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The paper presents a new methodology for mining heterogeneous information networks, motivated
by the fact that, in many real-life scenarios, documents are available in heterogeneous information
networks, such as interlinked multimedia objects containing titles, descriptions and subtitles.
The methodology consists of transforming documents into bag-of-words vectors, decomposing the
corresponding heterogeneous network into separate graphs, computing structural-context feature
vectors with PageRank, and finally, constructing a common feature vector space in which knowledge
discovery is performed. We exploit this feature vector construction process to devise an efficient
centroid-based classification algorithm. We demonstrate the approach by applying it to the task
of categorizing video lectures. We show that our approach exhibits low time and space complexity
without compromising the classification accuracy. In addition, we provide a qualitative analysis of

the results by employing a data visualization technique.

Keywords: text mining; heterogeneous information networks; data fusion; classification; centroid-based
classifier; diffusion kernels; data visualization

Received 27 November 2011; revised 18 March 2012
Handling editor: Einoshin Suzuki

1. INTRODUCTION

In many real-life data mining scenarios involving document
analysis, the accompanying data can be represented in the
form of heterogeneous information networks. We address this
data analysis setting by proposing a methodology that takes
advantage of both types of data by employing techniques from
text, graph and heterogeneous network mining, and data fusion.

Text mining [1], which aims at extracting useful information
from document collections, is a well-developed field of
computer science. In the last decade, text mining research was
driven by the growth of the size and the number of document
collections available in companies and public organizations and
especially by the rapid growth of the world’s largest source of
semi-structured data, the Web. Text mining is used to extract
knowledge from document collections by using data mining,
machine learning, natural language processing and information
retrieval techniques. The data preprocessing step plays a crucial
role in text mining. In this step, documents are transformed into
feature vectors according to a certain representational model and
then processed with the available machine learning algorithms

that can handle sparse vector collections with high feature
dimensionality and continuous or binary features [such as k-
nearest neighbors (k-NN), k-means clustering, support vector
machine (SVM) and Naive Bayes).

Naturally, not all data come in the form of documents. A lot
of recent research involves analyses of data from networked
systems where individual agents or components interact with
other components, forming large, interconnected and hetero-
geneous networks. In short, such networks are called hetero-
geneous information networks [2]. Some examples of hetero-
geneous information networks are communication and com-
puter networks, transportation networks, epidemic networks,
social networks, e-mail networks, citation networks, biological
networks and also the Web (with the emphasis on its struc-
ture). Such networks can also be formed from data in relational
databases and ontologies. In heterogeneous information net-
works, knowledge discovery is usually performed by resorting
to social network analysis [3], link analysis [4, 5] and other
dedicated approaches to mining heterogeneous information net-
works [2].
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In many real-life scenarios, information networks also
contain documents. This results in heterogeneous information
networks in which (some) objects are associated with
corresponding sets of textual documents. Examples of such
networks include the Web (interlinked HTML documents),
multimedia repositories (interlinked multimedia descriptions,
subtitles, slide titles, etc.), social networks of professionals
(interlinked CVs), citation networks (interlinked publications)
and even software code (heterogeneously interlinked code
comments) [6]. The abundance of such document-enriched
networks motivates the development of a new methodology that
joins the two worlds, text mining and mining of heterogeneous
information networks, and handles the two types of data in a
common data mining framework.

The methodology presented in this paper is based on
decomposing a heterogeneous network into (homogeneous)
graphs, computing feature vectors with Personalized PageRank
(P-PR) [7], and constructing a common vector space in which
knowledge discovery is performed. Heterogeneity is taken into
account in this final step of the methodology where all the
structural contexts and the text documents are ‘fused’ together.
We demonstrate the methodology by employing it for the task of
categorizing video lectures hosted on VideoLectures.net,1 one
of the world’s largest academic video hosting Web portals.

This work extends the paper presented at Discovery Science
2011 [8] in that it (i) extends the related work section
(most notably with a discussion on data fusion techniques),
(ii) discusses network decomposition on a toy example
(Section 3.1), (iii) includes a discussion on data mining tasks
that can be addressed and tools that can be used when using the
proposed methodology (Section 3.5), (iv) presents additional
text preprocessing experiments and the results (Section 4.2),
(v) provides additional insights into weights computation
(Section 4.3) and (vi) provides qualitative explanations of
the classification results through vector space visualization
(Section 7).

The paper is structured as follows. In Section 2, we present
the related work. In Section 3, the proposed methodology
is presented. Section 4 presents the experimental results
of employing the methodology in a real-life video-lecture
categorization task. We present a new centroid classifier
that exploits the properties of the presented feature vector
construction process in Section 5 and discuss its efficiency in
terms of reduced time and space complexity in Section 6. In
Section 7, we provide a qualitative analysis of the results by
employing a data visualization technique. Section 8 concludes
the paper and briefly discusses plans for further work.

2. RELATED WORK

The related work comes from the fields of text mining, graph and
heterogeneous network mining and data fusion. In the following

1http://videolectures.net/.

subsections, we discuss some of the related approaches from
these research areas.

2.1. Text, graph and heterogeneous network mining

Text mining employs basic machine learning principles, such as
supervised and unsupervised learning [9], to perform tasks such
as text categorization (also known as ‘text classification’), topic
ontology construction [10], text corpora visualization [11] and
user profiling [12, 13]. Most text mining approaches rely on the
bag-of-words (BOW) vector representation of documents [14].

Text categorization is a widely researched area due to its
value in real-life applications such as indexing of scientific
articles, patent categorization, spam filtering and Web page
categorization [15]. In [16], the authors present a method
for categorizing Web pages into the Yahoo! taxonomy.2 They
employ a set of Naive Bayes classifiers, one for each category
in the taxonomy. For each category, the corresponding classifier
gives the probability that the document belongs to this category.
A similar approach is presented in [17], where Web pages are
being categorized into the DMoz taxonomy.3 Each category
is modeled with the corresponding centroid BOW vector and
a document is categorized simply by computing the cosine
similarity between the document’s BOW vector and each of the
computed centroids. Apart from Naive Bayes [9] and centroid-
based classifiers [18, 19], an SVM [20] is also a popular
classifier for text categorization.

In the areas of graph and heterogeneous network mining,
a different family of data analysis algorithms was devised.
Important building blocks are the techniques that can be used
to assess the relevance of an object (with respect to another
object or a query) or the similarity between two objects in a
network. Some of these techniques are: spreading activation
[21], hubs and authorities (HITS) [22], PageRank and P-PR
[7], SimRank [23] and diffusion kernels (DK) [24]. These
methods are extensively used in information-retrieval systems.
The general idea is to propagate ‘authority’ from ‘query nodes’
into the rest of the graph or heterogeneous network, assigning
higher ranks to more relevant objects.

ObjectRank [25] employs global PageRank (importance)
and P-PR (relevance) to enhance the keyword search in
databases. Specifically, the authors convert a relational database
of scientific papers into a graph by constructing the data graph
(interrelated instances) and the schema graph (concepts and
relations). To speed up the querying process, they precompute
P-PR vectors for all possible query words. Stoyanovich et al.
[26] present a ranking method called EntityAuthority which
defines a graph-based data model that combines Web pages,
extracted (named) entities and ontological structure in order to
improve the quality of keyword-based retrieval of either pages
or entities. The authors evaluate three conceptually different

2http://dir.yahoo.com/.
3http://www.dmoz.org/.
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methods for determining relevant pages and/or entities in such
graphs. One of the methods is based on mutual reinforcement
between pages and entities, while the other two approaches are
based on PageRank and HITS, respectively.

In [5], the authors propose a link-based classification
algorithm for homogeneously interlinked data. In their
approach, they describe each object (represented as a node
in the graph) with object properties (i.e. BOW vector) and,
in addition, with categorization information observed in its
immediate neighbors. They employ logistic regression for the
classification task and fuse the two different types of data (i.e.
textual and structural) in a probabilistic framework. To get
the initial information about categories, they simply perform
text classification, discarding the structural information. After
that, they perform an iterative refinement process in which
they describe each object with the categorization information
from its immediate neighborhood (in addition to its BOW
representation) and re-categorize the object. The authors show
that the classification performance is improved when compared
with a simple content-only classification. Their methodology
bears some similarity to our work in that it fuses textual and
structural data to improve the performance. It also employs
an iterative process to make use of distant relationships in the
graph (we achieve the same goal with PageRank). The main
difference is that our approach is not limited to classification
tasks (even though we present a classification case study in
Section 4) or to a particular machine learning algorithm. In
addition, we explicitly discuss how structural heterogeneity can
be taken into account.

Zhu and Ghahramani [27] present a method for transductive
learning that first constructs a graph from the data and then
propagates labels along the edges to label (i.e. classify)
the unlabeled portion of the data. The graph regularization
framework proposed by Zhou and Schölkopf [28] can also
be employed for categorization. However, most of these
methodologies are devised for graphs rather than heterogeneous
networks. GNetMine [29] is built on top of the graph
regularization framework but takes the heterogeneity of the
network into account and, consequently, yields better results.
CrossMine [30] is another system that exploits heterogeneity in
networks. It constructs labeling rules while propagating labels
along the edges in a heterogeneous network. These approaches
clearly demonstrate the importance of handling different types
of relations and/or objects in a network separately.

2.2. Data fusion

Rather than devising a methodology for a specific task,
domain or network type, we resort to data fusion to take the
heterogeneity into account. Data fusion refers to combining
different types of data (media) in order to perform a data
analysis task. It is widely studied in the field of multimedia
analysis where data is obtained from different modalities such
as video, audio, text and motion. An extensive survey was

presented by Atrey et al. [31]. According to the authors of the
survey, data fusion can either be performed on the feature level
(early fusion) or on the decision level (late fusion). Feature-
level fusion refers to combining features or feature vectors
in the data transformation process. Propositionalization [32],
an approach well known from inductive logic programming
[33, 34] and relational data mining [35], belongs to this
category of data fusion techniques. It refers to the process
of converting a relational knowledge representation into a
propositional feature vector representation.An extensive survey
of propositionalization approaches can be found in [32].
Feature-level fusion is advantageous in that the employed
training algorithm can study correlations between features,
which is not possible with the decision-level approaches.
Decision-level fusion refers to solving the task for each modality
separately and then combining the results through a fusion
model (e.g. [5, 36]). One of the simplest late fusion approaches
is majority voting which is often used in ensembles of machine
learning models [36]. If the data mining approach is based
on the probabilistic framework (e.g. Naive Bayes, logistic
regression, maximum entropy model), it is possible to perform
fusion by using Bayesian inference (e.g. [5]). The decision-
level approaches have the advantages of (i) being more scalable
(several smaller models are built instead of one large model),
(ii) allowing the use of different models in the inference phase
and (iii) providing a uniform representation of data (i.e. a set
of decisions) that is further processed with a fusion model. We
additionally point out that data fusion can also be performed on
the similarity level, which corresponds to combining similarities
between objects over different modalities. The kernel-based
fusion methods fall into this category (e.g. [37–39]). The
most obvious advantage of this type of fusion, similarly to
the decision-level approaches, is that the fusion model deals
with a uniform data representation (i.e. a set of similarities).
One of the disadvantages is that only the kernel or similarity-
based data analysis algorithms can be employed after the
fusion process.

In our work, we employ a linearly weighted feature-level
fusion approach. The term ‘linearly weighted fusion’ refers to
combining data from different modalities in a linear fashion (e.g.
linear combination of similarity scores [37–39]). Although the
basic idea is simple, the weights need to be adjusted in the fusion
process, which is not a trivial task. Note that performing early
fusion makes our methodology relatively flexible in terms of
which data analysis algorithm can be employed and what kind of
data mining task can be addressed. We counter the heterogeneity
issue by limiting ourselves to textual data and networks and by
devising a method of representing network nodes in a similar
fashion to texts (see Section 3.3). Furthermore, for classification
tasks, we counter the scalability issue by devising an efficient
centroid-based classifier (see Section 5).

Even though in this paper, we deal with feature vectors rather
than kernels, the kernel-based data fusion approach presented
by Lanckriet et al. [39] is closely related to our work. In their
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FIGURE 1. The proposed methodology for transforming a heterogeneous information network and the corresponding text documents into a joint
feature vector format. Feature vector construction is shown for one particular object.

method, the authors propose a general-purpose methodology
for kernel-based data fusion. They represent each type of data
with a kernel and then compute a weighted linear combination
of kernels (which is again a kernel). The linear-combination
weights are computed through an optimization process called
Multiple Kernel Learning (MKL) [37, 38], which is tightly
integrated into the SVM’s margin maximization process. The
authors define a quadratically constrained quadratic program in
order to compute the support vectors and linear-combination
weights that maximize the margin. In the paper, the authors
employ their methodology for predicting protein functions in
yeast. They fuse together six different kernels (four of them
are DK based on graph structures). They show that their data
fusion approach outperforms the SVM trained on any single
type of data, as well as the previously advertised method based
on Markov random fields. In the approach employed in our case
study, we do not employ MKL but rather a stochastic optimizer
called Differential Evolution (DE) [40], which enables us to
directly optimize the target evaluation metric.

3. PROPOSED METHODOLOGY

In this work, we employ several well-established approaches
from the fields of text, graph and heterogeneous network
mining. The main contribution is a general-purpose framework
for feature vector construction, establishing an analogy between
BOW vectors and P-PR. In contrast to the approaches that
use authority propagation algorithms for label propagation,
we employ P-PR for feature vector construction. This allows
us to fuse text documents and different types of structural
information together and thus take the heterogeneity of the
network into account. This section presents the proposed
methodology for transforming a heterogeneous information
network into a feature vector representation.

We assume that we have a heterogeneous information
network that can be decomposed into several homogeneous
undirected graphs with weighted edges, each representing a
certain type of relationship between objects of interest (see
Section 3.1). We also assume that several objects of interest
are associated with text documents, which is not mandatory for
the methodology to work.

Figure 1 illustrates the proposed feature vector construction
process. Text documents are first transformed into feature

vectors (i.e. BOW vectors) as briefly explained in Section 3.2.
In addition, each graph (resulting from the decomposition of
the given heterogeneous network) is transformed into a set of
feature vectors. We employ P-PR for this purpose as explained
in Section 3.3. As a result, each object is now represented
as a set of feature vectors (i.e. one for each graph and one
for the corresponding text document). Finally, the feature
vectors describing a particular object are combined into a single
concatenated feature vector as discussed in Section 3.4. We
end up with a typical machine learning setting in which each
object, representing either a labeled or unlabeled data instance,
is represented as a sparse feature vector with continuous
feature values. The concatenated feature vectors are ready to
be employed for solving various data mining tasks as briefly
discussed in Section 3.5.

3.1. Decomposing heterogeneous networks into graphs

To illustrate how a heterogeneous network can be decomposed
into separate undirected graphs, let us consider a toy
heterogeneous network of scientific publications shown
in Fig. 2.

Let us now assume that the publications are the objects of
interest which means that they will be represented as nodes
in the resulting graphs. The heterogeneous network shown in
Fig. 2 interlinks the publications in several different direct and
indirect ways:

(i) Two publications are interlinked (indirectly, through
authors) if they were published by at least one
common author (resulting in the ‘publication-author-
publication’ or ‘P-A-P’ graph).

(ii) Two publications are interlinked (indirectly, through
proceedings) if they were published in the same pro-
ceedings (resulting in the ‘publication-proceedings-
publication’ or ‘P-P-P’ graph).

(iii) Two publications are interlinked if one cites the other
(resulting in the ‘publication-cites-publication’ or ‘P-
c-P’ graph).

The three resulting graphs are shown in Fig. 3. In this toy
example, most of the edges in the graphs are weighted equally
(their weight is 1). The only exception is the P-A-P graph where
the weights correspond to the number of authors two lectures
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Methodology for Mining Document-Enriched Heterogeneous Information Networks 5

FIGURE 2. Toy heterogeneous network of scientific publications.

FIGURE 3. The three graphs resulting from the toy network
decomposition: the P-A-P, P-P-P and P-c-P graph, respectively.

have in common. Note that in the P-P-P graph, we interlink
two publications even if they were not published in the same
proceedings but rather in the same family of proceedings (e.g.
Discovery Science proceedings regardless of the year). At this
point, we could use higher edge weights for pairs of publications
that were published in the same proceedings and lower for those
that were not published in the same year, but we avoided this in
this toy example for the sake of simplicity.

There are no strict rules about which indirect links to take into
account when decomposing a network and how to assign the
weights to the edges in the resulting graphs. The decomposition
procedure should thus follow intuitions and should be evaluated
in the context of the data mining task at hand.

3.2. Constructing feature vectors from text documents

To convert text documents into their BOW representations, we
follow a typical text mining approach [1, 14]. The documents
are tokenized, stop words are removed and the word tokens
are stemmed [41]. N-grams (i.e. word sequences of up to
a particular length) [42] can be considered in addition to
unigrams. Infrequent words are removed from the vocabulary.
Next, BOW vectors are computed and normalized in the
Euclidean sense. Finally, from each vector, the terms with the
lowest weights are removed (i.e. their weights are set to 0).

Several concrete settings of BOW vector construction are
presented and evaluated in the context of our case study in
Section 4.2.

3.3. Using P-PR for computing structural-context feature
vectors

For computing the structural-context feature vectors, we employ
P-PR [7]. P-PR is essentially a stationary distribution of a
Markov chain [43] in which the states are the graph nodes and
the transitions encapsulate both the edges between the nodes
and the ‘teleport behaviour’ of a random walker. ‘Personalized’
in this context refers to using a predefined set of nodes as the
starting nodes for random walks. In our case, P-PR is run from
a single source node representing the object for which we want
to compute the feature vector. At each node, the random walker
decides whether to teleport back to the source node (this is done
with the probability 1 − d where d is the so-called damping
factor) or to continue the walk along one of the edges. The
probability of choosing a certain edge is proportional to the
edge’s weight compared with the weights of the other edges
connected to the node. In effect, for a selected source node i

in a given graph, P-PR computes a vector of probabilities with
components PRi (j), where j is a node in the graph. PRi (j) is
the probability that a random walker starting from node i will
be observed at node j at an arbitrary point in time.

Let us suppose that each node is assigned a single random
word and that the random walker is ‘writing down’ words that it
encounters along the way (this principle is illustrated in Fig. 4).
It is not difficult to see that a structural-context feature vector
computed with P-PR is in fact the l1-normalized (i.e. the sum of
vector components is equal to 1) term-frequency BOW vector
representation of this random text document. This is also one
of the main reasons for employing P-PR over other methods
for computing structural features: it allows an interpretation
that relates P-PR vectors to BOW and thus nicely fits into the
existing text mining frameworks.

In text mining, cosine similarity is normally used to compare
BOW vectors. Cosine similarity is equal to computing the dot
product of two feature vectors, provided that the two vectors
are normalized in the Euclidean sense (i.e. their l2-norm is
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FIGURE 4. The ‘random writer’ principle: the random walker is
‘writing down’ words that it encounters along the way. This is similar
to generating random texts with a language model.

equal to 1). Since we use the dot product as the similarity
measure in the proposed framework, the P-PR vectors need
to be normalized in the Euclidean sense in order to conform
to the analogy with text mining. Given a P-PR vector vi =
〈PRi (1), PRi (2), . . . , PRi (n)〉 for object i, the corresponding
structural-context feature vector v′

i is thus computed as

v′
i = ‖vi‖−1〈PRi (1), PRi (2), . . . , PRi (n)〉.

3.4. Combining feature vectors

The final step of the proposed methodology is to combine
the computed BOW and structural-context feature vectors
describing a particular object into a single concatenated feature
vector. To explain the theoretical background, we first establish
a relationship between feature vectors and linear kernels.
Suppose that, for a given object i, the concatenated feature
vector is obtained by ‘gluing together’ m feature vectors, i.e.
m − 1 structural feature vectors and one BOW feature vector
corresponding to the text document describing the object. For a
given set of n objects, let us denote the m sets of feature vectors
by V1, . . . , Vm, where each Vk is a matrix with n rows, in which
ith row represents the feature vector corresponding to object i.
The corresponding kernels, one for each set of feature vectors,
are computed as Kk = VkVT

k .
This relationship is important because it relates our data

fusion approach to MKL which can also be employed for
data fusion [39]. In MKL, multiple kernels are combined into
a weighted convex combination of kernels which yields a
combined kernel K� = ∑

k αkKk ,
∑

k αk = 1, αk ≥ 0.
Analogously, we derived the following equation which shows
how the above weights αk can be used to combine feature
vectors:

V� = √
α1V1 ⊕ √

α2V2 ⊕ · · · ⊕ √
αmVm.

In this equation, ⊕ represents the concatenation of matrix
rows. To prove that the resulting combined vectors correspond
to the kernel K� , we have to show that V�VT

� = K� :

V�VT
� = (

√
α1V1 ⊕ · · · ⊕ √

αmVm)

· (
√

α1V1 ⊕ · · · ⊕ √
αmVm)T

=
∑

k

αkVkVT
k =

∑

k

αkKk = K�.

Note that the weights wk from Fig. 1 directly correspond to
the above weights, i.e. wk = √

αk .
In general, the weights αk can be set in several different ways.

We can resort to trial-and-error or a greedy heuristic. We can
also consider ‘binary weights’ and either include or exclude a
certain type of vectors. Employing MKL is also an option. In
the presented case study (see Section 4), we employ a stochastic
optimizer and directly optimize the target evaluation metric.

3.5. Employing machine learning algorithms

The constructed feature vectors can be employed in both
supervised (e.g. classification and ranking) and unsupervised
(e.g. clustering) machine learning scenarios [9].

Note that from the feature vectors, we can easily compute
a kernel (see Section 3.4), and so it is possible to employ
any kernel or distance-based machine learning algorithm. Such
algorithms include (but are not limited to) the SVM and its
variants, k-NN, k-means clustering, agglomerative clustering
and multi-dimensional scaling (MDS).

On the other hand, one of the key advantages of our
methodology is that we compute feature vectors rather than
kernels. It is thus easy to employ available machine learning
tools that normally take a set of feature vectors as input. For
example, SVM-Light [20], a well-known implementation of the
SVM, and its variants (e.g. SVM-Struct for structured outputs,
SVM-Multiclass for multi-class predictions, SVM-Rank for
ranking)4 can be used directly. Another advantage of the feature
vector representation is the ability to employ feature weighting
and feature selection techniques [44].

Furthermore, various ready-to-use data mining platforms
can be used as well. Data mining platforms such as Orange
[45], Knime [46], Weka [47] and RapidMiner [48] provide the
user with a collection of data mining and machine learning
components that can be integrated into an executable workflow
with a visual workflow editor. These systems have been recently
enhanced with the capability of handling sparse datasets and
extended with text mining components that can process BOW-
like vectors provided by our methodology.

In the case study presented in the following section, we
demonstrate the use of the methodology in a classification
scenario. In the evaluation process, we employ three different
classification algorithms: SVM-Multiclass, k-NN and centroid

4http://svmlight.joachims.org/.
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Methodology for Mining Document-Enriched Heterogeneous Information Networks 7

classifier (see Section 4.3). Furthermore, we take advantage
of our feature vector construction process to devise an
efficient centroid-based classification algorithm (see Section 5).
Later on, in Section 7, we present another case study in
which we employ a visualization technique based on k-means
clustering and MDS to provide qualitative explanations of the
classification results.

4. VIDEOLECTURES.NET CATEGORIZATION
CASE STUDY

The task in the VideoLectures.net case study was to develop
a method that can be used to assist the categorization of
video lectures hosted by one of the largest video lecture
repositories,VideoLectures.net. This functionality was required
due to the rapid growth of the number of hosted lectures (150–
200 lectures are added each month) as well as due to the fact
that the categorization taxonomy is rather fine-grained (129
categories in the provided database snapshot). We evaluated our
methodology in this case study, confronting it with a typical text
mining approach and an approach based on DKs.

4.1. Dataset

The VideoLectures.net team provided us with a set of 3520
English lectures, 1156 of which were manually categorized.
Each lecture is described by a title, while 2537 lectures also
have a short description. The lectures are categorized into 129
categories. Each lecture can be assigned to more than one
category (on average, a categorized lecture is categorized into
1.26 categories). There are 2706 authors in the dataset, 219
events at which the lectures were recorded and 62 070 portal
users’ click streams.

From this data, it is possible to represent lectures, authors,
events and portal users in a heterogeneous information network.
In this network, authors are linked to lectures, lectures are linked
to events and portal users are linked to lectures that they viewed.
From the available data, we derived the following textual and
structural information about video lectures:

(i) Each lecture is assigned a textual document formed
of the title and, if available, extended with the
corresponding lecture description (abstract).

(ii) The structural information of this heterogeneous
network is represented in the form of three homoge-
neous graphs in which nodes represent individual video
lectures:

(a) Same-event graph. Two nodes are linked if the two
corresponding lectures were recorded at the same
event. The weight of a link is always 1.

(b) Same-author graph. Two nodes are linked if the
two corresponding lectures were presented by the
same author or authors. The weight of a link is

proportional to the number of authors the two
lectures have in common.

(c) Viewed-together graph. Two nodes are linked if the
two corresponding lectures were viewed together
by the same portal user or users. The weight of
a link is proportional to the number of users that
viewed both lectures.

4.2. Results of text mining and DKs

We first performed a set of experiments on textual data only,
by following a typical text mining approach. In addition, we
employed DKs [24] for classifying lectures according to their
structural contexts.

In the text mining experiments, each lecture was assigned a
text document formed of the title and, if available, extended with
the corresponding description. We represented the documents
as normalized BOW vectors. In the first set of experiments, we
tested several different BOW construction settings. We varied
the type of weights (TF or TF-IDF), maximum n-gram length
(n), minimum required term frequency (min-freq) and cut-off
percentage (cut-off). We employed a Centroid Classifier (for
details, see Section 5.1) in the first set of experiments and
performed 10-fold cross-validation on the manually categorized
lectures. We performed flat classification as suggested in [17].
We measured the classification accuracy on the top 1, 3, 5 and
10 categories predicted by the classifier.

The results are given in Table 1. We can see that the TF-IDF
weighting scheme outperforms the TF weighting scheme, that
taking bigrams into account in addition to unigrams improves
the performance, and that it is beneficial to process only those
terms that occur in the document collection at least twice.
We therefore use Setting 5 in all our subsequent experiments
involving BOW.

In the next set of experiments, we employed two additional
classifiers for the text categorization task: SVM and k-NN.
In the case of the SVM, we applied SVM-Multiclass [20] for
which we set ε (the termination criterion) to 0.1 and C (the
trade-off between error and margin) to 5000. In the case of
k-NN, we set k (the number of neighbors) to 20. We used the
dot product (i.e. the cosine similarity) to compute the similarity
between feature vectors.

In addition to the text mining experiments (using only the
textual information), we also computed DK of the three graphs
(we set the diffusion coefficient β to 0.0001). For each kernel
separately, we employed the SVM and k-NN in a 10-fold cross-
validation setting. The two classifiers were configured in the
same way as before in the text mining setting.

The results are shown in Table 2. The results show that
the text mining approach performs relatively well. It achieves
59.51% accuracy on the topmost item and 85.46% on top 10
items (centroid classifier). The same author graph contains the
least relevant information for the categorization task. The most
relevant information is contained in the viewed-together graph.
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TABLE 1. The performance of centroid classifier for text categorization by using different BOW construction settings.

Accuracy

No. Setting Top 1 (%) Top 3 (%) Top 5 (%) Top 10 (%)

1 TF, n = 1, min-freq = 1, cut-off = 0 53.97 69.46 74.48 81.74
2 TF-IDF, n = 1, min-freq = 1, cut-off = 0 58.99 75.34 79.50 85.55
3 TF-IDF, n = 2, min-freq = 1, cut-off = 0 59.60 75.34 80.27 85.20
4 TF-IDF, n = 3, min-freq = 1, cut-off = 0 59.42 75.77 80.10 85.20
5 TF-IDF, n = 2, min-freq = 2, cut-off = 0 59.51 76.21 80.79 85.46
6 TF-IDF, n = 2, min-freq = 3, cut-off = 0 58.13 75.86 80.62 85.20
7 TF-IDF, n = 2, min-freq = 2, cut-off = 0.1 58.99 75.34 79.15 84.25

The bolded values represent the best achieved result for each accuracy measure.

TABLE 2. The results of the selected text categorization algorithms and DKs.

Accuracy

No. Setting Top 1 (%) Top 3 (%) Top 5 (%) Top 10 (%)

1 Text mining, SVM 59.16 73.09 78.28 82.96
2 Text mining, k-NN 58.47 72.74 78.28 83.91
3 Text mining, CEN 59.51 76.21 80.79 85.46

4 DK viewed-together, SVM 70.75 86.93 90.92 93.68
5 DK viewed-together, k-NN 72.74 87.80 90.83 93.94

6 DK same-event, SVM 32.00 49.04 54.67 58.65
7 DK same-event, k-NN 31.92 47.66 53.37 61.07

8 DK same-author, SVM 18.94 27.51 31.22 36.24
9 DK same-author, k-NN 19.81 31.74 36.24 43.59

The bolded values represent the best achieved result for each accuracy measure in each group of experiments.

A k-NN applied to the viewed-together graph achieves 72.74%
accuracy on the topmost item and 93.94% on the top 10 items.
It is noteworthy that the choice of the classification algorithm
is not as important as the selection of the data from which the
similarities between objects are inferred.

4.3. Results of the proposed methodology

In the next set of experiments, we applied the proposed
methodology. The results are shown in Table 3.

The first nine experiments summarized in Table 3 were
performed by employing the proposed methodology on
each graph separately. As before, we performed 10-fold
cross-validation on the manually categorized lectures and
employed centroid classifier, SVM-Multiclass and k-NN for
the categorization task (we used the same parameter values
as before). We set the PageRank damping factor to 0.4 when
computing the structural-context feature vectors.

In the last three experiments summarized in Table 3, we
employed the data fusion method explained in Section 3.4. In
Experiment 10, we weighted all types of data (i.e. BOW, viewed-
together, same-event and same-author) equally. We only show
the results for Centroid Classifier (SVM and k-NN demonstrated

comparable results). In Experiment 11, we employed DE to
directly optimize the target evaluation metrics. The objective
function was computed in an inner 10-fold cross-validation
loop for each evaluation metric separately. We only employed a
centroid classifier in this setting as it is fast enough to allow for
numerous iterations required for the stochastic optimizer to find
a good solution. The weights, determined by DE, averaged over
the 10-folds for each evaluation metric separately, are given in
Table 4.

In the last experiment (Experiment 12), we removed the
viewed-together information from the evaluation process. The
reason is that in real life, new lectures are not connected to other
lectures in the viewed-together graph because they were not yet
viewed by any user. Again, we employed DE in an inner 10-fold
cross-validation loop for each evaluation metric separately. The
resulting weights are given in Table 5.

From the results of the first nine experiments, we can confirm
that the most relevant information is contained in the viewed-
together graph. The centroid classifier applied to the viewed-
together graph exhibits 74.91% accuracy on the topmost item
and 95.33% on the top 10 items. We can also confirm that the
choice of the classification algorithm is not as important as the
selection of the data from which the similarities between objects
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TABLE 3. The results of employing the proposed methodology.

Accuracy

No. Setting Top 1 (%) Top 3 (%) Top 5 (%) Top 10 (%)

1 Viewed-together, SVM 70.41 85.46 89.71 93.60
2 Viewed-together, k-NN 70.75 84.60 89.36 93.34
3 Viewed-together, CEN 74.91 89.01 92.13 95.33

4 Same-event, SVM 31.74 50.17 55.97 59.95
5 Same-event, k-NN 32.34 50.43 55.96 64.79
6 Same-event, CEN 27.59 46.62 53.63 65.05

7 Same-author, SVM 15.83 24.22 27.33 33.04
8 Same-author, k-NN 15.48 23.70 27.94 32.52
9 Same-author, CEN 14.79 25.52 31.74 42.73

10 Combined, equal weights, CEN 65.73 83.21 87.97 93.42
11 Combined, DE, CEN 78.11 91.43 94.03 95.85

12 Without viewed-together, CEN 62.28 79.84 84.08 89.27

The bolded values represent the best achieved result for each accuracy measure in each group of experiments.

TABLE 4. The weights computed in the optimization process in
Experiment 11.

Average weights
Accuracy
measure Viewed together Same event Same author BOW

Top 1 0.9301 0.0080 0.0065 0.0554
Top 3 0.8712 0.0350 0.0184 0.0754
Top 5 0.7835 0.0699 0.0593 0.0873
Top 10 0.8012 0.0385 0.0692 0.0911

TABLE 5. The weights computed in the optimization process in
Experiment 12.

Average weights

Accuracy measure Same event Same author BOW

Top 1 0.3414 0.2440 0.4147
Top 3 0.3347 0.2236 0.4417
Top 5 0.3426 0.2416 0.4158
Top 10 0.3283 0.3654 0.3063

are inferred. Even so, the centroid classifier does outperform
the SVM and the k-NN on the top 10 items and in the case of the
viewed-together graph, also on the topmost item. The centroid
classifier is outperformed by the other two classifiers on the top-
most item in the case of the same-event and same-author graphs.

When comparing the approaches based on our methodology
to the DK-based approaches, we can see that the centroid
classifier applied to the viewed-together graph outperforms the
SVM and the k-NN applied to the viewed-together diffusion
kernel. On the other hand, with respect to the same-event and
same-author graphs, the centroid classifier is outperformed by
the DK-based approaches on the topmost predicted category.

The results of Experiment 10 show that weighting all types of
data equally does not produce the best results. The accuracy falls
in comparison with exploiting the viewed-together graph alone.
The optimized weights indeed yield the best results (Experiment
11) and significantly improve the categorization performance
(compared with exploiting the view-together graph alone: 78.11
vs. 74.91% on the topmost item, 95.85 vs. 95.33% on the
top 10 items). This is also the case when the viewed-together
information is not present in the test set (Experiment 12).
The classifier is able to exploit the remaining data and exhibit
accuracies that are significantly higher than those achieved by
resorting to text mining alone (62.28 vs. 59.51% on the topmost
item, 89.27 vs. 85.46% on the top 10 items). A classifier based
on combined feature vectors is not only more accurate but is also
robust to missing a certain type of data in the test examples.

5. EFFICIENT CLASSIFICATION WITH THE
PAGERANK-BASED CENTROID CLASSIFIER

From the results presented in Section 4 it is evident that the
centroid classifier offers very good performance and is much
more efficient than its competitors. This outcome has motivated
the development of a new centroid-based classifier that exploits
the flexibility of the proposed feature-vector construction
process in order to compute the centroids extremely efficiently.

5.1. The standard centroid classifier

In text mining, the centroid vector is a vector representing
an artificial prototype document of a document set which
‘summarizes’ the documents in the set. Given a set of TF-IDF
vectors, there are several ways of computing the corresponding
centroid vector. Some of the well-known methods are the
Rocchio formula, the average of vector components and
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the (normalized) sum of vector components. Of these three
methods, the normalized sum of vector components is shown to
perform best in text classification scenarios [19]. In this case,
given a set of document vectors represented as rows in matrix D
(let D[i] denote the ith row in matrix D) and a set of row indices
R, identifying documents that we want to group into a centroid,
the normalized centroid vector C is computed as follows:

C′ = 1

|R|
∑

i∈R

D[i]; C = C′

‖C′‖ .

Let us now consider a multi-context setting introduced in
Section 3. Suppose we have m contexts and thus m sets of
feature vectors represented as rows in matrices V1, . . . , Vm.
Again, let R be the set of row indices identifying objects that
we want to group into a centroid. Finally, let V[i] denote the
ith row in matrix V. In the proposed framework, in order not
to invalidate the intuitions provided in Sections 3.2 and 3.3, the
centroid needs to be computed as follows (

∑
k αk = 1, αk ≥ 0):

C = √
α1

C1

‖C1‖ ⊕ √
α2

C2

‖C2‖ ⊕ · · · ⊕ √
αm

Cm

‖Cm‖ ,

where Ck = 1

|R|
∑

i∈R

Vk[i]; 1 ≤ k ≤ m. (1)

Note that ‖C‖ = 1 in this case. Following the above
equations, we train a centroid classifier by computing a centroid
vector for each class of objects (i.e. for each class label). In the
classification phase, we simply compare the feature vector of a
new (unlabelled) object with every centroid in the model. The
centroid that yields the highest similarity score implies the label
to be assigned to the object. More formally, we denote this as
follows:

C∗ = argmaxC∈M{cossim(C, v)}.
In this equation, M = {C1, C2, . . . , Cr} is the centroid

model, represented simply as a set of centroid vectors. Note that
each centroid vector in the set corresponds exactly to one of the r

classes. Furthermore, v is the (unlabeled) object’s feature vector
and C∗ is the centroid vector that represents the predicted class.

5.2. PageRank-based centroid classifier on graphs

In this section, we show that each structural context of a
centroid vector as given by Equation (1) can be very efficiently
computed. Let us focus on one of the ‘partial’ centroids
representing one of the structural contexts in Equation (1), Ck

(1 ≤ k ≤ m). The methodology suggests that, in order to
compute Ck , we should construct |R| P-PR vectors and compute
their average. However, it is possible to do this computation a
lot more efficiently by computing just one P-PR vector. Instead
of running P-PR from a single source node, we set R to be
the set of source nodes (when the random walker teleports, it
teleports to any of the nodes in R with equal probability). It turns
out that a centroid computed in this way is exactly the same

as if it was computed in the ‘slow way’ by strictly following
the methodology. We show this equivalence in the following
paragraphs.

Let A be the adjacency matrix of the graph representing
one of the structural contexts, normalized so that each column
sums up to 1. Let V be the matrix in which rows represent
the corresponding structural-context feature vectors. Let V[i]
denote the ith row in matrix V (i.e. the P-PR feature vector of
the ith object). Let R be the set of row indices identifying nodes
(objects) that we want to group into a centroid. Furthermore, let
ti be the ‘teleport’ vector defining the ith node as the source
node, having the ith element set to 1 and all others to 0,
ti = [0, . . . , 0, 1, 0, . . . 0]T. The size of this vector is equal
to the number of rows in V. Finally, let d be the PageRank
damping factor. Then, each row in matrix V is computed by
solving the P-PR equation:

V[i] = (1 − d)ti + dAV[i]. (2)

If we now compute the average over the matrix rows (i.e.
P-PR vectors) defined by R, we get the following equation:

1

|R|
∑

i∈R

V[i] = 1

|R|
∑

i∈R

((1 − d)ti + dAV[i]),

1

|R|
∑

i∈R

V[i] = 1

|R|
∑

i∈R

(1 − d)ti + 1

|R|
∑

i∈R

dAV[i],

1

|R|
∑

i∈R

V[i] = (1 − d)
∑

i∈R

1

|R| ti + dA
1

|R|
∑

i∈R

V[i],

C′ = (1 − d)t′ + dAC′,

where C′ = 1

|R|
∑

i∈R

V[i]; t′ =
∑

i∈R

1

|R| ti .

It is easy to see that this equation resembles the single-
source P-PR equation (Equation 2). The main difference is
the modified teleport vector t′ which contains values 1/|R|
at locations that denote the nodes (objects) that we want to
group into a centroid. This is exactly the P-PR equation with
multiple source nodes where 1/|R| is the probability of choosing
a particular source node when teleporting. Therefore, instead of
computing the average over several single-source P-PR vectors,
we can compute just one multiple-source P-PR vector.

In case of having r classes and n objects, n � r , this not only
speeds up the process by factor n/r but also reduces the time
complexity from computing O(n) P-PR vectors to computing
O(1) P-PR vectors. Practical implications are outlined in the
following section.

6. TIME AND SPACE COMPLEXITY ANALYSIS

Whenever a set of new lectures enters the categorization
system—regardless of whether we use the proposed method-
ology or the DK approach—the following procedure is applied:
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TABLE 6. The time, in seconds, spent for feature vector or kernel
computation, training and prediction.

Times [s]

Setting Preprocessing Training Predicting

DK, k-NN 1193 0 1
P-PR, k-NN 286 0 85
P-PR, PRCC 0 35 34

(1) kernel or feature vectors are recomputed, (2) a model is
trained on manually categorized lectures and (3) new lec-
tures are categorized. Each fold in the 10-fold cross-validation
roughly corresponds to this setting. We focused on the viewed-
together graph only and measured the times required to perform
each of these three steps in each of the 10-folds, computing aver-
age values in the end. The results are given in Table 6.

The results show that the DK-based approach (first row) is
more demanding than the proposed methodology represented
by the second row (1193 vs. 371 s). Roughly speaking, this is
mostly due to the fact that in our case study, the diffusion kernel
is computed over 3520 objects (resulting in a 3520 by 3520
kernel matrix), whereas, by using the proposed methodology,
‘only’ 1156 P-PR vectors of length 3520 need to be computed,
where 1156 is the number of manually categorized lectures.
Note also that computing a series of P-PR vectors is trivially
parallelizable as one vector is computed entirely independently
of the others (the so-called ‘embarrassingly parallel’ problem).
On a quad-core machine, for example, the time required to
compute the P-PR vectors in our case would be ∼80 s. Even
greater efficiency is demonstrated by the PageRank-based cen-
troid classifier (PRCC) (the last row). When the PRCC is used,
the feature vectors are not pre-computed. Instead, in the training
phase, approximately 130 P-PR vectors are computed, one for
each category in the training set. In addition, in the prediction
phase, ∼115 additional P-PR vectors are computed (115 objects
is roughly the size of the test set). The PRCC thus requires only
70 s for the entire process. Needless to say, the PRCC-based
approach is also trivially parallelizable, which makes it even
more suitable for large-scale scenarios. Let us also point out
that this efficiency is not achieved at the cost of decreased accu-
racy. In fact, the accuracy of the PRCC is exactly the same as
that of the centroid classifier (see Section 5). Of all our experi-
ments involving the viewed-together graph, the one employing
the centroid classifier (which is equivalent to employing the
more efficient PRCC) demonstrates the best accuracy.

Considering the space complexity, let us point out that the
PRCC computes and stores only around 130 P-PR vectors of
length 3520 (i.e. the PRCC model), which makes it by far
the most efficient approach in terms of memory requirements.
In comparison, the DK-based approach stores a 3520 by
3520 kernel matrix and the k-NN employed by the proposed

methodology stores around 1040 P-PR vectors of length 3520
(roughly 1040 objects constitute the training set in each fold).
For simplicity, we assumed that these vectors are not sparse,
which is actually not the case. Due to the sparseness of
the vectors, the amount of space consumed by using our
methodology is in reality even lower.

7. QUALITATIVE ANALYSIS THROUGH VECTOR
SPACE VISUALIZATION

In this section, we present another case study of our
methodology: visualization of vector spaces. In machine
learning and data mining, visualization techniques are often
used for gaining insights into data and thus guiding the
knowledge discovery process. In text mining, document space
visualization techniques are used to provide overviews and
insights into relatively large document collections [49, 50].
A document space is essentially a high-dimensional BOW
vector space. To visualize a document space, feature vectors
need to be projected onto a two-dimensional canvas so that
the neighborhoods of points in the planar projection reflect
the neighborhoods of vectors in the original high-dimensional
space. Since the proposed methodology enables us to convert
graphs into BOW-like vectors, we can visualize these graphs
by using one of the available document space visualization
techniques. Even more, we can visualize any ‘fusion’ of feature
vectors obtained by following the proposed methodology.
We will employ the document space visualization technique
based on least-square meshes [49, 51]—more specifically, the
implementation thoroughly presented in [52]—to demonstrate
how visualized vector spaces can provide valuable qualitative
explanations. Specifically, we will explain why the same-author
graph, even though based on the solid intuition that ‘a scientist
normally sticks to his field of science’, demonstrates such poor
performance when used for categorization. From this same
perspective, we will examine the same-event graph and look
for the key difference between the same-author and same-event
graphs on one hand and the viewed-together graph on the other.

Figure 5 shows the visualization of the same-author vector
space with the edges adopted from the same-author graph. We
can clearly see that we are dealing with many disconnected
components. Each component corresponds to a group of lectures
presented by the same author or several authors of which each
collaborated with at least one other author from the group on
at least one paper (lecture). The black dots in the visualization
represent the lectures that were manually categorized (ground
truth) and the white dots represent the uncategorized lectures.
Note that (1) only the categorized lectures (black dots)
participate in the 10-fold cross-validation process and (2) that,
given a categorized lecture from a particular component, only
the lectures from the same component participate as features
in the feature vector of this categorized lecture. Let us now
consider a component with one single categorized lecture
(black dot). When such a categorized lecture is part of the test set
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FIGURE 5. Visualization of the same-author vector space with the edges adopt from the corresponding graph.

FIGURE 6. Visualization of the same-event vector space with the edges adopted from the corresponding graph.

in the cross-validation process, the corresponding feature vector
is orthogonal to every feature vector in the training set (note that
only the categorized lectures constitute the training set). This
means that it is not possible to categorize it due to the lack of
information caused by the sparseness of the same-author graph.
In general, the smaller the number of categorized lectures in a
component, the bigger the chance that they will all constitute
the same fold in the cross-validation setting, which results in
the inability to classify any of them when the corresponding
fold forms the test set. From this, we can conclude that having
many disconnected components containing low numbers of
categorized lectures leads to a poor categorization performance.

Figures 6 and 7 show the visualization of the same-event
and viewed-together vector space, respectively. We can see
(1) that the viewed-together graph contains less disconnected
components than the same-event graph, which contains less
disconnected components than the same-author graph (note that
each single disconnected dot also represents a disconnected
component), (2) that the viewed-together graph contains one
large component containing nearly all the categorized lectures
and (3) that the components in the same-event graph are larger
than those in the same-author graph and thus each of them
has the potential of containing a larger number of categorized
lectures.
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FIGURE 7. Visualization of the viewed-together vector space with the edges adopted from the corresponding graph.

To make sure that these observations are not merely
‘visual artifacts’, we computed the number of disconnected
components and the number of components containing a certain
number of categorized lectures in each of the three graphs. The
results for the same-author and same-event graphs are shown
in Fig. 8, whereas the viewed-together graph consists of 99
disconnected components of which 1 contains 1155 categorized
lectures, 1 contains 1 categorized lecture and 97 contain no
categorized lectures.

The charts in Fig. 8 clearly support our claims. The same-
author graph contains the largest number of components (i.e.
2519) and a relatively large number of components that contain
low numbers of categorized lectures. The same-event graph
contains roughly 10 times less components and also the number
of components containing low numbers of categorized lectures
is much lower. If we look at the statistics of the viewed-
together graph, we see that it contains only one disconnected
categorized lecture that is orthogonal to the training set in the
cross-validation process. From this perspective, the viewed-
together graph exhibits the most appropriate structure, followed
by the same-event and same-author graphs. This is also clearly
reflected in our empirical studies presented in Section 4.3.

8. CONCLUSIONS AND FUTURE WORK

We presented a new methodology for mining heterogeneous
information networks. The methodology is based on building a
common vector space from textual and structural information,
for which we use P-PR to compute structural-context features.
We also devised and presented an extremely efficient PRCC. We
applied the proposed methodology and the devised classifier in
a video-lecture categorization case study and showed that the

FIGURE 8. The number of disconnected components and the number
of components containing a certain number of categorized lectures
for the same-author and same-event graphs, respectively.

proposed methodology is fast and memory-efficient, and that
the devised classifier is accurate and robust.

In future work, we will further develop the analogy between
text mining and the proposed methodology, considering stop
nodes (analogous to stop words). We will also look for a
more efficient way to compute weights when combining feature
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vectors. We will apply the methodology to larger problem
domains to fully utilize the efficiency demonstrated by the
developed PRCC.
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