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PubMed is the largest resource of curated biomedical knowledge to date, entailing more
than 25million documents. Large quantities of novel literature prevent a single expert from
keeping track of all potentially relevant papers, resulting in knowledge gaps. In this article,
we present CHEMMESHNET, a newly developed PubMed-based network comprising
more than 10,000,000 associations, constructed from expert-curated MeSH annotations
of chemicals based on all currently available PubMed articles. By learning latent
representations of concepts in the obtained network, we demonstrate in a proof of
concept study that purely literature-based representations are sufficient for the
reconstruction of a large part of the currently known network of physical, empirically
determined protein–protein interactions. We demonstrate that simple linear embeddings
of node pairs, when coupled with a neural network–based classifier, reliably reconstruct
the existing collection of empirically confirmed protein–protein interactions. Furthermore,
we demonstrate how pairs of learned representations can be used to prioritize potentially
interesting novel interactions based on the common chemical context. Highly ranked
interactions are qualitatively inspected in terms of potential complex formation at the
structural level and represent potentially interesting new knowledge. We demonstrate that
two protein–protein interactions, prioritized by structure-based approaches, also emerge
as probable with regard to the trained machine-learning model.

Keywords: literature-based discovery, knowledge graphs, PubMed, data-mining, machine-learning, representation
learning

1 INTRODUCTION

To this date, textual data remain one of the most widely accessible sources of information.
Contemporary databases of, for example, biomedical knowledge, such as the PubMed database
(Web, 2012), can consist of tens of millions of annotated scientific documents, offering, for example,
detailed insights into various aspects of disease development, and the potential links between the
diseases (Hristovski et al., 2005; Venkatasubbaiah et al., 2020). Albeit most of such knowledge can be
accessed, it is not necessarily directly useful to a researcher, given that manual inspection of
thousands of articles is not the most optimal way of uncovering, for example, how two fields of
molecular biology interlink or what are the potentially interesting novel biomarkers related to a given
pair of domains.

To remedy this shortcoming, the field of literature-based discovery (LBD) emerged (Swanson,
1990; Smalheiser and Swanson, 1994), exploring how contemporary computational methods can be
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exploited for faster and more efficient generation of potentially
interesting associations, bridging different, albeit well-
established concepts. Most recent LBD approaches benefit
from word embeddings (Mikolov et al., 2013). A study by
Tshitoyan et al. (2019) showed that latent knowledge
regarding future discoveries is to a large extent embedded in
past publications by retrieving information from the scientific
literature with the usage of word2vec embeddings (Mikolov
et al., 2013). The recent approach by Lavrač et al. (2020)
explored how word embeddings (Joulin et al., 2016) can be
used for identification of novel bridging terms in the field of
plant biology. A similar approach was also explored in the
context of COVID-19–related biomarker discovery (Martinc
et al., 2020). An approach by Crichton et al. (2020) proposed
graph-based neural network methods to perform open and
closed LBD and demonstrated improved performance on
existing tasks.

The purpose of this work is multifold, and its contributions
can be summarized as follows.

(1) We propose CHEMMESHNET, a network of paper
annotations (MeSH terms of chemicals) constructed
from more than 30 million PubMed documents.

(2) The annotations, present in CHEMMESHNET, were
embedded in a low-dimensional vector space via network
node representation learning, which enables their direct
use in downstream tasks such as discovery of novel
associations.

(3) We demonstrate that protein representations, obtained
exclusively based on document annotations, can be used
to reliably reconstruct a large part of the currently known
human proteome (Oughtred et al., 2020).

(4) The quantitative reconstruction results indicate that
representations, based on the singular value
decomposition (SVD) of a normalized graph Laplacian
matrix can already offer sufficient expressive power,
while scaling seamlessly to millions of links on an off-
the-shelf hardware.

(5) The obtained protein representations are finally used to
prioritize the space of potentially interesting novel
protein–protein interactions. The top-ranked
interactions are analyzed qualitatively at the level of
protein structure.

The rest of this work is structured as follows. In Section 2, we
present a brief outline of the related work, followed by the
presentation of the proposed methodology in Section 3. The
evaluation is presented in Section 4. Results are presented in
Sections 5 and 6. Followed by the discussion in Section 7 and
conclusions in Section 8.

2 RELATED WORK

This section discusses the relevant related work, spanning the
fields of literature-based discovery (LBD) and network
representation learning. It also presents the PubMed database

of biomedical articles as it is the key resource for LBD considered
in this work.

The field of literature-based discovery (LBD) was
conceptualized in the 1990s, when Swanson (1990) and
Smalheiser and Swanson (1994) developed early LBD
approaches (e.g., the so-called ABC model) to detect
interesting bridging terms (b-terms), aimed at uncovering new
cross-domain relations among previously unrelated concepts in
separate domain corpora of interest, surveyed also by Bruza and
Weeber (2008). Initial LBD works explored how lexical statistics
can offer novel insights (Lindsay and Gordon, 1999). LBD has led
to the discovery of potential treatments in several domains,
including multiple sclerosis (Kostoff et al., 2008) and has been
applied successfully in drug development and repurposing
(Deftereos et al., 2011). The recent surveys offer extensive
overviews of the promising approaches of LBD and their
implications (Smalheiser, 2012, 2017; Sebastian et al., 2017;
Thilakaratne et al., 2019). In terms of evaluation of LBD
systems, Yetisgen-Yildiz and Pratt (2008) offer a
comprehensive overview of the existing evaluation strategies,
emphasizing that rigorous inspection of the discovered
knowledge is a critical component of every LBD system.

The proposed CHEMMESHNET-based discovery focuses
exclusively on biomedical knowledge discovery from the
MeSH (Medical Subject Heading) terms network. Similarly,
the work of Kastrin et al. (2016) was one of the first to
explore how networks of co-occurring MeSH terms can be
used for novel discovery. Their work served as the basis for
the idea proposed in this article, where the MeSH term networks
are analyzed via a node embedding–based methodology. Other
promising approaches were developed for better understanding
of cancer development (Pyysalo et al., 2019) using a tool LION
LBD that enables researchers to navigate published information
and supports hypothesis generation and testing.

A part of the proposed methodology relates to network
representation learning, revolving around the notion of node
embedding. In the recent years, instead of designing algorithms
for direct link prediction (Kastrin et al., 2016) and similar tasks,
development of a methodology which first projects individual
nodes into a latent space (embedding) where one can directly
measure similarity and, for example, predict links, has been
actively explored. Methods such as DeepWalk (Perozzi et al.,
2014), node2vec (Grover and Leskovec, 2016), and similar ones
explore how random walk-based sampling schemes can offer
compressed node representations. The node embedding methods
are commonly black-box, that is, real-valued latent
representations without any interpretability, many times
obtained efficiently via closed-form expressions. Apart from
node classification and link prediction, some other uses of
node embeddings include, for example, community detection
(Škrlj et al., 2020b). For a more detailed overview, the interested
reader can refer to the work of Zhang et al. (2018).

Finally, we discuss the main source of knowledge used in this
work—the PubMed database of biomedical articles1 (Sayers et al.,

1https://pubmed.ncbi.nlm.nih.gov/
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2020). The database receives more than 3 billion search queries
each year and represents the central body of knowledge related to
the biomedical domain. The current version used in this work
comprises more than 30 million scientific publications, all
annotated with MeSH terms. This part of annotation is of key
focus to the proposed CHEMMESHNET, as it offers direct insight into
into, for example, key compounds relevant for a given article,
which we posit is a rich resource of human-annotated
information that can be further exploited for literature-based
discovery, albeit at the MeSH term graph level.

3 CHEMMESHNET: CONSTRUCTION OF
CONCEPT NETWORKS FROM PUBMED

We begin the description of the proposed methodology by first
discussing the construction process of the network based on
paper annotations, followed by the description of network
construction and filtering. A schematic overview of the
proposed approach is shown in Figure 1 and small
subnetwork is shown in Figure 2.

3.1 Extraction of Annotations and Network
Construction
In the first part of the proposed approach, we download XML
representations for all available PubMed articles2. The XML files
include abstracts and the annotations, which are the key focus of the

remainder of this work. Each PubMed article hasmetadata, containing
information on, for example, publisher, date, authors, but also the
expert-curated space of chemicals. According to the annotators, these
well-defined annotations offer insight into the key concepts related to
the given article. All annotations of this type are also known as the
MeSH tags. However, note that the considered set of MeSH tags does
not entail all possibleMeSH tags—they entail only the ones describing
“chemicals”, such as proteins, compounds, and some processes. For
each PubMed article (currently, there aremore than 30million articles
available), we extracted these annotations and constructed a network.
For example, an article with three annotations results in a triangle
graph, where each of the terms is associated with all others. Intuitively,
this step entails the common context. Such cliques are obtained for
each PubMed article and joined into a single network by linking the
common nodes. Further, each edge is weighted based on cumulative
co-occurrence across all the documents. Schematic overview of this
step is shown in Figure 1. The number of documents that have the
sufficient mentioned annotation tags was 14,671,298. Note that albeit
constructed from cliques, the obtained network is modular. The claim
is inspected via the analysis of degree distribution in the following
sections.

3.2 Embedding the Space of Concepts
The obtained network could be used for direct mining of the
associations; however, such endeavor could be computationally
expensive and prohibitive to multiple downstream tasks of interest.
Hence, the nodes of the obtained network, that is, the article
annotations, are then embedded into a low-dimensional vector
space in which their semantic relations are preserved and can be
directly computed.

The field of node embedding has grown in the last years; however,
development of methods that scale to tens of millions of links on an
off-the-shelf workstation remains an interesting research endeavor.
The embedding approach employed in this work was largely inspired
by the branch of methods that revolve around spectral graph
decomposition, that is, the analysis of the meaning and potential
implications of, for example, the largest eigenvalues of graph
Laplacians and their corresponding eigenvectors (see, e.g., the work
of Zhang et al. (2018)). The considered node embedding method is in
one of the simplest (linear) algorithms for obtaining the
representations. To embed all annotations, we implemented the
node embedding as the following two-step procedure.

1. Normalized graph Laplacian. In the first step, we compute
the normalized graph Laplacian. Let A represent a given graph’s
adjacency matrix. Let D represent the degree matrix, that is, a
matrix with node degrees on the diagonal and zeroes elsewhere.
Next, the normalized Laplacian is computed as follows:

L � I − D−12AD−12

2. Sparse Singular Value Decomposition. In the second step,
the L is decomposed into three matrices:

L ≈ UΣV .

The final part of this step includes re-multiplication of the first d
diagonal entries of Σ with U, obtaining a low-dimensional, dense
representation of individual nodes (annotations).

FIGURE 1 |Overview of the proposed approach. The first contribution is
the CHEMMESHNET, a network of term co-occurrences. Once constructed, the
network is aligned with the space of empirically validated protein interactions
(red squares), where the subset of proteins present in the annotations
(nodes) of CHEMMESHNET are embedded into a low-dimensional space (node
embeddings), and used to learn which links are actually present and which are
not. Once trained, the best-performing classifier predicted scores for potential
new interactions, which we also discuss as a part of qualitative evaluation.

2https://pubmed.ncbi.nlm.nih.gov/

Frontiers in Research Metrics and Analytics | www.frontiersin.org April 2021 | Volume 6 | Article 6446143
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LetE represent the embedding (low-dimensional representation).
Hence, the final result, E ∈ R|A|×d represents the embedding.

3.3 Formulating the Reconstruction
Problem
The key task addressed in this work is network reconstruction. We
formulate the task as follows. Let Gg represent a network of
ground truth interactions between the proteins (Oughtred et al.,
2020). Commonly, the network reconstruction methods explore
how node embeddings EN(Gg ) can be used to reconstruct the
network’s links E(Gg). This setting operates with the
representations obtained from Gg and as such operates within
the same network. However, the purpose of this study was to
showcase that there exists a representation EP , derived from
PubMed, that can reliably reconstruct E(Gg). A key part of
the reconstruction of an existing network via the obtained
embeddings is term alignment. We achieve this alignment via
matching the protein symbol names, constrained by the Homo
sapiens species. For example, a term that appears in CHEMMESHNET

is “C102108:BACH1 protein, human.” Here, BACH1 is the
protein name and human the species. The same type of
identifier (and taxa) can be found in BioGrid, which we used
for alignment and subsequent experiments.

To our knowledge, such endeavor is novel and was not tested
before at such a scale. The main implication of being able to
exploit purely literature-based representations of physical
entities, such as proteins, is to learn potentially relevant
associations between them potentially interesting discovery
opportunities. We next discuss the evaluation of the
proposed method that was implemented in order to be able

to prioritize potential interactions between existing protein
pairs from the largest currently available network of physical
protein interactions.

4 RECONSTRUCTION EVALUATION

The following section focuses on the evaluation of the proposed
approach. The two main types of evaluation considered are
described as follows.

The first type of evaluation focuses on the exploration of howwell
the network of empirically proven protein–protein interactions can
be reconstructed based solely on the node (protein) representations
learned from the constructed CHEMMESHNET. To quantify to what
extent the relations between the proteins are learnable, we consider
the task as link prediction and evaluate it as such. Here, we first
generate a data set that captures the existing links as well as false
ones, that is, pairs of protein representations that are not known to
form complexes (do not interact). We obtain such node pairs by
considering nodes linked with a shortest path of length, at least two.
This constraint assumes that nodes that are relatively distant from
one another are not expected to interact in this setting. We believe
that the path-based negative sampling remains a better option to
randomly selecting node pairs in terms of the amount of sampled
false negatives. The constructed data set for each valid interaction
considers three randomly sampled interactions at a given length that
were not among the ground truth ones, that is, the negative samples.

The second type of evaluation concerns representation
evaluation, which includes performance measurement of various
machine-learning algorithms for the task of link prediction. The
learners used in this work are the extreme gradient boosting

FIGURE 2 | Example of MeSH chemical term subnetwork. The reader can observe different levels of information all interlinked within the same structure; from the
cellular level (D018797), to protein level (C000598624).
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machines (XGB) (Chen and Guestrin, 2016), random forests (RF)
(Breiman, 2001), the recently introduced self-attention networks
(SAN) (Škrlj et al., 2020a), Skope Rules3, a majority (Dummy)
classifier, and a logistic regression classifier (LR). Data splitting was
conducted via the scikit-learn library (Pedregosa et al., 2011)
(Dummy and LR classifiers were implemented via this library as
well). The SciPy library (Virtanen et al., 2020) was used to implement
the embedding steps.

5 QUANTITATIVE RESULTS EVALUATION

In this section, we present the main results of this work. We begin
by describing the constructed network of annotations, followed
by the quantitative reconstruction experiments. In Figure 3, we
show the node degree distribution of the obtained network with
annotated node names.

It can be observed that the distribution follows a linear trend in
the log space, indicating that only a handful of nodes are very well
connected (hubs), whereas the remaining ones are not. The
distribution demonstrates that albeit clique-based construction
was considered, the resulting network is far from being a
regular graph. Additional statistics of the constructed network
are shown in Table 1. The clustering coefficient measures how
nodes in a graph tend to cluster together and is computed as the
ratio between the number of closed triplets and the number of all
triplets. The network density is computed as the number of actual
connections, divided by all possible connections. The mean degree
corresponds to the average number of connections of a node.

Next we present the results of the reconstruction experiment
in Figure 4.

Here, a clear separation between the more complex models
(neural networks and tree ensembles) and simpler ones (LR) can
be observed. These results indicate that simple linear combinations
of embedding dimensions are not sufficient to learn the difference
between the true and false edges; however, even LR in some cases
performs with AUC score ≥ 0.65, indicating that particular splits
(10 splits were considered) offer differentiation even by this simpler
model. As expected, the neural network–based (SAN) and tree
ensemble–based (RF and XGB) models performed consistently
better, with less variability. We further observed that although the
neural network–based model obtained the highest overall score
(AUC score 0.92), its performance was less consistent, yielding on
average a negligibly worse classifier (within the deviation of the
tree-based classifier). Overall, the results indicate that the
reconstruction based on simple, SVD-based representations is
possible, albeit only with more complex models. Note that the
same data set splits were used for evaluation of all models.

6 QUALITATIVE RESULTS EVALUATION

We conducted the qualitative evaluation as follows. For 1 million
interactions that were not used for training and evaluation of the
method, we selected the top 10,000. From these, we considered
only the ones that have predicted structural interfaces, indicating
a potentially interesting physical interaction underpinning the
ML-based prediction. For each of the interactions we obtained a
score that was the SAN’s prediction, that is, the probability of the
interaction. Hence, for this step, SAN was trained on the whole
positive–negative interaction sample data set and used to predict
probabilities of interactions for node pairs that were not
considered during training.

6.1 Analysis of the Predicted Interactions
The task of link prediction resulted in an extensive list of ranked
interactions, which was compared to the data in two major
protein–protein interaction databases that collect the information
from various reliable, curated sources and are also complemented
with computational predictions. The considered databases are the
Interactome INSIDER and STRINGdb, from which we obtained all
the interactions pertaining to human proteins. They include 112,956
and 11,759,454 annotated protein–protein interactions, respectively.
After individually matching them to our ranked list, we obtained
intersections of sizes 98 and 1,692, respectively. The two databases

FIGURE 3 | The degree distribution of the constructed CHEMMESHNET with
some of the representative annotations. Note that for the purpose of this
study, the constructed CHEMMESHNET consists only of MeSH terms, annotated
as chemicals.

TABLE 1 | Statistical overview of the constructed MeSH network of chemicals.
This network is the prunned version of the one constructed directly from the
MeSH annotations, as MeSH terms that are too rare: frequency < 2 were not
accounted for.

Property Value

Number of nodes 54,910
Number of edges 1,308,187
Mean degree 47.64
Connected components 23
Clustering coefficient 0.724
Density 0.00087

3https://github.com/scikit-learn-contrib/skope-rules
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(Interactome INSIDER and STRINGdb) represent two different
aspects of protein interactions. The STRINGdb, being notably
larger, includes binary interactions, that is, interactions where only
the information about whether an interaction occurs or not is an
interaction known. However, such interactions are not necessarily as
informative as the ones on the structural level. The Interactome
INSIDER offers direct exploration of such interactions at the single
atom resolution, potentially offering more detailed information
regarding actual protein–protein binding sites. It is noteworthy
that the average probability of these interactions in both cases is
higher than 99%. The list of the top 55 manually curated interactions
and their probabilities of the intersection between our ranked list and
the Interactome INSIDER database is shown in the Appendix in
TableA1. In the following subsections, we evaluate in detail twohigh-
probability protein–protein interactions proposed by our classifier
(highlighted rows in Table 3).

6.2 Interaction Between PTPN1 and CAPN1
The first example considers Calpain-1 catalytic subunit (UniProt:
P07384) and tyrosine–protein phosphatase non-receptor type 1
(UniProt: P18031). We identified a predicted structural interface
between the two proteins via the Interactome INSIDER tool
(Meyer et al., 2018), which offers insight into the ECLAIR-
based structural predictions4.

The interaction interface is dark-colored in subfigures
showing the structures (leftmost part of Figure 5). The first
protein PTPN1—tyrosine–protein phosphatase—acts as a
regulator of endoplasmic reticulum unfolded protein response.
The second protein CAPN1 is a calcium-regulated non-lysosomal
thiol-protease, which catalyzes limited proteolysis of substrates
involved in cytoskeletal remodeling and signal transduction. The

interface between the two proteins spans 468 amino acids, where
numerous amino acids are predicted with very high confidence.
As PTPN1 governs a signaling pathway, which modulates cell
reorganization and cell–cell repulsion, the predicted interaction
could offer novel insights into some of the key mechanisms of
cell-to-cell signaling.

6.3 Interaction Between EP300 and HIF1A
The second interaction we discuss in more detail is between
histone acetyltransferase p300 (UniProt: Q09472) and hypoxia-
inducible factor 1-alpha (UniProt: Q16665). This association was
highlighted in the task of link prediction described in Section 4.
We evaluated it by retrieving the relevant information from the
Interactome INSIDER tool and the STRING database of protein
functional interactions (Szklarczyk et al., 2020).

Protein EP300 functions as histone acetyltransferase and
regulates transcription via chromatin remodeling, whereas
protein HIF1A functions as a master transcriptional regulator
of the adaptive response to hypoxia. We first analyzed the
interaction using the Interactome INSIDER tool (Figure 6)5.
The interface between the two proteins consists of 75 amino acid
residues. The association of the two domains was obtained via co-
crystallization experiments (leftmost part of Figure 6).

Furthermore, we also explored the confidence of the association
provided by the STRING database. The STRING interaction scores
represent an approximate confidence, given all the available evidence,
their range is between 0 and 1. In the case of EP300 and HIF1A, the
overall confidence is very high (0.998), and it is based on the following
factors: the score that the interaction was experimentally determined
(0.974) was obtained from an annotated database (0.900), was
obtained via text-mining (0.614), and that their genes are co-

FIGURE 4 | Network reconstruction benchmark results for individual learners. The more complex classifiers such as the self-attention networks (SAN), extreme
gradient boosting (XGB), and Random Forests perform well when considering different amounts of training data (10, 50, and 90%). On the contrary, the logistic
regression classifier (LR) performs adequately (AUC65) only if enough data were used. The impact of the embedding dimensionality can also be observed. Only high-
enough dimensions result in good predictive performance, consistently for all models.

4http://interactomeinsider.yulab.org/PPI_pair.html?interaction � P07384_P18031&mutcode 5http://interactomeinsider.yulab.org/PPI_pair.html?interaction � Q09472_Q16665&mutcode
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expressed (0.055). The STRINGdb combines scores from separate
interaction source channels by adding the probabilities together while
simultaneously accounting for false discovery rate separately for each
channel. Note that the interaction was not present among the ones
from the BioGrid at the time of writing, indicating the proposed
method’s capability to find well-represented interactions.

6.4 Analysis of False Positives
In the following table we present 25 selected false-positive results
(prediction probability > 90%). For each interaction (row) we
manually inspected three existing databases for two pieces of
information. First, we inspected whether a given interaction that
was not present in, for example, BioGrid (stringent); could be present
in STRINGdb which is much larger. And second, we identified
structurally similar proteins which are known to interact, indicating
that the predicted false positive is potentially a not-yet discovered
interaction. The results are shown in Table 2.

The first observation when additionally assessing the false-positive
interaction is that none of the predicted interactions could be found in
any of the databases viamanual curation. The reasons for this result are
the following. First, the high confidence criteria in STRINGdb are too
stringent to unveil novel, potentially unproven interactions. Second, the
manual curation could be extended to direct exploration of novel
protein interaction articles; however, suchmanual curationwas beyond
the scope of this study. In terms of the observed similar interaction
partners, we noticed the following: the FAM family of proteins
(FAM124B) was identified as structurally similar to the query
protein. The alignment of the two proteins is shown in Figure 7.

The alignment was obtained with the Clustal Omega aligner Madeira
et al. (2019).

It can be observed that parts of the two sequences overlap
(approximately the residues 300–400). The overlap could indicate
a similar binding site, showing a potential interaction of also
FAM124B with the same protein as FAM124A. Overall, we
observed that false-positive results offer an additional gateway
to obtaining potentially interesting candidate interactions (apart
from sampling out-of-training-distribution interactions).

7 DISCUSSION

In the following section we discuss the main findings, ranging from
the implications of the proposed method’s capability to reconstruct
the physical networks to the discovery of novel interactions based on
contextual representations of PubMed (chemicals) annotations.

The first part of this article focuses on the notion of network
reconstruction. Here, we demonstrate that the existing BioGrid
network of physical protein–protein interactions (Oughtred et al.,
2020) can be adequately reconstructed by using more involved
machine-learning models, such as tree ensembles or a deep
neural network adapted for propositional data (SAN). We also
demonstrated that simpler linear models do not perform well in
this setting. The capability to reconstruct a physical network based
solely on literature-based representations is a novel idea and was
then extended as follows. We conducted an additional experiment,
where the SANmodel (one of the best-performing ones) was used to

FIGURE 5 | Visualization of the predicted interaction interface as obtained by the Interactome INSIDER tool. The sequential view of the amino acid sequences with
annotated domain information (rectangles) is shown in the rightmost part of the figure. Note the overlap between the first domain of PTPN1 and the first domain of
CAPN1—this domain overlap represents a potentially interesting protein interaction interface as predicted via ECLAIR.

FIGURE 6 | Visualization of the predicted interaction interface as obtained by the Interactome INSIDER tool. The sequential view of the amino acid sequences with
the annotated domain information (rectangles) is shown in the rightmost part of the figure. The segments that form the interaction surface are shown in dark color, and the
relevant amino acid residues are represented as vertical lines along the highlighted segment.
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learn to estimate a probability of a given prediction. The model was
trained on the collection of training interactions from the first
experiment and used to predict probabilities for interactions,
previously unseen by the model.

We qualitatively discuss such interactions, as they potentially
represent novel knowledge. We demonstrated that one of the
interactions estimated to occur (by SAN) with a high probability
was in fact prioritized also by structure-only tools such as the
Interactome INSIDER (Meyer et al., 2018), giving additional
confidence to this interaction. We finally discuss the biological
context of the interaction alongside possible implications of being
able to rank millions of potentially interesting interactions. For the top
prioritized interaction,wehave shown that it could play a role in the cell
regulation via the endoplasmic reticulum. Further, the computational
predictions at the structural level obtained via Interactome INSIDER
agree/confirm the predicted interaction, demonstrating the
complementarity between the proposed machine learning–based
and more conventional structure-based methodologies.

The focus of this work was on the relation between the literature-
based MeSH tags and the existing empirical protein interaction
networks. We believe that the use of biomedical named entity

recognition methods, such as for example (Settles, 2005) could be
additionally used for construction of knowledge graphs, extending
the currently explored solution based on chemical annotations.

The consideredwork operates in the space ofMeSH tags. There are
multiple reasons for this design choice. First, memory-wise, dynamic
construction of MeSH pairs is not as expensive as storing texts
(possible multiple copies) during embedding construction. Second,
MeSH terms are based on thewhole article’s content, and not only the
abstract. On the contrary, for the considered quantity of articles, the
only sensible source of text are the abstracts (only a small percentage of
the article is freely accessible). Thus, creation of embeddings based
solely on abstracts could be problematic.We believe, however, that the
two methodologies are compatible; both embedding-based and
MeSH-based representations could be jointly used to learn
potentially contextual representations which still maintain the
information based on expensive manual curation.

This study focused on the chemicals-only part of the MeSH
space. We believe that a natural extension of this work could
include all MeSH tags, potentially offering richer context and
applicability beyond protein/chemical networks. The current
implementation of CHEMMESHNET offers direct construction of

TABLE 2 | Assessment of false-positive interactions. Each of the 25 interactions was manually assessed in the three stated databases for possible presence.

Interaction BioGRID IntAct STRINGdb

(‘entrez gene/locuslink:LMX1B AND entrez gene/locuslink:RP11-489N22.3’, ‘entrez gene/locuslink:FAM161A’) ✷ FAM186A ✷

(‘entrez gene/locuslink:unc-97 AND entrez gene/locuslink:F14D12.2’, ‘entrez gene/locuslink:FAM161A’) ✷ ✷ ✷

(‘entrez gene/locuslink:unc-97 AND entrez gene/locuslink:F14D12.2’, ‘entrez gene/locuslink:PTPN3 AND entrez
gene/locuslink:RP11-18A3.3’)

✷ ✷ ✷

(‘entrez gene/locuslink:IGF2 AND entrez gene/locuslink:PP1446’, ‘entrez gene/locuslink:PTPN3 AND entrez gene/
locuslink:RP11-18A3.3’)

✷ ✷ ✷

(‘entrez gene/locuslink:unc-97 AND entrez gene/locuslink:F14D12.2’, ‘entrez gene/locuslink:PXMP2’) ✷ ✷ ✷

(‘entrez gene/locuslink:NEU4 AND entrez gene/locuslink:LP5125’, ‘entrez gene/locuslink:PXMP2’) ✷ ✷ ✷

(‘entrez gene/locuslink:KIAA1958 AND entrez gene/locuslink:RP11-276E15.5’, ‘entrez gene/locuslink:NME4 AND
entrez gene/locuslink:Z97634.4-011’)

✷ ✷ ✷

(‘entrez gene/locuslink:IGF2 AND entrez gene/locuslink:PP1446’, ‘entrez gene/locuslink:RNF40’) RNF28, RNF29,
RNF123

✷ ✷

(‘entrez gene/locuslink:S100A14’, ‘entrez gene/locuslink:PXMP2’) ✷ ✷ ✷

(‘entrez gene/locuslink:IGF2 AND entrez gene/locuslink:PP1446’, ‘entrez gene/locuslink:FAM161A’) ✷ ✷ ✷

(‘entrez gene/locuslink:NEU4 AND entrez gene/locuslink:LP5125’, ‘entrez gene/locuslink:PTPN3 AND entrez gene/
locuslink:RP11-18A3.3’)

✷ ✷ ✷

(‘entrez gene/locuslink:RPA1’, ‘entrez gene/locuslink:PXMP2’) ✷ ✷ ✷

(‘entrez gene/locuslink:unc-97 AND entrez gene/locuslink:F14D12.2’, ‘entrez gene/locuslink:RNF40’) ✷ ✷ ✷

(‘entrez gene/locuslink:KIAA1958 AND entrez gene/locuslink:RP11-276E15.5’, ‘entrez gene/locuslink:PXMP2’) ✷ ✷ ✷

(‘entrez gene/locuslink:LMX1B AND entrez gene/locuslink:RP11-489N22.3’, ‘entrez gene/locuslink:PXMP2’) ✷ ✷ ✷

(‘entrez gene/locuslink:LMX1B AND entrez gene/locuslink:RP11-489N22.3’, ‘entrez gene/locuslink:PTPN3 AND
entrez gene/locuslink:RP11-18A3.3’)

✷ ✷ ✷

(‘entrez gene/locuslink:IGF2 AND entrez gene/locuslink:PP1446’, ‘entrez gene/locuslink:BAG5’) BAG6 ✷ ✷

(‘entrez gene/locuslink:S100A14’, ‘entrez gene/locuslink:PTPN3 AND entrez gene/locuslink:RP11-18A3.3’) ✷ ✷ ✷

(‘entrez gene/locuslink:IGF2 AND entrez gene/locuslink:PP1446’, ‘entrez gene/locuslink:PXMP2’) ✷ ✷ ✷

(‘entrez gene/locuslink:KIAA1958 AND entrez gene/locuslink:RP11-276E15.5’, ‘entrez gene/locuslink:FAM161A’) FAM124B FAM124B ✷

(‘entrez gene/locuslink:LMX1B AND entrez gene/locuslink:RP11-489N22.3’, ‘entrez gene/locuslink:NME4 AND
entrez gene/locuslink:Z97634.4-011’)

✷ ✷ ✷

(‘entrez gene/locuslink:unc-97 AND entrez gene/locuslink:F14D12.2’, ‘entrez gene/locuslink:LNX1 AND entrez gene/
locuslink:UNQ574/PRO1136’)

✷ ✷ ✷

(‘entrez gene/locuslink:IGF2 AND entrez gene/locuslink:PP1446’, ‘entrez gene/locuslink:LNX1 AND entrez gene/
locuslink:UNQ574/PRO1136’)

✷ ✷ ✷

(‘entrez gene/locuslink:unc-97 AND entrez gene/locuslink:F14D12.2’, ‘entrez gene/locuslink:BAG5’) ✷ ✷ ✷

(‘entrez gene/locuslink:RPA1’, ‘entrez gene/locuslink:PTPN3 AND entrez gene/locuslink:RP11-18A3.3’) ✷ ✷ ✷

(‘entrez gene/locuslink:KIAA1958 AND entrez gene/locuslink:RP11-276E15.5’, ‘entrez gene/locuslink:PTPN3 AND
entrez gene/locuslink:RP11-18A3.3’)

✷ ✷ ✷

The cells marked with ‘✷’ represent no hits. If there are related binding partners, they are stated within individual cells.
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that network too; however, subsequent machine-learning
experiments were beyond our computing capabilities to finish
in reasonable time. The interested reader can find the instructions
on how to create the extended MeSH network on the repository.

8 CONCLUSION

In this work, we presented CHEMMESHNET, a network derived from
PubMed, comprising chemical-related MeSH tags. The network
was hypothesized to be expressive enough to reconstruct existing
physical protein–protein interaction relations, which we
demonstrate quantitatively via link prediction. Further, we
show how a machine-learning model, trained to recognize
interactions, can be used to prioritize previously unseen
interactions. We show for a pair of highly ranked interactions
their overlap with the existing structure-based predictions,
showcasing the added value of the proposed approach.
Further, we performed extensive error analysis (manual
inspection) of predicted interactions, demonstrating that this
type of analysis is a potential source of novel interactions. We
finally discussed the results in the context of biomedical
knowledge discovery.

The proposed CHEMMESHNET serves as a freely available, mining-
ready resource and is the key contribution of this article. Albeit being
very expensive, we believe that it could be further extended to the space
of all MeSH tags (not just chemicals). Such extensions are however

potentially spatially more expensive and are therefore left for further
work.
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BŠ and EK implemented the approach and wrote the core idea of
the paper. NL supervised and guided the research, as well as wrote
the paper.

FUNDING

The first two authors are funded via the junior research grants
from the Slovenian Research Agency (ARRS). The work of the last
author is funded by the Slovenian Research Agency (ARRS) core
research program P2-0103 and research grant N2-0078 (financed
under the ERC Complementary Scheme).
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Škrlj, B., Kralj, J., and Lavrač, N. (2020b). Embedding-based silhouette community
detection. Machine Learn. 109, 2161–2193.

Smalheiser, N. R. (2012). Literature-based discovery: beyond the ABCs. J. Am. Soc.
Inf. Sci. 63, 218–224. doi:10.1002/asi.21599

Smalheiser, N. R. (2017). Rediscovering Don Swanson: the past, present and future
of literature-based discovery. J. Data Inf. Sci. 2, 43–64. doi:10.1515/jdis-2017-
0019

Smalheiser, N., and Swanson, D. (1994). Assessing a gap in the biomedical
literature: Magnesium deficiency and neurologic disease. Neurosci. Res.
Commun. 15, 1–9.

Swanson, D. R. (1990). Medical literature as a potential source of new knowledge.
Bull. Med. Libr. Assoc. 78, 29.

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., et al.
(2020). The string database in 2021: customizable protein-protein networks,
and functional characterization of user-uploaded gene/measurement sets.
Nucleic Acids Res. 49, D605–D612. doi:10.1093/nar/gkaa1074

Thilakaratne, M., Falkner, K., and Atapattu, T. (2019). A systematic review on
literature-based discovery: General overview, methodology, and statistical
analysis. ACM Comput. Surv. (Csur) 52, 1–34. doi:10.1145/3365756

Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., et al.
(2019). Unsupervised word embeddings capture latent knowledge from materials
science literature. Nature 571, 95–98. doi:10.1038/s41586-019-1335-8

Venkatasubbaiah, M., Dwarakanadha Reddy, P., and Satyanarayana, S. V. (2020).
Literature-based review of the drugs used for the treatment of covid-19. Curr.
Med. Res. Pract. 10, 100–109. doi:10.1016/j.cmrp.2020.05.013

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). Scipy 1.0: fundamental algorithms for
scientific computing in python. Nat. Methods 17, 261–272. doi:10.1038/
s41592-019-0686-2

Yetisgen-Yildiz, M., and Pratt, W. (2008). Evaluation of literature-based discovery
systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 101–113.

Zhang, D., Yin, J., Zhu, X., and Zhang, C. (2018). Network representation learning:
a survey. IEEE Trans. Big Data. arXiv:1801.05852.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.
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APPENDIX

TABLE A1 | The top 55 protein–protein interactions and their probabilities from the intersection between our list of ranked interactions and the Interactome INSIDER
database. The two marked interactions (10th and 55th) are discussed in detail in Sections 6.2 and 6.3. The ‘or’ statements in the protein columns separate different
names (synonyms) for the same protein.

Interaction probability protein A protein B

1 0.99999990 CAPN1 or PIG30 NIT1 or YIL164C
2 0.99999990 CAPN1 or PIG30 ATG5 or YPL149W
3 0.99999990 CAPN1 or PIG30 TINAGL1 or PP6614
4 0.99999976 CAPN1 or PIG30 LAMTOR1 or PP7157
5 0.99999940 CAPN1 or PIG30 FANCG or RCJMB04_33e6
6 0.99999810 CAPN1 or PIG30 SYNE1 or RP1-130E4.2
7 0.99999810 CAPN1 or PIG30 PTGDS or RP11-229P13.6
8 0.99999810 CAPN1 or PIG30 CASP7 or RP11-211N11.6
9 0.99999810 CAPN1 or PIG30 EEF2
*10 0.99999800 CAPN1 or PIG30 PTPN1
11 0.99999800 CAPN1 or PIG30 GBP2 or YCL011C
12 0.99999800 CAPN1 or PIG30 GINS2 or CGI-122
13 0.99999800 CAPN1 or PIG30 BZW2 or HSPC028
14 0.99999800 CAPN1 or PIG30 EIF2A or CDA02
15 0.99999800 CAPN1 or PIG30 CLEC4G or UNQ431/PRO792
16 0.99999785 CAPN1 or PIG30 EIF4E or AT4G18040
17 0.99999774 CAPN1 or PIG30 HNRNPD
18 0.99999680 CAPN1 or PIG30 EIF6 or RP4-614O4.1
19 0.99999547 EP300 or RP1-85F18.1 TINAGL1 or PP6614
20 0.99999547 TFAP2A or RP1-290I10.1 RPL15 or TCBAP0781
21 0.99999370 EP300 or RP1-85F18.1 SUMO2 or AT5G55160
22 0.99999140 TFAP2A or RP1-290I10.1 DBF4B or UNQ3002
23 0.99999130 EP300 or RP1-85F18.1 MYBL2 or AT1G71030
24 0.99999106 EP300 or RP1-85F18.1 YWHAZ or BOS_14050
25 0.99999106 EP300 or RP1-85F18.1 MAPK1
26 0.99999094 TFAP2A or RP1-290I10.1 EYA2 or RP5-890O15.2
27 0.99999080 EP300 or RP1-85F18.1 MAP3K5 or RP3-325F22.4
28 0.99999080 EP300 or RP1-85F18.1 TAF1B or Dmel_CG6241
29 0.99999070 EP300 or RP1-85F18.1 DNA2 or YHR164C
30 0.99999070 EP300 or RP1-85F18.1 PCNA or Dmel_CG9193
31 0.99999070 EP300 or RP1-85F18.1 BCAS2 or Dmel_CG4980
32 0.99999070 EP300 or RP1-85F18.1 XRCC6 or CTA-216E10.7
33 0.99999070 EP300 or RP1-85F18.1 MAGED1 or PRO2292
34 0.99999070 TFAP2A or RP1-290I10.1 FBLN1 or CTA-941F9.7
35 0.99999070 TFAP2A or RP1-290I10.1 MOB2 or C1_00620W_A
36 0.99999070 TFAP2A or RP1-290I10.1 ACTA2 or GIG46
37 0.99999070 TFAP2A or RP1-290I10.1 KCTD1
38 0.99999070 EP300 or RP1-85F18.1 YY1 or RCJMB04_1i20
39 0.99999070 EP300 or RP1-85F18.1 BCL6
40 0.99999070 EP300 or RP1-85F18.1 ENO1 or YGR254W
41 0.99999070 EP300 or RP1-85F18.1 HDAC6 or Dmel_CG6170
42 0.99999070 EP300 or RP1-85F18.1 DECR2 or AL023881.1
43 0.99999070 EP300 or RP1-85F18.1 CASK or Dmel_CG6703
44 0.99999070 EP300 or RP1-85F18.1 UBC or BOS_16579
45 0.99999070 EP300 or RP1-85F18.1 AR
46 0.99999070 EP300 or RP1-85F18.1 MYC
47 0.99999070 EP300 or RP1-85F18.1 HDAC1
48 0.99999070 EP300 or RP1-85F18.1 CRX or BOS_17597
49 0.99999070 EP300 or RP1-85F18.1 CD2 or RP4-655N15.2
50 0.99999060 EP300 or RP1-85F18.1 PLG or RP1-81D8.1
51 0.99999060 EP300 or RP1-85F18.1 TSNAX or RP11-17H4.1
52 0.99999060 EP300 or RP1-85F18.1 IGBP1 or RP13-46G5.1
53 0.99999060 EP300 or RP1-85F18.1 GOLGA2 or RP11-395P17.5
54 0.99999060 TFAP2A or RP1-290I10.1 CFH or RP1-177P10.1
*55 0.99999060 EP300 or RP1-85F18.1 HIF1A
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