-
based discovery, proposing an advanced embeddings-based technology for cross-
domain literature mining.
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Introduction

Growing amounts of available knowledge and data exceed human analytic capa-
bilities. Therefore, new technologies that help analyzing and extracting useful 
information from large amounts of data need to be developed and used for ana-
lytic purposes. Understanding complex phenomena and solving difficult problems 
often require knowledge from different domains to be combined and cross-domain 
associations to be considered. While the concept of association is at the heart of 
several information technologies, including information retrieval and data min-
ing, and in particular association rule learning [2], scientific discovery requires 
creative thinking to connect seemingly unrelated information, for example, using 
metaphors or analogies between concepts from different domains. These kinds of 
context crossing associations, called bisociations [19], are often needed for inno-
vative discoveries.

This paper addresses a computational creativity task of bisociative knowledge 
discovery from scientific literature that we name bisociative literature-based dis-
covery. This task is at the intersection of two research areas: literature-based dis-
covery [6] and bisociative knowledge discovery [3], which are briefly introduced 
below.

In literature-based discovery (LBD) [6]—and in particular in cross-domain lit-
erature mining that addresses knowledge discovery from two (or more) initially 
separate document corpora—a crucial step is the identification of interesting 
bridging terms (b-terms) or links (b-links) that carry the potential of explicitly 
revealing the connections between the separate domains. Swanson and Smal-
heiser [37, 40] developed early LBD approaches to detecting interesting b-terms 
to uncover the possible cross-domain relations among previously unrelated 
concepts. Their approach, known as the ‘ABC model of knowledge discovery’, 
addresses the so-called closed discoverysetting [43], where two initially separate 
domains A and C are specified by the user at the beginning of the discovery pro-
cess, and the goal is to search for bridging concepts (b-terms) in B to validate the 
hypothesized connection between A and C.

Similarly, bisociative knowledge discovery [3] addresses a data mining task 
where two (or more) domains of interest are searched for bridging concepts 
(bridging terms or links). Using either the same representation of different 
domains or different representations of the same domain, bridging concepts can 
be detected either as nodes bridging different graphs, as subgraphs linking dif-
ferent graphs, as bridging links in terms of graph similarity, or as bridging terms 
appearing in separate document corpora, which is referred to as bridging term 
discovery in this paper.

Until recently, literature-based discovery and bisociative knowledge discov-
ery approaches to cross-domain literature mining used conventional bag of words 
(BoW) vector representation of text, using term frequency inverse document 
frequency (TF-IDF) word weighting heuristics. Recent text-mining approaches 
started exploiting neural networks-based text representations, using text embed-
ding methods that use large corpora of documents to extract numeric vector 
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representations for words, sentences, and/or documents. In this paper, we exploit 
the power of word embeddings [25, 27], which refer to vector representations of 
words, where each word is assigned a vector of several hundred dimensions in the 
transformed n-dimensional numeric vector space. Embedding approaches have 
started emerging also in the area of computational creativity [1, 10] and litera-
ture-based discovery [24].

The contributions of this paper are many-fold. The paper first reflects on the les-
sons learned from our past research in cross-domain literature mining,1 focusing on 
outlier document detection as means for more effectively searching for novel bridg-
ing terms. Second, we propose an embedding-inspired conceptual framework for 
creative bisociative LBD, based on a novel concept of bridging by relational bisocia-
tion. Third, we propose a new bisociative LBD methodology, using word embed-
dings for relational bisociation discovery. Finally, we show-case the potential util-
ity of this approach on a new biological research problem of finding connections 
between circadian rhythm and plant defense domains, where the results of this proof 
of concept evaluation indicate that the new methodology is very relevant for LBD 
research.

The paper is structured as follows. “Background and related work” presents the 
related work in literature-based discovery (LBD) and bisociative knowledge dis-
covery, including the previously published relationship between the two [21, 31]. 
It presents also the related work in representation learning using the embedding 
technology. “Past LBD results and lessons learned” outlines selected approaches to 
cross-domain literature mining via outlier document detection and exploration [31, 
36], together with the lessons learned from this research. “Towards creative embed-
dings-based bisociative LBD” proposes a novel creative discovery research direction 
based on the recent word embedding technology, with a proof of concept experiment 
in a biological domain, together with the lessons learned from this LBD application. 
Finally, “Conclusions and further work” concludes with a summary and plans for 
further research.

Background and Related Work

This section presents the related work. “Literature-based discovery” introduces liter-
ature-based discovery (LBD), which is the main topic of this research. “Bisociative 
knowledge discovery” presents the area of computational creativity named bisocia-
tive knowledge discovery and the connection between bisociative knowledge dis-
covery and LBD, as published in our past research [21, 31]. Finally, “Embeddings” 
briefly introduces embeddings, the contemporary representation learning technol-
ogy resulting from recent research in neural networks, which is the enabler for the 
proposed embedding-based bisociative LBD methodology introduced in “Towards 
creative embeddings-based bisociative LBD”.

1 These lessons have been published also in the ICCC-2020 paper by Lavrač et al. [22].
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Literature‑Based Discovery

In literature-based discovery (LBD) [6]—and in particular in cross-domain litera-
ture mining, which addresses knowledge discovery in two (several) initially sepa-
rate document corpora—a crucial step is the identification of interesting bridging 
terms (b-terms) that carry the potential of revealing the links connecting the sepa-
rate domains.

Early work in LBD [37, 40] developed approaches to assist the user in literature-
based discovery by detecting interesting cross-domain terms with a goal to uncover 
the possible relations between previously unrelated concepts. The ARROWSMITH 
online system, developed by Smalheiser and Swanson [37], takes as input two sets 
of titles of scientific papers from disjoint domains (disjoint document corpora) A 
and C, and lists terms that are common to A and C; the resulting bridging terms 
(b-terms) are further investigated by the user for their potential to generate new 
scientific hypotheses.2 Their approach, known as the ‘ABC model of knowledge 
discovery’, addresses several settings, including the closed discovery setting [43], 
where two initially separate domains A and C are specified by the user at the begin-
ning of the discovery process, and the goal is to search for bridging concept (term) 
b in B to support the validation of the hypothesized connection between A and C. 
The closed discovery setting, which is the most frequently addressed LBD setting, is 
illustrated in Fig. 1.

Swanson’s seminal work has shown that databases such as PubMed can serve as 
a rich source of yet hidden relations between usually unrelated topics, potentially 
leading to novel insights and discoveries. By studying two separate literatures, i.e., 
the literature on migraine headache and the articles on magnesium, Swanson [39] 
discovered ‘Eleven neglected connections’, all of them supportive for the hypoth-
esis that magnesium deficiency might cause migraine headache. Figure 2 illustrates 
the closed discovery setting on the Swanson’s task of finding the terms linking the 
‘migraine’ and ‘magnesium’ domains. Swanson’s literature mining results have been 
later confirmed by laboratory and clinical investigations. This well-known example 

Fig. 1  Closed discovery process 
defined by Weeber et al. [43]

2 In the ABC model, uppercase letter symbols A, B, and C are used to represent concepts (or sets of 
terms), and lowercase symbols a, b, and c to represent single terms.
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has become the gold standard in the literature mining field and has been used as a 
benchmark in several studies [17, 23, 38, 43].

Inspired by this early work, literature mining approaches were further developed 
and successfully applied to different problems, such as finding associations between 
genes and diseases [16], diseases and chemicals [44], and others. Supporting the 
user in effectively searching for bridging terms (b-terms) provided a motivation 
for developing the CrossBee approach to bridging term detection applicable in the 
closed discovery setting [17], implemented through ensemble-based term ranking, 
where an ensemble heuristic composed of six elementary heuristics was constructed 
for term evaluation.

The work of Kastrin et al. [18] is complementary to other LBD approaches, as it 
uses different similarity measures (such as common neighbors, Jaccard index, and 
preferential attachment) for link prediction of implicit relationships in the Semantic 
MEDLINE network. Holzinger et al. [15] describe several web-based tools for the 
analysis of biomedical literature, which include the analysis of terms (biomedical 
entities such as disease, drugs, genes, proteins, and organs) and provide concepts 
associated with a given term. A comprehensive survey of modern literature-based 
discovery approaches in biomedical domain can be found in [13, 33].

Our past research [31, 36] suggests that bridging terms are more frequent in doc-
uments that are in some sense different from the majority of documents in a given 
domain. For example, Sluban et al. [36] have shown that such documents, consid-
ered being outlier documents of their own domain, contain a substantially larger 
amount of bridging/linking terms than the regular non-outlier documents. This 
approach, using the OntoGen tool [12], is described in some detail in “Past LBD 
results and lessons learned”.

Bisociative Knowledge Discovery

Bisociative knowledge discovery is a challenging task motivated by a trend of over-
specialization in the research and development, which usually results in deep and 
relatively isolated silos of knowledge. Scientific literature too often remains closed 
and cited only in professional subcommunities. The information that is related 
across different contexts is difficult to identify using associative approaches, like 

Fig. 2  Closed discovery when exploring migraine and magnesium documents, with b-terms identified by 
Swanson et al. [41]
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the standard association rule learning [2] known from the data mining and machine 
learning literature. Therefore, the ability of literature mining methods and software 
tools to support the experts in their knowledge discovery processes—especially in 
searching for yet unexplored connections between different domains—is becoming 
increasingly important.

Arthur Koestler [19] argued that the essence of creativity lies in “perceiving of a 
situation or idea . . . in two self-consistent but habitually incompatible frames of ref-
erence”, and introduced the expression bisociation to characterize this creative act. 
More specifically, Koestler’s notion of bisociation was originally defined as follows.

“The pattern ... is the perceiving of a situation or idea, L, in two self-consist-
ent but habitually incompatible frames of reference, M1 and M2 . The event L, 
in which the two intersect, is made to vibrate simultaneously on two differ-
ent wavelengths, as it were. While this unusual situation lasts, L is not merely 
linked to one associative context but bisociated with two.”

Koestler found bisociation to be the basis for human creativity in seemingly diverse 
human endeavors, such as humor, science, and arts. The concept of bisociation is 
illustrated in Fig. 3. It should be noted that context crossing is subjective, since the 
user has to move from his ‘normal’ context (frame of reference) to an habitually 
incompatible context to find the bisociative link. In Koestler’s terms (Fig. 3), a habit-
ual frame of reference (plane M1 ) corresponds to the domain defined by the user. 
Other domains represents different, habitually incompatible contexts (in general, 
there may be several planes M2 ), where the creative act is to find links that lead ‘out-
of-the-plane’ via intermediate, bridging concepts. Thus, contextualization and link 
discovery are two of the fundamental mechanisms in bisociative reasoning.

In summary, according to Koestler [19], bisociative thinking occurs when a prob-
lem, idea, event, or situation is perceived simultaneously in two or more ‘matrices 
of thought’ or domains. When two matrices of thought interact with each other, the 
result is either their fusion in a novel intellectual synthesis or their confrontation in a 
new aesthetic experience. Koestler regarded many different mental phenomena that 
are based on comparison (such as analogies, metaphors, jokes, identification, and 
anthropomorphism) as special cases of bisociation.

More recently, this work was followed by the researchers interested in the so-
called bisociative knowledge discovery, where—according to [3]—two concepts are 

Fig. 3  Koestler’s schema of 
bisociative discovery in science 
[19, p. 107], illustrating the 
creative act of finding links 
(from S to target T) that lead 
‘out-of-the-plane’ via intermedi-
ate, bridging concepts (L)
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bisociated if there is no direct, obvious evidence linking them and if one has to cross 
different domains to find the link, where a new link must provide some novel insight 
into the problem addressed. Bisociative knowledge discovery has become a topic of 
extensive research, addressing the discovery of bridging links or bridging concepts 
crossing between different domains and representations.

In conclusion, let us summarize the previously published [21, 31] relationship 
between bisociative knowledge discovery and Swanson’s ABC model for literature-
based discovery, where the particular focus of interest is the relationship between 
Koestler’s bisociative link discovery framework and Weeber’s closed discovery 
framework, as summarized in Table 1. Similar to a bisociation, which is according 
to Koestler a result of processes of mind when making new associations between 
concepts S and T from usually separated contexts (illustrated in Fig. 3), literature-
based discoveries in Swanson’s ABC model are a result of uncovering links between 
concepts a and c from disjoint literatures A and C (illustrated in Fig. 1). In terms of 
Koestler’s model, the two domains A and C, investigated in the closed literature-
based discovery framework, correspond to the two habitually incompatible frames 
of reference, M1 and M2 . Moreover, the bridging terms b1, b2,… , bn that are com-
mon to literature A and C clearly correspond to Koestler’s notion of a situation or 
idea, L, which is not merely linked to one associative context, but bisociated with 
two contexts M1 and M2.

Embeddings

In terms of representation learning, our past LBD research that led to the lessons 
learned described in “Past LBD results and lessons learned” was based on using 
the standard TF-IDF weighted BoW vector representations of text documents [7, 
17, 31, 36]. On the other hand, the novel LBD methodology proposed in this paper 
in “Towards creative embeddings-based bisociative LBD” exploits contemporary 
representations of text documents using embeddings, given that current research in 
natural language processing demonstrates that representation learning using embed-
dings is much more effective than using the standard TF-IDF BoW vector repre-
sentation. The embedding approach to representation learning can be defined as 
follows. 

Embeddings  Given input data of a given data type and format, find a tabular 
representation of the data, where each row represents a single data 

Table 1  Unifying Koestler’s and Swanson’s models of creative knowledge discovery [21, 31]

Koestler’s model Swanson’s model

Bisociative link discovery process Closed discovery process
Frames of reference (contexts) M

1
 and M

2
Domains of interest A and C

Bisociative cross-context link L ∈ M
1
∩M

2
Bridging term b ∈ terms(A) ∩ terms (C)
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instance, and each column represents one of the dimensions in the 
d-dimensional numeric vector space ℝd.

The embedding technology is a prominent side effect of the recent revival of neu-
ral networks (NN), in which the information is represented by activation patterns 
in interconnected networks of primitive units (neurons). This enables concepts to 
be gradually learned by an NN from the observed data by modifying the connec-
tion weights between the hierarchically organized units. These weights that can be 
extracted from neural networks can be used as a spatial representation that trans-
forms relations between observed entities (data instances) into distances.

Recently, the embedding approach became a prevalent way to build represen-
tations for many different types of entities, e.g., graphs, electronic health records, 
images, relations, recommendations, as well as texts (documents, sentences and/or 
words). Word embeddings [25, 27], which are in the focus of our research described 
in “Towards creative embeddings-based bisociative LBD”, use large corpora of doc-
uments to extract vector representations of words, assigning each word a vector of 
several hundred dimensions. The first neural word embeddings like word2vec [25] 
produced one vector for each word, irrespective of its polysemy (e.g., for a polyse-
mous word like bank, word2vec produces a single representation vector, and ignores 
the fact that bank can present both a financial institution and a land sloping down to 
a water mass). Recent developments like ELMo [30] and BERT [9] take a context of 
a sentence into account and produce different word vectors for different contexts of 
each word. A further improvement of neural word embeddings for texts uses multi-
task prediction (inclusion of several related textual prediction tasks).

Past LBD Results and Lessons Learned

Outliers, characterized by their properties of being infrequent or unusual, may rep-
resent unexpected events, entities, items, or documents. Early research in LBD has 
focused on the identification and exploration of outlier documents, since they fre-
quently embody new information that is often hard to explain in the context of exist-
ing mainstream knowledge. The LBD research by Petrič et al. [31] and Sluban et al. 
[36] suggests that bridging terms are more frequent in documents that are in some 
sense different from the majority of documents in a given domain.

The outlier-based approach to LBD proposed by Petrič et al. [31] uses document 
clustering to find outlier documents. The approach consists of two steps. In the first 
step, the OntoGen clustering algorithm by Fortuna et al. [12] is applied to cluster the 
merged document set A ∪ C, consisting of documents from two domains A and C. 
The result of unsupervised clustering is two document clusters: A ′ = Classified as 
A (i.e., documents from A ∪ C classified as A), and C ′ = Classified as C (i.e., docu-
ments from A ∪ C classified as C). In the second step of outlier detection, clusters 
A ′ and C ′ are further separated, each into two clusters, based on the documents’ 
original labels A and C. As a result, a two-level tree hierarchy of clusters is gener-
ated, as illustrated in Fig. 4. 
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Lesson Learned 1: Potential   
of outlier documents  The hypothesis that outlier documents have the 

potential to improve the effectiveness of bridging 
term detection was tested on the migraine–magne-
sium [41] and autism–calcineurin [32] domain pair 
datasets, which have lists of concept bridging terms 
(b-terms) confirmed by the medical experts. The 
experimental results obtained using OntoGen con-
firm the hypothesis that most bridging terms appear 
in outlier documents and that by considering only 
outlier documents, the search space for b-term identi-
fication can be largely reduced.

This lesson—that outlier documents have the potential for improving the effec-
tiveness of bridging term detection—was reconfirmed in the work of Sluban et al. 
[36], exploring a classification filtering approach to outlier detection, which was 
tested on the same domain pair data sets, migraine–magnesium [41] and autism–cal-
cineurin [32] domain, which have lists of bridging terms (b-terms) confirmed by 
the medical experts. Sluban et al. [36] proposed to detect outlier documents using 

Fig. 4  Target domain documents from literatures A and C, clustered according to the OntoGen’s two-
step approach, first using unsupervised and then supervised clustering to obtain outlier documents O(A) 
and O(C) of literatures A and C, respectively. The figure illustrates the outlier detection approach imple-
mented using OntoGen, addressing the outlier detection framework that is conceptually explained in 
Fig. 5
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classification algorithms for classification noise filtering, first suggested by Brodley 
and Friedl [5]. Having documents from two domains of interest A and C, Sluban 
et al. [36] first trained an ensemble classifier that distinguishes between the docu-
ments of these domains, and use the ensemble classifier to classify all the docu-
ments. The miss-classified documents were declared as outliers, since—according 
to the classification model—they do not belong to their domain (class label) of ori-
gin. These outliers can be interpreted as borderline documents as they were con-
sidered by the model to be more similar to the other domain than to their original 
domain, and can be regarded as bridging documents between the two domains. In 
other words, if an instance of class A is classified in the opposite class C, it is con-
sidered an outlier of domain A, and vice versa. The two sets of outlier documents 
were denoted with O(A) and O(C), as illustrated in Fig. 5.

The experimental results obtained by Sluban et al. [36] showed that the sets of 
detected outlier documents are relatively small—including less than 5% of the entire 
datasets—and that they contain a great majority of bridging terms previously identi-
fied by medical experts, which was significantly higher than in same-sized random 
document subsets. These results are summarized in Fig. 6.

These experimental results indicate that it is justified that the search for b-terms 
can be focused on outlier documents, which contain a large majority of b-terms. 
Consequently, by focusing the exploration on outlier documents, the effort needed 
for finding cross-domain links is substantially reduced, as it requires to explore a 

Fig. 5  Detecting outliers of 
a domain pair dataset A ∪ C, 
using a document classification 
approach by Sluban et al. [36]

Fig. 6  Presence of b-terms in the detected outlier sets of two domain pair datasets
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much smaller subset of documents, where a great majority of b-terms are present 
and more frequent.

When applying OntoGen on the documents of the new application domain using 
the Alzheimer’s disease–gut microbiome domain pair [7], the OntoGen method uses 
domains A and C, and builds a joint document set A ∪ C . With this intention, two 
individual sets of documents (e.g., titles, abstracts, or full texts of scientific articles), 
one for each domain under research (namely, literature A on Alzheimer’s disease 
and literature C on gut microbiome), were automatically retrieved from the PubMed 
database. A cluster hierarchy was constructed from the dataset of 17,863 papers with 
OntoGen. Two first-level clusters are labeled with the OntoGen suggested keywords 
ad, abeta, cognitive, and microbiota, gut, and intestine. Four second-level subclus-
ters separate documents according to their original search keywords for Alzheimer’s 
disease and gut microbiome, as illustrated in Fig. 7. 

Lesson Learned 2: Excluding   
intersecting documents  In Alzheimer’s disease–gut microbiome LBD appli-

cation, the initial document set A ∪ C consisted of 
some documents, which were in the intersection 
of A and C, meaning that a few documents were 
retrieved from PubMed by both of the two separate 
queries for domain A (i.e., Alzheimer and C (i.e., 
(gut OR intestinal) AND (microbiota OR bacte-
ria)), which was surprising. After carefully inspect-
ing these documents (as these documents could 
contain the b-terms representing a solution to the 
problem, which proved not to be the case), it was 
realized that keeping them in the A ∪ C document 
set was problematic. As a result, the documents that 
were retrieved by both queries were eliminated,3 

Fig. 7  Two-level cluster hierarchy constructed with ontoGen from the dataset of 17,863 papers in the 
Alzheimer’s disease–gut microbiome domain pair

3 Their inclusion in the document set would have violated the assumption of literature-based discovery 
and bisociative knowledge discovery frameworks, which assume that the explored literature domains A 
and C are disjoint; if this assumption was violated, the methodology would fail due to biased heuristics 
calculations.
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resulting in 17,863 documents kept in the A ∪ C 
document set used for further exploration.

Lesson Learned 3: Selecting   
only outlier documents  The hypothesis that the search for bridging terms 

can be reduced to manageable subsets of docu-
ments was confirmed in our experiments. In the 
Alzheimer’s disease–gut microbiome LBD applica-
tion using OntoGen for outlier document detection, 
the space of documents used for b-term exploration 
was further reduced from the set of 17,863 docu-
ments to two subsets of outlier documents, i.e., to 
only 154 gut microbiome papers and 428 Alzhei-
mer’s disease related papers, considered as outli-
ers in their own domain, leading to the selection of 
only 582 documents for further inspection.

Lesson Learned 4: Expert   
revision of b-terms list  The hypothesis that b-terms selected from out-

lier documents can be further reduced with expert 
knowledge was confirmed in our experiments. By 
processing the remaining 582 outlier documents, 
we used CrossBee [17] to extract 4723 terms as 
potential b-terms connecting the two domains. In 
b-term exploration, all the terms were considered 
and not just the medical ones, except that a list of 
523 English stop words was used to filter out mean-
ingless words, and English Porter stemming was 
applied. Even though the list of potential bridging 
terms was ordered according to the ensemble-heu-
ristics estimated bridging terms potential, browsing 
and analyzing the terms from the list still presented 
a substantial burden for the domain expert. To fur-
ther reduce the size of the potential b-term list, the 
collaborating domain expert4 prepared a list of 289 
domain terms of her own research interest. This list 
included common terms and specific molecular fac-
tors and pathways, which were manually identified 
in titles, abstracts, and keywords from 42 papers 
obtained from PubMed search query (gut AND 
Alzheimer), 55 of which appeared also among the 
4723 terms extracted by CrossBee. During the eval-
uation phase, the relevant papers for each b-term 
candidate were reviewed and searched for poten-
tial clues justifying further investigation, resulting 

4 Elsa Fabretti.
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from relevant b-term discoveries confirmed by the 
domain expert [7].

  Compared to outlier document detection using OntoGen, an upgraded 
methodology proposed by Cestnik et al. [7] was implemented in a reus-
able outlier-based LBD methodology in a web-based text-mining platform 
TextFlows5 [29] that allowed us to construct and execute advanced text-
mining workflows. The workflow shown in Fig. 8 consists of seven steps 
implemented as subprocesses. The connections between subprocesses 
represent the flow of documents from one subprocess to another. In over-
view, steps 1–3 represent the outlier detection part, and steps 4–7 repre-
sent cross-domain exploration for b-term detection.

Lesson Learned 5: TextFlows   
workflow helping experts  In the experiments using the TextFlows work-

flow, the NoiseRank ensemble-based outlier 
detection approach [35] implemented in Text-
Flows was used. The goal of the first three steps 
(using first three workflow widgets) of the meth-
odology is to effectively extract a set of outlier 
documents from the whole corpus of input docu-
ments. Consequently, by decreasing the size of 
the input set of documents, the second phase 
becomes more focused, efficient, and effective. In 
the last four steps of the workflow in Fig. 8, com-
ponents that constitute the CrossBee HCI inter-
face [17] are executed to conduct expert-guided 
b-term analysis. Here, the goal is to further pre-
pare the input documents for b-term visualization 
and exploration. Note that in this step, the role of 
the domain expert is crucial.

Towards Creative Embeddings‑Based Bisociative LBD

In this section, we first formally define bisociation and the specific bisociative pat-
terns that are searched for bisociative knowledge discovery (i.e., bridging concepts, 
bridging graphs, and bridging by structural similarity), including the novel concept 
of bridging by relational bisociation in “Formal framework for creative bisociative 
LBD”. The potential of the embeddings technology for creative knowledge discov-
ery is explained in “Word embeddings potential for creative knowledge discovery”. 
“Novel embeddings-based bisociative LBD methodology” presents the proposed 
word embeddings-based bisociative LBD methodology, and explores the creativity 

5 http://textflows.org.
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potential of word embeddings in an LBD closed discovery setting, assuming an 
expert-defined relationship of interest between two terms a1 and a2 in domain A 
and an unknown relationship to be discovered for a given seed concept c and an 
unknown/yet to be discovered term x in domain C. “Embeddings-based relational 
LBD experiment conducted on thecircadian rhythm and plant defense domains” 
briefly outlines the experimental setting of the experiments conducted on the cir-
cadian rhythm–plant defense domain pair, where a proof-of-concept result evalua-
tion is given in “Results”. This section concludes by a summary and lessons learned 
from these experiments in “Summary and lesson learned from these experiments”.

Formal Framework for Creative Bisociative LBD

Bisociation is essentially a creative endeavor. To connect pieces of information from 
previously unrelated domains, a person must activate some form of creative mecha-
nism. This creative aspect is what allows one to go beyond one-dimensional asso-
ciations. This has been recognized in several psycho-cognitive theories related to 
creativity, which share the principle that a strong connection exists between creative 
activity and the ability to establish relations between seemingly unrelated domains.

Divergent reasoning can be achieved—to a certain degree—by means of cross-
domain exploration in multi-domain databases. Such a model must provide mecha-
nisms for mapping concepts and transferring meanings. According to Koestler [19], 
in addition to metaphor, the well-known examples of mechanisms that can be used 
in cross-domain knowledge transfer are analogy and bisociation. Before addressing 
bisociative computational creativity, we continue with the presentation of a formal 
definition of bisociation, as formulated by Dubitzky [11].

Definition 1 (Domain theory) A domain theory Di defines a set of concepts (knowl-
edge units) that are associated with a particular domain i.

Definition 2 (Knowledge base) A knowledge base Ki is defined as a subset of a 
domain theory Di ; that is, Ki ⊆ Di.

Fig. 8  A top-level workflow of the LBD methodology in TextFlows [29]
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Di denotes a domain theory which represents the total knowledge within 
a domain. The union of all domains then represents the universe of discourse: 
∪iDi = U . Many domain theories overlap: ∃i, j ∶ Di ∩ Dj ≠ � . Let U denote the 
universe of discourse, which consists of all concepts. Let c ∈ U denote a concept 
in U. Within U, a problem, idea, situation, or event � is associated with concepts 
X ⊂ U . Typically, a subset P ⊂ X is used to reason about �.

Let R denote a reference system or intelligent agent which possesses exactly 
one knowledge base (empty or non-empty) per domain theory Di . KR

i
∈ Di 

denotes the knowledge base with respect to R and Di.
KR = ∪iK

R
i
 denotes the entire set of K incorporated in the reference system of 

R. KR represents the total knowledge that R has in all the domains. For example, R 
may have non-empty knowledge bases for chess, but an empty one for geometry.

Definition 3 (Association) Let � denote a concrete problem, situation of event and 
let X ⊂ U denote the concepts associated with � . Furthermore, let KR

i
 denote an 

agent-specific knowledge base. Association occurs when elements of X are active or 
perceived in KR

i
 at time t only.

For example, at time t, the concepts A = {c1, c2, c3} may be active in KR
i
 only. 

In this case, we say that the concepts in A are associated.

Definition 4 (Habitually incompatible knowledge bases) Two agent-specific knowl-
edge bases KR

i
 and KR

j
 ( i ≠ j ) are habitually incompatible if, at a given point in time 

t, there is no concept c ∶ c ∈ KR
i
∧ c ∈ KR

j
 that is active or perceived simultaneously 

in KR
i
 and KR

j
.

Definition 5 (Bisociation) Let � denote a concrete problem, situation or event, and 
let X ⊂ U denote the concepts associated with � . Furthermore, let KR

i
 and KR

j
 be 

such that i ≠ j . Bisociation occurs when elements of X are active or perceived simul-
taneously in both KR

i
 and KR

j
 at a given point in time i.

For example, at time t, the concepts B = {c1, c2, c3} may be active or perceived 
simultaneously in KR

i
 and KR

j
 . In this case, the concepts in B are bisociated.

Bisociation cannot be equated with creativity in general. It is instead a spe-
cial case of combinatorial creativity, which refers to novel combinations of famil-
iar ideas: the creative aspect here is in the discovery of previously non-existing 
connections between domains, especially if each of the domains, or the elements 
repurposed from each, are very familiar. As put by Koestler [19],  “the more 
familiar the parts, the more striking the new whole”. This is so because creation 
is never really a de novo nor random activity; it requires meaningful combination 
of elements.

Starting from Kostler’s [19] concept of bisociation, concrete bisociative patterns 
that are searched for in bisociative knowledge discovery include: bridging concepts, 
bridging graphs, and bridging by structural similarity [20]: 
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Bridging concepts  This is the most natural type of bisociation: a 
concept connecting two domains. In practice, 
different literatures from different domains are 
explored, and some terms connecting the two 
are found. This is the kind of pattern originally 
explored by Swanson. These connecting terms 
allow us to corroborate hypotheses linking the 
two domains. Bridging concept in the intersec-
tion of two domains A and C is illustrated in 
Fig. 9.

Bridging graphs  More complex bisociations are modeled by 
bridging graphs, in a network representation. 
This is similar to bridging concepts, but in this 
case, what connects two different domains is a 
subset of related concepts.

Bridging by structural similarity  This is the most complex kind of bisociation, 
whereby, again in a network representation, sub-
sets of concepts in each domain share structural 
similarities, illustrated in Fig. 10.

Bisociations based on structural similarity are represented by relations and/
or subgraphs of two different, structurally similar domains [20], as illustrated in 
Fig. 10. This type of bisociation is according to [20] the most abstract pattern with 
the potential for new cross-domain discoveries, which, e.g., vertex similarity meth-
ods can identify.

A special case of bridging by structural similarity is the concept of bridging by 
relational bisociation, as illustrated in Fig.  11, which will be explained and used 
in the novel methodology proposed in “Novel embeddings-based bisociative LBD 
methodology”.

Word Embedding Potential for Creative Knowledge Discovery

Note that in this research, we neither use the TF-IDF representation of documents 
nor do we use document embeddings; instead, we focus on word embeddings. Word 
embeddings are vector representations of words: each word is assigned a vector of 
several hundred dimensions. These are usually obtained via training algorithms such 
as word2vec [25], GloVe [28], or FastText [4], which characterize the word based on 
the lexical context in which it appears. These representations improve performance 
in a wide range of automated text processing tasks, partly because they capture a 
degree of semantics. They can also capture regularities beyond simple relatedness, 
such as analogies [27]. A well-known example, illustrating this notion, is that word 
embeddings may explicitly find relations between words, as well as discover analo-
gies between word pairs, such as that, e.g., the relation between Madrid and Spain 
is very similar to that between Paris and France in the embedded vector space (see 
Fig. 12).
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Note that the analogies can be discovered within a single domain, as illustrated 
in Fig. 12. On the other hand, research in cross-lingual embeddings [8] has dem-
onstrated the ability of aligning embeddings spaces across languages, which can be 
used as a basis for finding analogies across corpora in different languages [42], as 
investigated in the current EMBEDDIA EU project.6

In this paper, we propose a novel methodology, based on the idea of translating 
the cross-lingual setting to a cross-domain setting: instead of considering two differ-
ent languages, we consider two separated domains A and C, use contemporary align-
ment methods [8] to align related concepts in the two domains, and finally perform 
analogy detection across the two domains [42]. In this way, we find bisociations by 
implementing the idea of bridging by relational bisociation.

Novel Embedding‑Based Bisociative LBD Methodology

Most important for this paper is the property of word embeddings that they can cap-
ture regularities beyond simple relatedness, such as analogies [27], illustrated in 
Fig. 12. In the particular closed literature-based discovery setting of interest to this 
research, we implement the concept of bridging by relational bisociation. 

Bridging by relational bisociation  We propose a particular setting of bridging by 
relational bisociation, illustrated in Fig.  11, 
where we are interested whether given a spe-
cific relation between two concepts a1 and a2 

Fig. 9  Bridging concept in the 
intersection of two literature 
domains A and C 

Fig. 10  Bridging by structural similarity of graphs [20]

6 www.embeddia.eu, see details in Acknowledgements.
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in first domain A, one can bisociatively discover 
an analogous relation between concepts x and 
c in second domain C, where c is a given con-
cept and x is a new concept that we are trying 
to find. More formally, this can be written in the 
form of an analogy (i.e., bisociation) between 
two separate domains A and C as follows: 

 In the embeddings space, this analogy translates to the following equation between 
embeddings:

Finally, once x is calculated, we need to find a set of concepts from the second 
domain C that have an embeddings representation most similar to x according to 
some predefined distance measure (e.g., the cosine similarity). 

Methodology of bridging by  
relational bisociation  Proposed embedding-based bisociative LBD 

methodology for creative discovery of bisociated 
relationships between two domains A and C con-
sists of the following steps:

1.  Select two domains A and C, i.e., two document corpora such as circadian 
rhythm and plant defense, respectively.

2.  Train separate word embeddings models for A and C to get emb(A) and 
emb(C).

3. Perform alignment of emb(A) and emb(C) embeddings vector spaces.
4.  Determine the relationships of interest in a given domain A between concepts 

a1 and a2 defined by the biology expert.
5.  Perform the embeddings-based relational LBD with a known seed concept c in 

C by leveraging the ability of the embeddings representations to model anal-
ogy relations.

6. Evaluate a list of best-ranked relational bisociations.

�� ��� ��== � ��� �.

�= ���(��) + ���(��) − ���(�).

Fig. 11  Bridging by relational bisociation, the concept newly introduced in this paper
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Embeddings‑Based Relational LBD Experiment Conducted on the Circadian 
Rhythm and Plant Defense Domains

In this section, we report in detail on the experiments conducted on the circadian 
rhythm and plant defense domains. Our main goal was to identify potentially inter-
esting new daily regulated mechanisms that are responsible for plant defence. Cir-
cadian rhythm in plants causes that some of their genes are expressed differently 
during the course of the day. Consequently, plants respond differently to disease-
causing infection if they are infected at different times of the day (e.g., morning, 
noon, and evening). Therefore, one of the goals of our study was to identify new 
gene sets that are differently expressed in different parts of the day and are important 
for the defense of plants against the pathogen.

After obtaining 10,494 documents from PubMed containing article titles and 
abstracts (4346 from plant defence and 6148 from circadian rhythm), we replaced 
gene names with synonyms gathered in previous research projects (22,265 gene 
names mapped into 7863 synonyms). In addition, we pre-processed the docu-
ments to keep only gene-related terms (included in synonym list and from the 
gene dictionary containing additional 6083 gene names), which resulted in a sub-
stantial reduction of the input document corpus, which we called the genesOnly 
dataset. The experiments that were conducted following the methodology pro-
posed in “Novel embeddings-based bisociative LBD methodology” served as a 
proof of concept to show that the new proposed embeddings-based methodology 
can be used for LBD.

Fig. 12  Two-dimensional projection of embeddings illustrating capital–country relations. Picture taken 
from Mikolov [26]



792 New Generation Computing (2020) 38:773–800

123

On each of the two selected domains, circadian rhythm and plant defense, we 
trained a separate FastText embedding model [4]. FastText embeddings were chosen 
due to their ability to leverage both semantic and morphological information by rep-
resenting each word as an average of its character n grams. This is useful in a setting 
with a relatively small domain corpora containing less semantic information, since 
morphological similarity in many cases translates to semantic relatedness. We used 
a skip-gram model with an embedding dimension of 100.

The resulting embedding models trained for each domain were in the next step 
aligned into a common vector space. We opted for a supervised alignment approach, 
which relies on a training dictionary of identical words from both domains that are 
used as anchor points to learn a mapping from the source to the target space with 
a Procrustes alignment [8]. Train and test dictionaries were constructed by tak-
ing 5000 most frequent words from both domains (i.e., words that appear in both 
domain and have the largest sum of frequencies) and then split randomly into a train 
dictionary containing two-thirds of the words (3333) and a test dictionary contain-
ing one-third of the words (1667).

The success of the alignment was measured on the test dictionary in terms of 
precison@k, where precison@1 represents a share of model’s correct alignments 
(exact matches) in a set of all alignments, and precison@5 represents a share of 
model’s alignments in a set of all alignments, where the correct match for the word 
is found in the set of 5 most probable alignments predicted by the model. In the con-
ducted experiment, we report the precison@1 of 0.4 and precison@5 of 0.55.

Next, we asked a biology expert to identify a list of genes related to the circadian 
rhythm domain. The following list was produced: 

 1. CCA1 = CIRCADIAN CLOCK ASSOCIATED1
 2. LHY = LATE ELONGATED HYPOCOTYL
 3. TOC1 = TIMING OF CAB EXPRESSION 1
 4. PRR1 = PSEUDO-RESPONSE REGULATOR 1
 5. GI = GIGANTEA
 6. LNK1 = NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 1
 7. PRR5 = PSEUDO-RESPONSE REGULATOR 5
 8. ELF4 = EARLY FLOWERING 4
 9. PRR9 = PSEUDO-RESPONSE REGULATOR 9
 10. PRR7 = PSEUDO-RESPONSE REGULATOR 7
 11. PCL1 = PHYTOCLOCK 1
 12. ELF3 = EARLY FLOWERING 3

In addition, we also took more general key concepts from the circadian rhythm 
domain: 

 13. NEGATIVE FEEDBACK LOOP
 14. OSCILLATOR
 15. CLOCK.



793New Generation Computing (2020) 38:773–800 

123

According to the methodology explained in “Novel embeddings-based bisociative 
LBD methodology”, we tried to identify a list of genes related to the concept of 
plant defense in the similar way the genes from the above list are related to the con-
cept of circadian rhythm. First, we calculated embedding x according to the follow-
ing equation:

where a1 is a concept circadian rhythm, a2 is a gene from the above list, and c is a 
concept plant defense.

Finally, once x was calculated for each of the genes from the above list, we 
searched for a set of concepts from the plant defense domain that have an embed-
dings representation most similar to x according to the cosine similarity. To limit 
the results only to genes or gene-related concepts, the concepts from the second 
domain were considered only if they appeared in the reduced genesOnly dataset. 
Ten genes or gene-related concepts with the representation most similar to each of 
the calculated xs were identified and given to the biology expert for the evaluation.

Results

The biology domain expert evaluated the selected set of output terms for all given 
analogy inputs. More specifically, for the analogies—a2 is as important to a1 (cir-
cadian rhythm) as x is to c (plant defense)—for each input relation, the resulting list 
of 10 candidates most similar to x (according to the cosine similarity between the 
candidate’s embedding and x) were evaluated by the expert, who was given instruc-
tions to manually classify the relatedness between a candidate and the plant defense 
domain into the following four categories: NO, NOT AT ALL; NOT REALLY; 
MAYBE; YES. While YES is the category serving as a proof that the methodology 
works, MAYBE is the category containing very interesting terms from the knowl-
edge discovery point of view, as, here, the experts might potentially search for novel 
knowledge.

First, we calculated the average precision at 10 (p@10) for each output list of 10 
candidates, as well as a microaveraged precision for the entire dataset (see Table 2). 
We can observe that the method performed very well. In 40% of the cases, the 
expert found in the scientific literature that the discovered relation between the plant 
defense concept and the proposed term x is meaningful. We can see that precision 
varies for different input relations, but the method was able to find at least one cor-
rect relation in the plant defense domain for each circadian rhythm input relation. 
For input relations between the concept circadian rhythm and genes ELF4, PRR9 
and PRR7, six out of ten term candidates in the resulting candidate lists are related 
to the plant defense domain. On the other hand, the lowest results are for the input 
concept negative feedback loop, where only for one out of ten output terms, the 
expert found that the output term was relevant for the domain. A reason for this 
could be that the input term is one of the few terms, which is not a gene but rather 
a gene-related concept (text), and that it is a multi-word expression, for which the 
average embedding was first calculated (by averaging embeddings for each word in 

� = ���(��) + ���(��) − ���(�),
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the term) to obtain the term embedding, and, therefore, the results might be less 
precise.7

For the category MAYBE, which is the most interesting category for the new 
knowledge discovery and for which the outputs might possibly be investigated in 
detail in the future research by the domain experts, we can note that for all input rela-
tions but one, at least one out of 10 outputs was considered potentially interesting. 
In a knowledge discovery setting, where each discovery if resulting in new domain 
knowledge would have big impact, this was considered as a promising result.

As explained above, the biology expert evaluated 10 candidates for each input 
relation. These relations were ranked according to the cosine similarity between 
x and the candidate, with rank 1 representing the candidate closest to x, i.e., with 
the largest cosine similarity to x. Table  3 presents results for candidates with 
different ranks. Note that here we measured precision at 15, i.e., how many out 
of 15 predicted terms with a specific rank had been evaluated as related to the 
plant defense domain (P@15 yes) or as maybe being related to the plant defense 
domain (P@15 maybe). Interestingly, the correlation between precision at 15 and 
rank was not strong and better ranked candidates were not necessarily more cor-
related to the plant defense domain according to the evaluation. For example, the 
best evaluated candidates had rank 5, where P@15 yes was 0.6 and P@15 maybe 
was 0.133.

Next, we removed duplicate outputs, merged all the output terms from all the 
inputs, and calculated the class distribution for this list (see Table 4). The ration-
ale for this procedure is that since, in our case, the a1 and c were always the same 
(equivalent to domain names circadian rhythm and plant defence) and as the differ-
ent a2 all modeled the same relation—a2 is as important to a1 (circadian rhythm) as 
x is important to c (plant defense)—we could treat also all results as a common list 
of relevant terms (genes). As the results indicate, about 37% of output terms were 
evaluated as relevant to the plant defense domain. Also, together with the category 
MAYBE, which indicates that the output is potentially relevant (but requires further 
research), this percentage of relevant terms increased to nearly 55%.

From 40 examples in the categories YES and MAYBE, 32 were gene names and 
3 were proteins, while the rest referred to a disease or partial names of proteins, 
genes, etc. Below, we list ten terms and their full names that were classified in cat-
egory YES and appeared in results of at least 3 input terms: 

 1. DMR1 = DOWNY MILDEW RESISTANT 1
 2. CPR30 = CONSTITUTIVE EXPRESSER OF PR GENES 1
 3. EIF4G = EUKARYOTIC TRANSLATION INITIATION FACTOR 4 G
 4. SLAC1 = SLOW ANION CHANNEL-ASSOCIATED 1

7 There are several possible multi-word expression aggregation approaches, such as summation of com-
ponent word vectors, averaging of component word vectors, creating multi-word term vectors, etc. As 
comparing different techniques is beyond the scope of this study, we decided for the simple averaging 
technique, as the previous research on this topic conducted on the medical domain [14] found no statisti-
cally significant difference between any multi-word expression aggregation method.
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 5. RFC3 = REPLICATION FACTOR C SUBUNIT 3
 6. RTM1 = RESTRICTED TEV MOVEMENT 1
 7. SNI1 = SUPPRESSOR OF NPR1-1
 8. GRF6 = GROWTH-REGULATING FACTOR 6
 9. NAC083 = NAC DOMAIN CONTAINING PROTEIN 83
 10. XAP5 = XAP5 CIRCADIAN TIMEKEEPER

Summary and Lesson Learned from These Experiments

Given the proof-of-concept evaluation of these results, the proposed methodol-
ogy demonstrates its relevance for knowledge discovery research. One of the most 
interesting findings observed from the conducted experiments was the presence 
of some resistance and susceptibility genes among the candidates proposed by the 
method; these genes are known to play an important role in the plant defense pro-
cess. Moreover, the best ranked candidate obtained for the c term inputs CCA1 and 
LHY (two central genes of the circadian clock rhythm) was DMR1 (a susceptibility 
gene, mutation of this gene results in a higher resistance), that is a hot topic of a 
plant resistance research lately. In future work, the genes identified in results will be 
closely inspected by domain experts. In conclusion, let us summarize this section by 
the lesson learned from these experiments. 

Lesson Learned 6: Term   
filtering and synonyms matter  In the experiments using plant defence-circadian 

Table 2  Evaluation for 15 input relations

Source gene/term No, not at all Not really Maybe Yes P@10 Maybe P@10 Yes

CCA1 1 3 1 5 0.1 0.5
LHY 0 5 1 4 0.1 0.4
TOC1 0 1 3 6 0.3 0.6
PRR1 0 5 2 3 0.2 0.3
GI 1 5 2 2 0.2 0.2
LNK1 1 4 1 4 0.1 0.4
PRR5 0 3 3 4 0.3 0.4
ELF4 0 2 2 6 0.2 0.6
PRR9 0 4 0 6 0.0 0.6
PRR7 0 3 1 6 0.1 0.6
PCL1 2 6 0 2 0.0 0.2
ELF3 1 4 2 3 0.2 0.3
NEGATIVE FEED-

BACK LOOP
7 0 2 1 0.2 0.1

OSCILLATOR 4 2 1 3 0.1 0.3
CLOCK 1 1 3 5 0.3 0.5
All 18 48 24 60 0.16 0.4
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rhythm domain pair, the goal was to identify 
potentially interesting new daily regulated 
mechanisms that are responsible for plant 
defence. After obtaining 5412 documents from 
PubMed containing complete articles (2483 
from plant defence and 2929 from circadian 
rhythm), 0.5% documents shorter than 20 char-
acters (mostly empty contents) and longer than 
97,500 characters (containing many different 
articles in proceedings) were removed. Then, 12 
duplicates that were present in both domains (as 
in Lesson Learned 2) were eliminated. The cru-
cial, although simple and straightforward, step 
in this experiment was the replacement of gene 
names with synonyms gathered in the previous 
research projects (22,265 gene names mapped 
into 7863 synonyms). In addition, the docu-
ments were optionally pre-processed to keep 
only gene-related terms (included in synonym 
list and from the gene dictionary containing 

Table 3  Evaluation according to rank

Rank No, not at all Not really Maybe Yes P@15 Maybe P@15 Yes

1. 2 4 1 8 0.067 0.533
2. 2 6 1 6 0.067 0.400
3. 1 7 1 6 0.067 0.400
4. 3 7 2 3 0.133 0.200
5. 1 3 2 9 0.133 0.600
6. 4 1 3 7 0.200 0.467
7. 1 4 4 6 0.267 0.400
8. 2 3 5 5 0.333 0.333
9. 1 6 3 5 0.200 0.333
10. 1 7 2 5 0.133 0.333
All 18 48 24 60 0.160 0.400

Table 4  Evaluation on all output 
terms (duplicates removed)

Label Count Perc. (%)

NO, NOT AT ALL 14 19.18
NOT REALLY 19 26.03
MAYBE 13 17.81
YES 27 36.99
Total 73 100
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additional 6083 gene names), which resulted 
in a substantial reduction of the input file size 
(from 200 to 28 MB).

Conclusions and Further Work

This paper addresses the field of scientific computational creativity, in particular 
bisociative literature-based discovery. The paper mostly focused on finding out-
lier documents as means for finding unexpected links crossing different contexts. 
Selected approaches to bridging term detection through outlier document explora-
tion are briefly outlined, together with the lessons learned from recent applications 
in medical and biological literature-based knowledge discovery. Finally, the paper 
addresses new prospects in bisociative literature-based discovery, proposing a novel 
methodology exploiting the use of advanced embedding technology for bisociative 
cross-domain literature mining.

Our future work, aimed at improving the effectiveness of bridging term detection 
in cross-domain literature mining, will be performed in several directions, based on 
our current research: using ontologies for term enrichment in cross-domain docu-
ment exploration, and using network analysis for cross-domain heterogeneous infor-
mation network exploration.

– The use of background knowledge remains largely unexploited in text classi-
fication and clustering. Word taxonomies can easily be exploited as means for 
constructing new semantic features, which can be used in the text representa-
tion learning to improve the performance and robustness of the learned models. 
Consequently, our novel tax2vec algorithm [34] could be used for constructing 
taxonomy-based features to improve the results of document clustering and clas-
sification.

– Given that documents can be easily transformed into graphs (e.g., graphs con-
structed from subject–verb–object triplets), network analysis approaches can 
prove to be fruitful for bridging term detection (e.g., community detection and 
finding bridging nodes in graphs between subgraphs representing the detected 
communities).

– We will also introduce additional user-interface options for data visualization and 
exploration, as well as advance our bridging term ranking methodology [17] by 
adding new heuristics, which will take into account also the semantic aspects of 
the data.

– Most importantly, we will further explore embeddings-based LBD in the closed 
LBD settings, aiming to improve and further explore the methodology proposed 
in “Towards creative embeddings-based bisociative LBD”. Especially, we plan to 
focus on bisociative discovery without known concept c, as well as on enabling 
multi-word expressions as output.

– We will experiment with new application topics. It will be especially insight-
ful to address problems in need of discovering novel bisociations between two 
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different domains. Also, it could be useful to investigate two entirely unrelated 
domains to provide a baseline.
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