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A B S T R A C T

The use of background knowledge is largely unexploited in text classification tasks. This paper
explores word taxonomies as means for constructing new semantic features, which may improve
the performance and robustness of the learned classifiers. We propose tax2vec, a parallel algo-
rithm for constructing taxonomy-based features, and demonstrate its use on six short text classi-
fication problems: prediction of gender, personality type, age, news topics, drug side effects and
drug effectiveness. The constructed semantic features, in combination with fast linear classifiers,
tested against strong baselines such as hierarchical attention neural networks, achieves compara-
ble classification results on short text documents. The algorithm’s performance is also tested in a
few-shot learning setting, indicating that the inclusion of semantic features can improve the per-
formance in data-scarce situations. The tax2vec capability to extract corpus-specific semantic
keywords is also demonstrated. Finally, we investigate the semantic space of potential features,
where we observe a similarity with the well known Zipf’s law.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY
license. (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

In text mining, document classification refers to the task of classifying a given text document into one or more categories
based on its content (Sebastiani 2002). Given an input set of labeled text documents, a text classifier is expected to learn to associ-
ate the patterns appearing in the documents to the document labels. Deep learning approaches (Devlin et al. 2019) have recently
become a standard in natural language-related learning tasks, demonstrating good performance on a variety of different classifi-
cation tasks, including sentiment analysis of tweets (Tang et al. 2015) and news categorization (Kusner et al. 2015). Despite
achieving state-of-the-art performance on many tasks, deep learning is not yet optimized for situations, where the number of
documents in the training set is low or when the documents contain very little text (Rangel et al. 2017).

Semantic data mining denotes a data mining approach where domain ontologies are used as background knowledge in the
data mining process (ºawrynowicz 2017). Semantic data mining approaches have been successfully applied to association rule
learning (Angelino et al. 2017), semantic subgroup discovery (Vavpeti�c and Lavra�c 2013); (Perov�sek et al. 2015), data visualiza-
tion (Adhikari et al. 2016) and text classification (Scott and Matwin 1998). Provision of semantic information allows the learner
to use features on a higher semantic level, possibly enabling better data generalizations. The semantic information is commonly
represented as relational data in the form of taxonomies or ontologies. Development of approaches that leverage such
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information remains a lively research topic in several fields, including biology (Kim et al. 2018); (Chang et al. 2015), sociology
(Freeman 2017) and natural language processing (Wang et al. 2017).

This paper contributes to semantic data mining by using word taxonomies as means for semantic enrichment by constructing new
features, with the goal to improve the performance and robustness of the learned classifiers. In particular, it addresses classification of
short or incomplete documents, which is useful in a large variety of text classification tasks. Short text is characterized by shortness in
the text length, and sparsity in the terms presented, which results in the difficulty in managing and analyzing them based on the bag-
of-words representation only. Short texts can be found everywhere, such as search snippets, product reviews and similar (Chen et al.
2011). For example, in author profiling, the task is to recognize the author’s characteristics such as age or gender (Rangel et al. 2014),
based on a collection of author’s text samples. Here, the effect of data size is known to be an important factor, influencing classification
performance (Rangel et al. 2016). A frequent text type for this task are tweets, where a collection of tweets from the same author is
considered a single document, to which a label must be assigned. The fewer instances (tweets) per user we need, the more powerful
and useful the approach. Learning from only a handful of tweets can lead to preliminary detection of bots in social networks, and is
hence of practical importance (Chu et al. 2012, 2010). In a similar way, this holds true for nearly any kind of text classification task. For
example, for classifying news into a specific topic, using only snippets or titles may be preferred due to non-availability of entire news
texts or for increasing the processing speed. Moreover, in biomedical applications, (Gr€asser et al. 2018) tried to predict drug’s side
effects and effectiveness from patients’ short commentaries, while (Boyce et al. 2012) investigated the use of short user comments to
assess drug-drug interactions.

It has been demonstrated that deep neural networks in general need a large amount of information in order to learn complex
classifiers, i.e. they require a large training set of documents. For example, the recently introduced BERT neural network architec-
ture (Devlin et al. 2019) consisting of many hidden layers was trained on the whole Wikipedia. It was also shown that the state-
of-the-art models do not perform well when incomplete (or scarce) information is used as input (Cho et al. 2015). On the other
hand, promising results regarding zero-shot (Socher et al. 2013) and few-shot (Snell et al. 2017) learning were recently achieved.

This paper proposes a novel approach named tax2vec, where semantic information available in taxonomies is used to con-
struct semantic features that can improve classification performance on short texts. In the proposed approach, features are con-
structed automatically and remain interpretable. We believe that tax2vec could help explore and understand how external
semantic information can be incorporated into existing (black-box) machine learning models, as well as help to explain what is
being learned.

This work is structured as follows. Following the theoretical preliminaries and the related work necessary to understand how
semantic background knowledge can be used in learning, presented in Section 2, we continue with the description of the pro-
posed tax2vec methodology in Section 3. In Section 4, we describe the experimental setting used to test the methodology. In Sec-
tion 5, we present the results of experiments, including the evaluation of the qualitative properties of features constructed using
tax2vec, and extensive classification benchmark tests. Section 6 discusses the properties of the resulting semantic space and the
explainability of the proposed tax2vec algorithm. Implementation and availability of tax2vec is addressed in Section 7. The paper
concludes with a summary and prospects for further work in Section 8. For completeness, Appendix A includes a detailed descrip-
tion of the Personalized PageRank algorithm, while Appendix B presents an example segmentation of news articles into para-
graphs, forming short documents of interest for this study. Finally, Appendix C contains an additional ablation study regarding
the impact of feature numbers on the classifier performance.

2. Background and related work

In this section we present the theoretical preliminaries and selected related work, which served as the basis for the proposed
tax2vec approach. We begin by explaining different levels of semantic context and the rationale behind the proposed approach.

2.1. Semantic context

Document classification is highly dependent on document representation. In simple bag-of-words representations, the fre-
quency (or a similar weight such as term frequency-inverse document frequency—tf-idf) of each word or n-gram is considered as
a separate feature. More advanced representations group words with similar meaning together. Such approaches include Latent
Semantic Analysis (Landauer 2006), Latent Dirichlet Allocation (Blei et al. 2003), and more recently word embeddings (Mikolov
et al. 2013). It has been previously demonstrated that context-aware algorithms significantly outperform the naive learning
approaches (Cagliero and Garza 2013). We refer to such semantic context as the first-level context.

Second-level context can be introduced by incorporating background knowledge (e.g., ontologies) into a learning task, which can
lead to improved interpretability and performance of classifiers, learned e.g., by rule learning (Vavpeti�c and Lavra�c 2013) or ran-
dom forests (Xu et al. 2018). In text mining, Elhadad et al. (2018) present an ontology-based web document classifier, while
Kaur and Kumar (2018) propose a clustering-based algorithm for document classification that also benefits from knowledge
stored in the underlying ontologies. Cagliero and Garza (2013) present a custom classification algorithm that can leverage taxon-
omies and demonstrate on a case study of geospatial data that such information can be used to improve the learner’s classifica-
tion performance. Use of hypernym-based features for classification tasks has been considered previously. For example,
hypernym-based features were used in rule learning by the Ripper rule learning algorithm (Scott and Matwin 1998). Moreover,
it was also demonstrated that the use of hypernym-based features constructed from WordNet significantly impacts the classifier
performance (Mansuy and Hilderman 2006).
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2.2. Feature construction and selection

When unstructured data is used as input, it is common to explore the options of feature construction. Even though recently
introduced deep neural network based approaches operate on simple word indices (or byte-pair encoded tokens) and thus elimi-
nate the need for manual construction of features, such alternatives are not necessarily the optimal approach when vectorizing
the background knowledge in the form of taxonomies or ontologies. Features obtained by training a neural network are inher-
ently non-symbolic and as such do not present any added value to the developer’s understanding of the (possible) causal mecha-
nisms underlying the learned classifier (Bunge 2017); (Pearl 2009). In contrast, understanding the semantic background of a
classifier’s decision can shed light on previously not observed second-level context vital to the success of learning, rendering oth-
erwise incomprehensible models easier to understand.

Definition 1 (Feature construction). Given an unstructured input consisting of n documents, a feature construction algorithm out-
puts a matrix F 2Rn�a; where a denotes the predefined number of features to be constructed.

In practical applications, features are constructed from various data sources, including texts (Sta�nczyk and Jain 2015), graphs
(Kakisim and Sogukpinar 2019); (�Skrlj et al. 2019b), audio recordings and similar data (Toma�sev et al. 2015). With the increasing
computational power at one’s disposal, automated feature construction methods are becoming prevalent. Here, the idea is that
given some criterion, the feature constructor outputs a set of features selected according to the criterion. For example, the tf-idf
feature construction algorithm, applied to a given document corpus, can automatically construct hundreds of thousands of n-
gram features in a matter of minutes on an average of-the-shelf laptop.

Many approaches can thus output too many features to be processed in a reasonable time, and can introduce additional noise,
which renders the task of learning even harder. To solve this problem, one of the known solutions is feature selection.

Definition 2 (Feature selection). Let F 2Rn�a represent the feature matrix (as defined above), obtained during automated feature
construction. A feature selection algorithm transforms matrix F to a matrix F 0 2Rn�d; where d represents the number of desired fea-
tures after feature selection.

Feature selection thus filters out the (unnecessary) features, with the aim of yielding a compact, information-rich representa-
tion of the unstructured input. There exist many approaches to feature selection. They can be based on the individual feature’s
information content, correlation, significance etc. (Chandrashekar and Sahin 2014). Feature selection is, for example, relevant in
biological data sets, where only a handful of the key gene markers are of interest, and can be identified by assessing the impact of
individual features on the target space (Hira and Gillies 2015).

2.3. Learning from graphs and relational information

In this section we briefly discuss the works that influenced the development of the proposed approach. One of the most elegant
ways to learn from graphs is by transforming them into propositional tables, which are a suitable input for many down-stream
learning algorithms. Recent attempts to vectorization of graphs include the node2vec (Grover and Leskovec 2016) algorithm for
constructing features from homogeneous networks; its extension metapath2vec (Dong et al. 2017) for heterogeneous networks; its
symbolic version SGE (�Skrlj et al. 2019b); the mol2vec (Jaeger et al. 2018) vectorization algorithm for molecular data; the struc2vec
(Ribeiro et al. 2017) graph vectorization algorithm based on homophily relations between nodes, and more. All these approaches
(apart from SGE) are sub-symbolic, as the obtained vectorized information (embeddings) are not interpretable. Similarly, recently
introduced graph-convolutional neural networks also yield local node embeddings, which take node feature vectors into account
(Kipf andWelling 2017); (Hamilton et al. 2017).

In parallel to graph-based vectorization, approaches which tackle the problem of learning from relational databases have also
been developed. Symbolic (interpretable) approaches for this vectorization task, known under the term propositionalization,
include RSD (�Zeleznỳ and Lavra�c 2006), a rule-based algorithm which constructs relational features; and wordification
(Perov�sek et al. 2015), an approach for unfolding relational databases into bag-of-words representations. The approach, described
in the following sections, relies on some of the key ideas initially introduced in the mentioned works on propositionalization, as tax-
onomies are inherently relational data structures.

3. The tax2vec approach

In this section we outline the proposed tax2vec approach. We begin with a general description of classification from short
texts, followed by the key features of tax2vec, which offer solutions to some of the currently not well explored issues in text min-
ing.

3.1. The rationale behind tax2vec

In general text classification tasks, deep learning approaches have outperformed other classifiers (Devlin et al. 2019). How-
ever, in classification tasks involving short documents (tweets, opinions, etc.), particularly where the number of instances is low,
deep learners are still outperformed by simpler classifiers, such as SVMs (Rangel et al. 2019). This observation was a motivation



Fig. 1. Schematic representation of tax2vec, combined with standard tf-idf representation of documents. Note that darker nodes in the taxonomy represent more
general terms.
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for the development of the tax2vec algorithm, proposed in this paper. Compared to non-symbolic node vectorization algorithms
discussed in the previous section, tax2vec uses hypernyms as potential features directly and thus makes the process of feature
construction and selection possible without the loss of classifier’s interpretability.

We present the proposed tax2vec algorithm for semantic feature vector construction that can be used to enrich the feature
vectors constructed by the established text processing methods such as tf-idf. The tax2vec algorithm takes as input a labeled or
unlabeled corpus of n documents and a word taxonomy. It outputs a matrix of semantic feature vectors in which each row repre-
sents a semantics-based vector representation of one input document. Example use of tax2vec in a common language processing
pipeline is shown in Figure 1. Note that the obtained semantic feature vectors serve as additional features in the final, vectorized
representation of a given corpus.

Let us first explore how parts of the WordNet taxonomy (Miller 1995; Fellbaum 1998) related to the training corpus can be
used for the construction of novel features, as such background knowledge can be applied in virtually every English text-based
learning setting, as well as for many other languages (Gonzalez-Agirre et al. 2012).
3.2. Deriving semantic features

The tax2vec approach implements a two-step semantic feature construction process. First, a document-specific taxonomy is
constructed, then a term-weighting scheme is used for feature construction.
3.2.1. Document-based and corpus-based taxonomy construction
In the first step of the tax2vec algorithm, a corpus-based taxonomy is constructed from the input document corpus. In this

section we describe how the words from individual documents of a corpus are mapped to terms of the WordNet taxonomy to
construct a document-based taxonomy by focusing on semantic structures, derived exclusively from the hypernymy relation
between words. Individual document-based taxonomies are then merged into a joint corpus-based taxonomy.

When constructing a document-based taxonomy, each word is mapped to the hypernymWordNet taxonomy. This results in a
tree-like structure, which spans from individual words to higher-order semantic concepts. For example, given the word monkey,
one of its mappings in the WordNet hypernym taxonomy is the term mammal, which can be further mapped to e.g., animal etc.,
eventually reaching the most general term, i.e. entity.

In order to construct the mapping, the first problem to be solved is word-sense disambiguation. For example, the word bank
has two different meanings, when considered in the following two sentences:



Fig. 2. Example hypernym path extracted for word “astatine”, where the ! corresponds to the “hypernym of” relation (the majority of hypernym paths end
with the “entity” term, as it represents one of the most general objects in the taxonomy).

B. �Skrlj et al. / Computer Speech & Language 65 (2021) 101104 5
River bank was enforced:
���� National bank was robbed:

There are many approaches to word-sense disambiguation (WSD). We refer the reader to Navigli (2009) for a detailed over-
view of the WSD methodology.

In tax2vec, we use Lesk (Basile et al. 2014), a standard WSD algorithm, to map each disambiguated word to the corresponding
term in the WordNet taxonomy. The identified term is then associated with a path in the WordNet taxonomy leading from the
given term to the root of the taxonomy. Example hypernym path (with WordNet-style notation), extracted for word “astatine”, is
shown in Figure 2.

By finding a hypernym path to the root of the taxonomy for all words in the input document, a document-based taxonomy is
constructed, which consists of all hypernyms of all words in the document. After constructing the document-based taxonomy for
all the documents in the corpus, the taxonomies are joined into a corpus-based taxonomy.

Note that processing each document and constructing the document-based taxonomy is entirely independent from other
documents, allowing us to process the documents in parallel and join the results only when constructing the joint corpus-based
taxonomy.
3.2.2. Semantic feature construction
During the construction of a document-based taxonomy, document-level term counts are calculated for each term. For each

word t and document D, we count the number ft,D of times the word or one of its hypernyms appeared in a given document D.
The obtained counts can be used for feature construction directly: each term t from the corpus-based taxonomy is associated

with a feature, and a document-level term count is used as the feature value. The current implementation of tax2vec weights the
feature values using the double normalization tf-idf metric. For term t, document D and user-selected normalization factor K, fea-
ture value tf-idf(t,D,K) is calculated as follows (Manning et al. 2008):

tf � idfðt;D;KÞ¼ Kþð1�KÞ ft;D
maxft0 2Dgft0 ;D

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Weighted term frequency

¢ log
N
nt

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Inverse

document frequency

ð1Þ

where ft,D is the term frequency, normalized by maxft0 2Dgf ðt0;DÞ; which corresponds to the raw count of the most common
hypernym of words in the document; value N represents the total number of documents in the corpus, nt denotes the number of
document-based taxonomies the hypernym appears in (i.e. the number of documents that contain a hyponym of t). Note that the
term frequencies are normalized with respect to the most frequently occurring term to prevent a bias towards longer documents.
In the experiments the normalization constant Kwas set to 0.5.
3.3. Feature selection

The problem with the above presented approach is that all hypernyms from the corpus-based taxonomy are considered, and
therefore, the number of columns in the feature matrix can grow to tens of thousands of terms. Including all these terms in the
learning process introduces unnecessary noise, and unnecessarily increases the spatial complexity. This leads to the need of fea-
ture selection (see Definition 2 in Section 2.2) to reduce the number of features to a user-defined number (a free parameter speci-
fied as part of the input). We next describe the scoring functions of feature selection approaches considered in this work.



Fig. 3. An example shortest path. The path colored red represents the smallest number of edges needed to reach node C from node A.
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As part of tax2vec, we implemented both supervised (Mutual Information - MI and Personalized PageRank - PPR), as well as
unsupervised (Betweenness centrality - BC and term count-based selection) feature selection methods, discussed below. Note
that the feature selection process is conducted exclusively on the semantic space (i.e. on the mapped WordNet terms).
Feature selection by term counts. Intuitively, the rarest terms are the most document-specific and could provide additional
information to the classifier. This is addressed in tax2vec by the simplest heuristic, used in the algorithm: a term-
count based heuristic that simply takes overall counts of all hypernyms in the corpus-based taxonomy, sorts them in
ascending order according to their frequency of occurrence and takes the top d.
Feature selection using term betweenness centrality. As the constructed corpus-specific taxonomy is not necessarily the
same as the WordNet taxonomy, the graph-theoretic properties of individual terms within the corpus-based taxon-
omy could provide a reasonable estimate of a term’s importance. The proposed tax2vec implements the between-
ness centrality (BC) (Brandes 2001) measure of individual terms as the scoring measure. The betweenness centrality
is defined as:

BCðtÞ¼
X
u 6¼v6¼t

suvðtÞ
suv

; ð2Þ
where suv corresponds to the number of shortest path
s (see Figure 3) between nodes u and v, and suv(t) corresponds
to the number of paths that pass through term (node) t. Intuitively, betweenness measures the t’s importance in the
corpus-based taxonomy. Here, the terms are sorted in a descending order according to their betweenness centrality,
and again, the top d terms are used for learning.
Feature selection using mutual information.The third heuristic, mutual information (MI) (Peng et al. 2005), aims to exploit
the information from the labels, assigned to the documents used for training. The MI between two random discrete
variables represented as vectors Fi and Y (i.e. the i-th hypernym feature and a target binary class) is defined as:

MIðFi;YÞ¼
X

x;y2 f0;1g
pðFi¼x;Y¼yÞ ¢ log2 pðFi¼x;Y¼yÞ

pðFi¼xÞ ¢ pðY¼yÞ
� �

ð3Þ
where pðFi¼xÞ and pðY¼yÞ correspond to marginal dis
tributions of the joint probability distribution of Fi and Y. Note
that for this step, tax2vec uses the binary feature representation, where the tf-idf features are rounded to the closest
integer value (either 0 or 1). This way, only well represented features are taken into account. Further, tax2vec uses
one-hot encodings of target classes, meaning that each target class vector consists exclusively of zeros and ones. For
each of the target classes, tax2vec computes the mutual information (MI) between all hypernym features (i.e. matrix
X) and a given class. Hence, for each target class, a vector of mutual information scores is obtained, corresponding to
MI between individual hypernym features and a given target class.
Finally, tax2vec sums the MI scores obtained for each target class to obtain the final vector, which is then sorted in
descending order. The first d hypernym features are used for learning. At this point tax2vec yields the selected features as
a sparse matrix, maintaining the spatial complexity amounting to the number of float-valued non-zero entries.
Personalized PageRank-based hypernym ranking. Advances by Kralj et al. (2019) and Kralj (2017) in learning using exten-
sive background knowledge for rule induction explored the use of Personalized PageRank (PPR) algorithm for node
subset selection in semantic search space exploration. In tax2vec, we use the same idea to prioritize (score) hyper-
nyms in the corpus-based taxonomy. In this section, we first briefly describe the Personalized PageRank algorithm
and then describe how it is applied in tax2vec.



B. �Skrlj et al. / Computer Speech & Language 65 (2021) 101104 7
The PPR algorithm takes as an input a network and a set of

starting nodes in the network and returns a vector assigning a score to each node in the input network. The scores of
nodes are calculated as the stationary distribution of the positions of a random walker that starts its walk on one of
the starting nodes and, in each step, either randomly jumps from a node to one of its neighbors (with probability p,
set to 0.85 in our experiments) or jumps back to one of the starting nodes (with probability 1�p). Detailed descrip-
tion of the PPR used in tax2vec is given in Appendix A. The PPR algorithm is used in tax2vec as follows:
(a) Identify a set of hypernyms in the corpus-based tax
first step of tax2vec (described in Section 3.2.1).

(b) Run the PPR algorithm on the corpus-based taxon
set.

(c) Use the top d best ranked hypernyms as candidate
onomy, to which the words in the input corpus map to in the
omy, using the hypernyms identified in step 1 as the starting
features.

Note that this heuristics offers global node ranks with respect to the corpus used.
3.4. The tax2vec algorithm

All the aforementioned steps form the basis of tax2vec, outlined in Algorithm 1. First, tax2vec iterates through the given
labeled document corpus in parallel (lines 3�7). For each document, MaptoTaxonomy method identifies a set of disambiguated
words and determines their corresponding terms in taxonomy T (i.e. WordNet) using method m (i.e. Lesk). Term counts are
stored for later use (storeTermCounts), and the taxonomy, derived from a given document (doc) is added to the corpus taxonomy
TCORPUS . Once traversed, the terms present in TCORPUS represent potential features. Term counts, stored for each document are
aggregated into n vectors, where n is the number of documents in the corpus. The result of this step is a real-valued, sparse
matrix (vecSpace), where columns represent all possible terms from TCORPUS . In the following step, feature selection is conducted.
Here, graph-based methods (e.g., BC and PPR) identify top d terms based on TCORPUS ’s properties (lines 9�12), and non-graph
methods (e.g., MI) is used directly on the sparse matrix to select which d features are the most relevant (lines 13�15). Finally,
selectedFeatures, a matrix of selected semantic features is returned.

Note that in practice, tax2vec also stores the inverse document frequencies. We omit the description of this step for readabil-
ity purposes.
Algorithm 1. tax2vec
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3.5. Handling noise

Numerous data sets, including contemporary social media data sets, can be noisy and as such hard to handle by a learning sys-
tem. We next discuss how distinct parts of tax2vec potentially handle noise in the data, including typos, incomplete and missing
words and uncommon characters.

During the initial step of the semantic space construction, tax2vec conducts document-level word disambiguation in order to
semantically characterize a given token (word). During this step, any tokens that are not present in the taxonomy will be ignored.
Further, as word disambiguation requires a certain word window to operate, this hyperparameter can be used to control the size
of context considered by tax2vec. In this work, however, we did not explicitly address the problem of invalid tokens in a given
token’s neighborhood, yet observed that small window sizes (two and three) offered reasonably robust performance.

Even though disambiguation with Lesk offers the initial semantic pruning capabilities, the tax2vec algorithm can further
address potential noise as follows. As the user can determine the depth in the WordNet taxonomy that will be considered as the
starting point for semantic space construction, potentially too specific terms can be avoided if necessary.

Finally, in the third step, tax2vec conducts feature selection. This part of the algorithm is responsible for filtering redundant and
non-informative terms that could be considered as noise. We tested both supervised, as well as unsupervised feature selection
methods, exploring whether additional information about class labels helps with term pruning. Apart from the semantic pruning
and selection strategies discussed above, links, mentions and hashtags can be removed to further reduce the noise in social media
texts (as mentioned in the description of the SVM implementation by Martinc et al. (2017) in Section 4.2).

We believe all three steps to some extent address how noise is being handled. However, it is expected that additional grammar cor-
rection and text normalization could serve as a complementary step to offer improved performance on social media texts.

4. Experimental setting

This section presents the experimental setting used in testing the performance of tax2vec in document classification tasks. We
begin by describing the data sets on which the method was tested. Next, we describe the classifiers used to assess the use of fea-
tures constructed using tax2vec, along with the baseline approaches. We continue by describing the metrics used to assess classi-
fication performance, and the description of the experiments.

4.1. Data sets

We tested the effects of features produced with tax2vec on six different class labeled text data sets summarized in Table 1,
intentionally chosen from different domains.

The first three data sets are composed of short documents from social media, where we consider classification of tweets.
PAN 2017 (Gender) data set.Given a set of tweet
1 https://pan.webis.de/clef17/pan17
2 https://www.kaggle.com/datasna
3 https://pan.webis.de/clef18/pan18
4 Split to paragraphs according to th
5 https://github.com/suraj-deshmu
6 http://archive.ics.uci.edu/ml/datas
s per user, the task is to predict the user’s gender1 (Rangel et al. 2017).

MBTI (Myers-Briggs personality type) data set.
-web
ek/mbti-type/kernels
-web
e double new line is pres
kh/BBC-Dataset-News-Cl
ets
Given a set of tweets per user, the task is to predict to which personality class

a user belongs2, first discussed in (Myers 1962).
PAN 2016 (Age) data set.Given a set of tweets per
 user, the classifier should predict the users’s age range3 (Rangel et al. 2016).
Next, we consider a news articles data set by which we test the potential of the method also on longer documents, while for
few shot learning experiments (Section 5.3), we transform the setting to short text documents by using only few paragraphs per
article and test whether competitive performance to full-text-based classification can be obtained.
BBC news data set.
 Given a news article (composed of a number of paragraphs)4, the goal is to assign to it a topic from a list of

topic categories5 (Greene and Cunningham 2006).
We also consider two biomedical data sets related to drug consumption. Here, the same training instances in the form of short
user commentaries were used to predict two different targets.
Drug side effects.
 This data set links user opinions to side effects of a drug they are taking as treatment. The goal is to predict

the side effects prior to experimental measurement (Gr€asser et al. 2018).6
Drug effectiveness.
 Similarly to side effects (previous data set), the goal of this task is to predict drug effectiveness (Gr€asser et al.

2018).
ented in Appendix B.
assification/blob/master/dataset/dataset.csv

https://pan.webis.de/clef17/pan17-web
https://www.kaggle.com/datasnaek/mbti-type/kernels
https://pan.webis.de/clef18/pan18-web
https://github.com/suraj-deshmukh/BBC-Dataset-News-Classification/blob/master/dataset/dataset.csv
http://archive.ics.uci.edu/ml/datasets


Table 1
Data sets used for experimental evaluation of tax2vec’s impact on learning. Note that MNS corresponds to the maximum
number of text segments (max. number of tweets or comments per user or number of news paragraphs as presented in
Appendix B).

Data set (target) Classes Words Unique words Documents MNS Average tokens per segment

PAN 2017 (Gender) 2 5169966 607474 3600 102 14.23
MBTI (Personality) 16 11832937 372811 8676 89 27.98
PAN 2016 (Age) 5 943880 178450 402 202 13.17
BBC news 5 902036 58128 2225 76 70.39
Drugs (Side effects) 4 385746 27257 3107 3 41.47
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4.2. The classifiers used

As tax2vec serves as a preprocessing method for data enrichment with semantic features, arbitrary classifiers can use the
resulting semantic features for learning. Note that in the experiments, the final feature space is composed of both semantic and
non-semantic (original) features, i.e., the final feature set used for learning is formed after the semantic features have been con-
structed and selected, by concatenating the original features and the semantic features. We use the following learners:

Drugs (Overall effect) 4 385746 27257 3107 3 41.47
m

PAN 2017 approach.
7 http://kt.ijs.si/data/Emoj
8 In Figure C1 (Appendix C
eter range.
An SVM-based approach that relies heavily on the method proposed by Martinc et al. (2017) for the

author profiling task in the PAN 2017 shared task (Rangel et al. 2017). This method is based on sophisticated hand-
crafted features calculated on different levels of preprocessed text including optional social media text cleaning (e.g.,
Twitter hashtag, mentions, url replacement with filler tokens). The following features were used:
tf-idf weighted word unigrams calculated on lower-cased text with stopwords removed;
tf-idf weighted word bigrams calculated on lower-cased text with punctuation removed;
tf-idf weighted word bound character tetragrams calculated on lower-cased text;
tf-idf weighted punctuation trigrams (the so-called beg-punct (Sapkota et al. 2015), in which the first character is

punctuation but other characters are not) calculated on lower-cased text;
tf-idf weighted suffix character tetragrams (the last four letters of every word that is at least four characters long

(Sapkota et al. 2015)) calculated on lower-cased text;
emoji counts of the number of emojis in the document, counted by using the list of emojis created by Novak et al.

(2015),7; this feature is only useful if the data set in question contains emojis;
document sentiment using the above-mentioned emoji list that contains the sentiment of a specific emoji, used to cal-

culate the sentiment of the entire document by simply adding the sentiment of all the emojis in the document; this
feature is only useful if the data set in question contains emojis;

character flood counts calculated by the number of times that three or more identical character sequences appear in the
document;
In contrast to the original approach proposed (Martinc et al. 2017), we do not use POS tag sequences as features and a Logistic
regression classifier is replaced by a Linear SVM. Here, we experimented with the regularization parameter C, for which values in
range {1, 20, 50, 100, 200} were tested. This SVM variant is from this point on referred to as “SVM (Martinc et al.)”. As this feature
construction pipeline consists of too many parameters, we were not able to perform extensive grid search due to computational
complexity. Thus, we did not experiment with feature construction parameters, and kept the configuration proposed in the origi-
nal study.
Linear SVM with automatic feature construction. The second learner is a libSVM linear classifier (Chang and Lin 2011),
trained on a predefined number of word and character level n-grams, constructed using Scikit-learn’s TfidfVectorizer
method. To find the best setting, we varied the SVM’s C parameter in range {1, 20, 50, 100, 200}, the number of word
features between {10000, 50000, 100000, 200000} and character features between {0, 30}8. Note that the word fea-
tures were sorted by decreasing frequency. Here, we considered (word) n-grams of lengths between two and six. This SVM
variation is from this point on referred to as “SVM (generic)”. The main difference between “SVM (generic)” and “SVM (Mar-
tinc et al.)” is that the latter approach also considers punctuation-based and suffix-based features. Further, it is capable of
constructing features that represent document sentiment, which was proven to work well for social media data sets (e.g.,
tweets). Finally, Martinc’s approach also accounts for character repetitions and has a parameter for social-media text clean-
ing in preprocessing. Note that for both SVM approaches we fine-tuned the hyperparameter C, as is commonwhen employ-
ing SVMs. The hyperparameter’s values govern how penalized the learner is for a miss-classified instance, which is a
property that was shown to vary across data sets (see for example (Meyer et al. 2003)).
i_sentiment_ranking/
), the reader can observe the results of the initial experiments on the number of word features that led to selection of this hyperpara-

http://kt.ijs.si/data/Emoji_sentiment_ranking/
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Hierarchical attention networks (HILSTM). The first neural network baseline is the recently introduced hierarchical attention
network (Yang et al. 2016). Here, we performed a grid search over {64, 128, 256} hidden layers sizes, embedding sizes of
{128, 256, 512}, batch sizes of {8, 24, 52} and number of epochs {5, 15, 20, 30}. For detailed explanation of the architecture,
please refer to the original contribution (Yang et al. 2016). We discuss the best-performing architecture in Section 5 below.
Deep feedforward neural networks. As tax2vec constructs feature vectors, we also attempted to use them as inputs for a
standard feedforward neural network architecture (LeCun et al. 2015); (Schmidhuber 2015). Here, we performed a
grid search across hidden layer settings: {(128, 64), (10, 10, 10)} (where for example (128,64) corresponds to a two
hidden layer neural network, where in the first hidden layer there are 128 neurons and 64 in the second), batch sizes
{8, 24, 52} and the number of training epochs {5, 15, 20}.9
4.3. Semantic features

In addition to the semantic features constructed by tax2vec, doc2vec-based semantic features (Le and Mikolov 2014) were
used as a baseline in order to allow for a simple comparison between two semantic feature construction approaches. They were
concatenated with the features constructed by Martinc et al.’s SVM approach described in Section 4.2, in order to compare the
benefits merging the BoW-based representations with a different type of semantic features (embedding-based ones). We set the
embedding dimension to 256, as it was shown that lower dimensional embeddings do not perform well (Pennington et al. 2014).

4.4. Description of the experiments

The experiments were set up as follows. For the drug-related data sets, we used the splits given in the original paper (Gr€asser
et al. 2018). For other data sets, we trained the classifiers using stratified 90%: 10% splits. For each classifier, 10 such splits were
obtained. The measure used in all cases is F1, where for the multiclass problems (e.g., MBTI), we use the micro-averaged F1. All
experiments were repeated five times using different random seeds. The features obtained using tax2vec are used in combination
with SVM classifiers, while the other classifiers are used as baselines.10

5. Classification results

In this section we provide the results obtained by conducting the experiments outlined in the previous section. We begin by
discussing the overall classification performance with respect to different heuristics used. Next, we discuss how tax2vec aug-
ments the learner’s ability to classify when the number of text segments per user is reduced.

5.1. Classification performance evaluation

The F1 results are presented in Table 2. The first observation is that combining BoW-based representations with semantic fea-
tures (tax2vec or doc2vec) leads to performance improvements in five out of six cases (MBTI being the only data set where no
improvement is detected). Tax2vec outperforms doc2vec-based vectors in three out of five data sets (PAN 2016 (Age), BBC News
and Drugs (effect)), while doc2vec-based features outperform tax2vec on two data sets (PAN 2017 (gender) and Drugs (Side)).

When it comes to tax2vec, up to 100 semantic features aid the SVM learners to achieve better accuracy. The most apparent
improvement can be observed for the case of PAN 2016 (Age) data set, where the task was to predict age. Here, 10 semantic fea-
tures notably improved the classifiers’ performance (up to approximately 7% for SVM (generic)). Further, a minor improvement
over the state-of-the-art was also observed on the PAN 2017 (Gender) data set and the BBC news categorization (see results for
SVM (Martinc et al.)). Hierarchical attention networks outperformed all other learners for the task of side effects prediction, yet
semantics-augmented SVMs outperformed neural models when general drug effects were considered as target classes. Similarly,
no performance improvements were offered by tax2vec on the MBTI data set.

We now present the classification results in the form of critical distance diagrams, shown in Figures 4, 5 and 6. The diagrams
show average ranks of different algorithms according to the (micro) F1 measure. A red line connects groups of classifiers that are
not statistically significantly different from each other at a confidence level of 5%. The significance levels are computed using
Friedman multiple test comparisons followed by Nemenyi post-hoc correction (Dem�sar 2006). For each data set, we selected the
best performing parametrization (hyperparameter settings). The best (on average) performing C parameter for both SVM models
was 50. The number of features that performed the best for all hyperparameter settings of the SVM (generic) considered in this
study is 100,000. The HILSTM architecture’s topology varied between data sets, yet we observed that the best results were
obtained when more than 15 epochs of training were conducted, combined with the hidden layer size of 64 neurons, where the
size of the attention layer was of the same dimension.
The two deep architectures were implemented using TensorFlow (Abadi et al. 2015), and trained using a Nvidia Tesla K40 GPU. We report the best result for
30 semantic features with the rarest terms heuristic.

0 Note that simple feedforward neural networks could also be used in combination with hypernym features—we leave such computationally expensive
eriments for further work.



Table 2
Effect of the added semantic features to classification performance, where all text segments (tweets/comments per user or segments
per news article) are used. The best performing feature selection heuristic for the majority of top performing classifiers was “rarest
terms” or “Closeness centrality”, indicating that only a handful of hypernyms carry added value, relevant for classification. Note that
the results in the table correspond to the best performing combination of a classifier and a given heuristic.

# Semantic Learner PAN (Age) PAN (Gender) MBTI BBC News Drugs (effect) Drugs (side)

0 HILSTM 0.422 0.752 0.407 0.833 0.443 0.514
0 SVM (Martinc et al.) 0.417 0.814

0.682
0.983 0.468 0.503

0 SVM (generic) 0.424 0.751 0.556 0.967 0.445 0.462
256 (doc2vec) SVM (Martinc et al.) 0.422

0.817
0.675 0.979 0.416

0.523

30 (tax2vec) DNN 0.400 0.511 0.182 0.353 0.400 0.321
10 (tax2vec) SVM (Martinc et al.) 0.445 0.815 0.679

0.996 0.47
0.506

SVM (generic)
0.502

0.781 0.556 0.972 0.445 0.469

25 (tax2vec) SVM (Martinc et al.) 0.454 0.814 0.681 0.984 0.468 0.500
SVM (generic) 0.484 0.755 0.554 0.967 0.449 0.466

50 (tax2vec) SVM (Martinc et al.) 0.439 0.814 0.681 0.983 0.462 0.499
SVM (generic) 0.444 0.751 0.554 0.963 0.446 0.463

100 (tax2vec) SVM (Martinc et al.) 0.424 0.816 0.678 0.984 0.466 0.496
SVM (generic) 0.422 0.749 0.551 0.958 0.443 0.460

500 (tax2vec) SVM (Martinc et al.) 0.383 0.797 0.662 0.975 0.450 0.470
SVM (generic) 0.400 0.724 0.532 0.909 0.424 0.438

1000 (tax2vec) SVM (Martinc et al.) 0.368 0.783 0.647 0.964 0.436 0.466
SVM (generic) 0.373 0.701 0.512 0.851 0.407 0.420

Fig. 4. Average overall classifier ranks. The top (on average) performing classifier is an SVM (Martinc et al.) classifier augmented with semantic features, selected
using either simple frequency counts or closeness centrality.

1 2 3 4 5 6 7

Number of features: 50
Number of features: 25
Number of features: 10

Number of features: 1000
Number of features: 500
Number of features: 0

Number of features: 100

critical distance: 3.0780

Fig. 5. Effect of semantic features on average classifier rank. Up to 100 semantic features positively affects the classifiers’ performance.
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Fig. 6. Overall model performance. SVMs dominate the short text classification. The diagram shows performance averaged over all data sets, where the best
model parameterizations (see Table 2) were used for comparison.
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In terms of feature selection, the following can be observed (Figure 4). On average, the best performance was obtained when
rarest terms heuristic was considered (first and fifth rank). Further, rarest terms, as well as the Personalized PageRank performed
better (on average) than mutual information, which can be considered as a baseline in this comparison. The results indicate that
myopic feature selection is not optimal when considering novel semantic features. We can also observe that on average the con-
figuration with doc2vec semantic features (SVM (Martinc et al.) + doc2vec) performs worse (ranked as sixth) than all other con-
figurations with SVM (Martinc et al.).

In Figure 5, the reader can observe the performances of all learners, averaged w.r.t. to the number of semantic features. The
drawn diagram indicates that adding 10, 25 or 50 features to a classifier perform similarly well, however, as also discussed in the
previous paragraph, the performance drops when larger semantic space is considered.

Finally, in Figure 6 it can be observed that the overall performance of Martinc et al.’s SVMs is the best, followed by generic
SVMs, as well as HILSTMs. We believe such performance drop with deep neural networks in general is due to concatenation of
documents prior to learning, and as only a fixed sequence length can be considered, potentially large parts of the token space
were neglected during learning. A similar result was, for example observed in the most recent PAN competition (Martinc et al.
2019).
5.2. Few-shot (per instance) learning

As discussed in the introductory sections, one of the goals of this paper was also to explore the setting, where only a handful of
text segments per user are considered. Even though such setting is not strictly a few-shot learning (Snell et al. 2017), reducing the
number of text segments per instance (e.g., user) aims to simulate a setting where there is limited information available. In
Table 3, we present the results for the setting, where only (up to) 10 text segments (e.g., tweets or paragraphs in a given news
article) were used for training.

The segments were sampled randomly. Only a single text segment per user was considered for the medical texts, as they con-
sist of at max of three commentaries. Similarly, as the BBC news data set consists of news article-genre pairs, we split the news
Table 3
Effect of added semantic features to classification performance—few shot learning.

Semantic (tax2vec) Learner PAN (Age) PAN (Gender) MBTI BBC News Drugs (effect) Drugs (side)

0 SVM (Martinc et al.) 0.378 0.617 0.288 0.977 0.468 0.503
SVM (generic) 0.429 0.554 0.225 0.936 0.445 0.462

10 SVM (Martinc et al.) 0.39 0.616
0.292 0.981

0.47 0.503

SVM (generic) 0.429 0.557 0.225 0.948 0.444 0.464
25 SVM (Martinc et al.) 0.429

0.618
0.288 0.979 0.465 0.5

SVM (generic)
0.439

0.562 0.226 0.933 0.445 0.458

50 SVM (Martinc et al.) 0.402 0.617 0.288 0.974 0.474
0.504

SVM (generic) 0.42 0.557 0.225 0.919 0.442 0.46
100 SVM (Martinc et al.) 0.382 0.614 0.286 0.974

0.476
0.493

SVM (generic) 0.411 0.552 0.223 0.906 0.437 0.457
500 SVM (Martinc et al.) 0.359 0.604 0.276 0.959 0.465 0.471

SVM (generic) 0.365 0.548 0.22 0.8 0.419 0.435
1000 SVM (Martinc et al.) 0.34 0.59 0.266 0.925 0.442 0.46

SVM (generic) 0.359 0.535 0.213 0.704 0.412 0.417
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article to paragraphs, which we randomly sampled. The rationale for such sampling is to be able to evaluate tax2vec’s perfor-
mance when, for example, only a handful of paragraphs are available (e.g., only the lead).

We observe that tax2vec based features improve the learners’ performance on all of the data sets, albeit by a small margin.
The results indicate that adding semantic information improves the performance as only a handful of text segments does not nec-
essarily contain the relevant information.

5.3. Few-shot learning results

We next discuss the results of few-shot learning, as to our knowledge this type of experiments were not conducted before in
combination with semantic feature construction methods. The first observation is, semantic features indeed offer more consis-
tent performance improvements than those observed in Table 2, where incremental improvements were not observed on all
data sets. In a few-shot learning scenario, however, on all data sets, the inclusion of semantic space either resulted in similar or
better performance, indicating a consistent positive effect on the learning in a limited setting. The differences in learner’s perfor-
mance vary around 1% improvement. For example, a 1% improvement was observed for PAN 2016 (Age), BBC News and MBTI
data sets.

We finally comment on the classification performance when considering the BBC data set when comparing to reported state-
of-the-art. The observed results (� 98%) are competitive to neural approaches, such as for example as reported in Asim et al.
(2019), where similar span of accuracy was observed. Furthermore, doc2vec-based models have been observed to perform simi-
larly (Trieu et al. 2017). The results of this work indicate that by considering smaller number of paragraphs (instead of whole
documents), competitive performance can be observed on the BBC data set.

5.4. Interpretation of results

In this section we explain the intuition behind the effect of semantic features on the classifier’s performance. Note that the
best performing SVM models consisted of thousands of tf-idf word and character level features, yet only up to 100 semantic fea-
tures, when added, notably improved the performance. This effect can be understood via the way SVMs learn from high-dimen-
sional data. With each new feature, we increase the dimensionality of the feature space. Even a single feature, when added,
potentially impacts the hyperplane construction. Thus, otherwise problem-irrelevant features can become relevant when novel
features are added. We believe that adding semantic features to (raw) word tf-idf vector space introduces new information, cru-
cial for successful learning, and potentially aligns the remainder of features so that the classifier can better separate the points of
interest.
Table 4
Most informative features with respect to the target class (ranked by MI)—Classes represent news topics (BBC) and different age intervals (PAN
2016 (Age)). Individual target classes are sorted according to a descending mutual information with respect to a given feature.

Sorted target class-mutual information pairs

Semantic feature Average MI Class 1 Class 2 Class 3 Class 4 Class 5

BBC News data set
tory.n.03 0.057 politics:0.14 entertainment:0.05 business:0.03 sport:0.01 x
movie.n.01 0.059 business:0.14 politics:0.04 entertainment:0.04 sport:0.02 x
conservative.n.01 0.061 politics:0.15 entertainment:0.05 business:0.03 sport:0.01 x
vote.n.02 0.061 business:0.15 entertainment:0.04 politics:0.04 sport:0.02 x
election.n.01 0.063 entertainment:0.16 business:0.05 politics:0.04 sport:0.0 x
topology.n.04 0.063 entertainment:0.16 business:0.05 politics:0.04 sport:0.0 x
mercantile_establishment.n.01 0.068 politics:0.17 business:0.07 entertainment:0.03 sport:0.01 x
star_topology.n.01 0.069 politics:0.17 business:0.07 entertainment:0.03 sport:0.01 x
rightist.n.01 0.074 politics:0.18 business:0.06 entertainment:0.04 sport:0.01 x
marketplace.n.02 0.087 entertainment:0.22 business:0.06 politics:0.05 sport:0.01 x
PAN (Age) data set
hippie.n.01 0.007 25-34:0.01 35-49:0.01 18-24:0.0 65-xx:0.0 50-64:0.0
ceremony.n.03 0.007 25-34:0.01 35-49:0.01 18-24:0.01 65-xx:0.0 50-64:0.0
resource.n.02 0.008 50-64:0.02 18-24:0.01 25-34:0.0 65-xx:0.0 35-49:0.0
draw.v.07 0.008 25-34:0.02 35-49:0.01 50-64:0.01 65-xx:0.0 18-24:0.0
observation.n.02 0.008 25-34:0.02 35-49:0.01 50-64:0.01 65-xx:0.0 18-24:0.0
wine.n.01 0.008 35-49:0.02 25-34:0.01 18-24:0.01 50-64:0.01 65-xx:0.0
suck.v.02 0.008 25-34:0.02 50-64:0.02 35-49:0.0 65-xx:0.0 18-24:0.0
sleep.n.03 0.008 25-34:0.02 50-64:0.02 35-49:0.0 65-xx:0.0 18-24:0.0
recognize.v.09 0.009 25-34:0.02 35-49:0.02 18-24:0.0 50-64:0.0 65-xx:0.0
weather.v.04 0.009 25-34:0.02 50-64:0.02 35-49:0.0 18-24:0.0 65-xx:0.0
invention.n.02 0.009 25-34:0.02 35-49:0.01 18-24:0.01 50-64:0.0 65-xx:0.0
yankee.n.03 0.01 50-64:0.02 18-24:0.01 25-34:0.01 35-49:0.0 65-xx:0.0
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The other explanation for the notable differences in predictive performance is possibly related to small data set sizes, where
only a handful of features can be of relevance and thus notably impact a given classifier’s performance. We next discuss the
impact of the number of selected semantic features on performance.

5.5. How large semantic space should be considered?

Tables 3 and 4 show that a relatively small number of semantic features are needed for potential performance gains. Note that
the number of semantic features that need to be considered is around � 100 in most of the cases. The results indicate that a rela-
tively small proportion of the semantic space carries relevant (additional) information, whereas the remainder potentially intro-
duces noise that degrades the performance. Note that in the limit every term from the taxonomy derived from a given corpus
could be considered. In such a scenario, many terms would be irrelevant and would only introduce noise. The experiments con-
ducted in this paper indicate that the threshold for the number of features is in the order of hundreds, yet not more features.

6. Qualitative assessment and explainability of tax2vec

This section discusses the properties of the resulting semantic space in Section 6.1, which is followed by a discussion on the
explainability of the proposed tax2vec algorithm in Section 6.2.

6.1. Analysis of the resulting semantic space

In this section we discuss the qualitative properties of the obtained corpus-based taxonomies. We present the results con-
cerning hypernym frequency distributions, as well as the overall structure of an example corpus-based taxonomy.

As the proposed approach is entirely symbolic—each feature can be traced back to a unique hypernym—we explored the fea-
ture space qualitatively by exploring the statistical properties of the induced taxonomy using graph-statistical approaches. Here,
we modeled hypernym frequency distributions to investigate possible similarity with the Zipf’s law (Piantadosi 2014). The analy-
sis was performed using the Py3plex library (�Skrlj et al. 2019a). We also visualized the document-based taxonomy of the PAN
2016 (Age) data set using Cytoscape (Shannon et al. 2003).

The examples in this section are all based on the corpus-based taxonomy, constructed from the PAN 2016 (Age) data set. The
results of fitting various heavy-tailed distributions to the hypernym frequencies are given in Figure 7.

We fitted power law, truncated normal, log-normal and exponential distributions to the hypernym frequency data. For
detailed overview of the distributions we refer the reader to (Foss et al. 2011). One of the key properties we researched was
whether the underlying hypernym distribution is exponential or not, as non-exponential distributions indicate similarity with
the well known Zipf’s law (Piantadosi 2014). The hypernym corpus-based taxonomy is visualized in Figure 8.

Here, each node represents a hypernym obtained in word-to-hypernym mapping phase of tax2vec. The edges represent the
hypernymy relation between a given pair of hypernyms.

We next present the results of modeling the corpus-based hypernym frequency distributions. The two functions representing
the best fit to hypernym frequency distributions are indeed the power law and the truncated power law. As similar behavior is
observed for word frequency in documents (Piantadosi 2014), we believe hypernym distributions are a natural extension, as nat-
urally, if a high-frequency word maps to a given hypernym, the hypernym will be relatively more common with respect to the
occurrence of other hypernyms.

We observe that multiple connected components of varying sizes emerge. There exists only a single largest connected compo-
nent, which consists of more general noun hypernyms, such as entity and similar. Interestingly, many smaller components also
emerged, indicating parts of the word vector space could be mapped to very specific, disconnected parts of the WordNet taxon-
omy. Some examples of small disconnected components include (one component per line), indicating also verb-level semantics
can be captured and taken into account:

0spot.v.020, 0discriminate.v.030 0homestead.v.010, 0settle.v.210
0smell.v.050, 0perceive.v.020, 0understand.v.020
0dazzle.v.010, 0blind.v.010
0romance:v:020;0adore:v:010;0care_for:v:020;0love:v:030;0love:v:010
0surrender.v.010, 0yield.v.120, 0capitulate.v.010

6.2. Explainability of tex2vec

As discussed in the previous sections, tax2vec selects a set of hypernyms according to a given heuristic and uses them for
learning. One of the key benefits of such approach is that the selected semantic features can easily be inspected, hence potentially
offering interesting insights into the semantics, underlying the problem at hand.



Fig. 7. Hypernym frequency distribution for the PAN 2016 (Age) data set. The equation above the upper plot denotes the coefficients of a power law distribution
(C is a constant). In real world phenomena, the exponent of the rightmost expression was observed to range between � 2 and � 3, indicating the hypernym
structure of the feature space is subject to a heavy-tailed (possibly best fit—power law) distribution. The Xmin denotes the hypernym count, after which notable
differences in hypernym counts—scale free behavior is observed. Such distribution is to some extent expected, as some hypernyms are more general than others,
and thus present in more document-hypernym mappings.
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We discuss here a set of 30 features which emerged as relevant according to the “mutual information” heuristic when the BBC
News and PAN 2016 (Age) data sets were considered. Here, tax2vec was trained on 90% of the data, the rest was removed (test
set). The features and their corresponding mutual information scores are shown in Table 4.

We can observe that the “sport” topic (BBC data set) is not well associated with the prioritized features. On the contrary, terms
such as “rightist” and “conservative” emerged as relevant for classifying into the “politics” class. Similarly, “marketplace” for
example, appeared relevant for classifying into the “entertainment” class. Even more interesting associations emerged when the
same feature ranking was conducted on the PAN 2016 (Age) data set. Here, terms such as “resource” and “wine” were relevant
for classifying middle-aged (“wine”) and older adult (“resource”) populations. Note that the older population (65-xx class) was
not associated with any of the hypernyms. We believe the reason for this is that the number of available tweets decreases with
age.

We repeated a similar experiment (BBC data set) using the “rarest terms” heuristic. The terms which emerged are:

’problem.n.02’, ’question.n.02’, ’riddle.n.01’, ’salmon.n.04’, ’militia.n.02’, ’orphan.n.04’, ’taboo.n.01’, ’desertion.n.01’, ’dearth.
n.02’, ’outfitter.n.02’, ’scarcity.n.01’, ’vasodilator.n.01’, ’dilator.n.02’, ’fluoxetine.n.01’, ’high blood pressure.n.01’, ’amlodipine
besylate.n.01’, ’drain.n.01’, ’imperative mood.n.01’, ’fluorescent.n.01’, ’veneer.n.01’, ’autograph.n.01’, ’oak.n.02’, ’layout.n.01’,
’wall.n.01’, ’firewall.n.03’, ’workload.n.01’, ’manuscript.n.02’, ’cake.n.01’, ’partition.n.01’, ’plasterboard.n.01’

Even if the feature selection method is unsupervised (not directly associated to classes), we can immediately observe that the
features correspond to different topics, raging from medicine (e.g., high blood presure), politics (e.g., militia), food (e.g., cake) and
more, indicating that the rarest hypernyms are indeed diverse and as such potentially useful for the learner.



Fig. 8. Topological structure of the hypernym space, induced from the PAN 2016 (Age) data set. Multiple connected components emerged, indicating not all
hypernyms map to the same high-level concepts. Such segmentation is data set-specific, and can also potentially provide the means to compare semantic spaces
of different data sets. It can be observed that the obtained space is organized in multiple separate components. The largest are drawn at the topmost part of the
figure, whereas the smaller ones at the bottom. Such segmentation corresponds to generalizations based on different parts of speech, e.g., nouns and verbs.
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The results suggest that tax2vec could potentially also be used to inspect the semantic background of a given data set directly,
regardless of the learning task. We believe there are many potential uses for the obtained features, including the following, to be
addressed in further work.
�

11

12
Concept drift detection, i.e. topics change over time; could it be qualitatively detected?

�
 Topic domination, i.e. what type of topic is dominant with respect to e.g., a geographical region inspected?

�
 What other learning tasks can benefit by using second level semantics? Can the obtained features be used, for example, for
fast keyword search?

7. Implementation and availability

The tax2vec algorithm is implemented in Python 3, where Multiprocessing11, SciPy (Jones et al. (2001�) and Numpy (Walt
et al. 2011) libraries are used for fast (sparse), vectorized operations and parallelism.

As performing a grid search over several parameters is computationally expensive, the majority of the experiments were con-
ducted using the SLING supercomputing architecture.12

We developed a stand-alone library that relatively seamlessly fits into existing text mining workflows, hence the Scikit-learn’s
model syntax was adopted (Pedregosa et al. 2011). The algorithm is first initiated as an object:

vectorizer¼ tax2vecðheuristic;number of featuresÞ
followed by standard fit and transform calls:

new_features¼vectorizer:fit_transformðcorpus; optional labelsÞ
Such implementation offers fast prototyping capabilities, needed ubiquitously in the development of learning algorithms and

executable NLP and text mining workflows.
The proposed tax2vec approach is freely available as a Python 3 library at https://github.com/SkBlaz/tax2vec, which includes

also the installation instructions.
https://docs.python.org/2/library/multiprocessing.html
http://www.sling.si/sling/

https://github.com/SkBlaz/tax2vec
https://docs.python.org/2/library/multiprocessing.html
http://www.sling.si/sling/
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8. Conclusions and future work

In this work we propose tax2vec, a parallel algorithm for taxonomy-based enrichment of text documents. Tax2vec first
maps the words from individual documents to their hypernym counterparts, which are considered as candidate features
and weighted according to a normalized tf-idf metric. To select only a user-specified number of relevant features, tax2vec
implements multiple feature selection heuristics, which select only the potentially relevant features. The sparse matrix of
constructed features is finally used alongside the bag-of-words document representations for the task of text classification,
where we study its performance on small data sets, where both the number of text segments per user, as well as the
number of overall users considered are small.

The tax2vec approach considerably improves the classification performance especially on data sets consisting of tweets, but
also on the news. The proposed implementation offers a simple-to-use API, which facilitates inclusion into existing text prepro-
cessing workflows.

As the next step, the tax2vec will be tested on SMS spam data (Delany et al. 2012), which is another potentially interesting
short text data set where taxonomy-based features could improve performance and help the user better understand what classi-
fies as spam (and what not).

One of the drawbacks we plan to address is the support for arbitrary directed acyclic multigraphs—structures commonly used
to represent background knowledge. Support for such knowledge would offer a multitude of applications in e.g., biology, where
gene ontology and other resources which annotate entities of interest are freely available.

In this work we focus on BoW representation of documents, yet we believe tax2vec could also be used along Continuous Bag-
of-Words (CBoW) models. We leave such experimentation for further work.

Even though we use Lesk for the disambiguation task, we believe recent advancements in neural disambiguation (Iacobacci
et al. 2016) could also be a “drop-in” replacement for this part of tax2vec. We leave the exploration of such options for further
work.

In this work we explored how WordNet could be adapted for scalable feature construction, however tax2vec is by no means
limited to manually curated relational (hierarchical) structures. As part of the further work, we believe feature construction based
on knowledge graphs could also be an option.

The abundance of neural embedding methods introduced in the recent years can be complementary to tax2vec. Understand-
ing how the performance can be improved by jointly using both tax2vec’s features and neural network-based ones is a potential
interesting research opportunity. Further, in NLP setting, not much attention is devoted to this topic, thus we believe these results
offer new trajectories for few-shot learning research.

Other further work considers joining the tax2vec features with existing state-of-the-art deep learning approaches, such as the
hierarchical attention networks, which are—according to this study—not very suitable for learning on scarce data sets. We believe
that the introduction of semantics into deep learning could be beneficial for both performance, as well as the interpretability of
currently poorly understood black-box models.

Finally, as the main benefit of tax2vec is its explanatory power, we believe it could be used for fast keyword search; here, for
example, new news or articles could be used as inputs, where the ranked list of semantic features could be directly used as candi-
date keywords.
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Appendix A. Personalized PageRank algorithm

The Personalized PageRank (PPR) algorithm is described below. Let V represent the nodes of the corpus-based taxonomy. For
each node u 2 V, a feature vector is computed by calculating the stationary distribution of a random walk, starting at node u. The
stationary distribution is approximated by using power iteration, where the i-th component of the approximation in the k-th iter-
ation is computed as
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guðiÞðkþ1Þ ¼a ¢
X
j! i

guðjÞðkÞ
doutj

þð1�aÞ ¢ vuðiÞ; k¼1;2;⋯ ðA:1Þ

The number of iterations k is increased until the stationary distribution converges to the stationary distribution vector
(PPR value for node i). In the above equation, a is the damping factor that corresponds to the probability that a random
walk follows a randomly chosen outgoing edge from the current node rather than restarting its walk. The summation
index j runs over all nodes of the network that have an outgoing connection toward j, (denoted as j! i in the sum), and
doutj is the out degree of node dj. The term vu(i) is the restart distribution that corresponds to a vector of probabilities for a
walker’s return to the starting node u, i.e. vuðuÞ¼1 and vuðiÞ¼0 for i 6¼ u. This vector guarantees that the walker will jump back
to the starting node u in case of a restart.13

Appendix B. Example document split

While for the data sets consisting of tweets and short comments, the number of segments in a document corresponds to the
number of tweets or comments by a user, in the news data set, we varied the size of the news (to create short documents) by
splitting the news into paragraphs (we denote such paragraph splits with |||). An example of segmentation of a news from the
BBC data set14 is listed below.

The decision to keep interest rates on hold at 4.75% earlier this month was passed 8-1 by the Bank of England’s rate-
setting body, minutes have shown.||| One member of the Bank’s Monetary Policy Committee (MPC) - Paul Tucker - voted
to raise rates to 5%. The news surprised some analysts who had expected the latest minutes to show another unanimous
decision. Worries over growth rates and consumer spending were behind the decision to freeze rates, the minutes
showed. The Bank’s latest inflation report, released last week, had noted that the main reason inflation might fall was
weaker consumer spending.||| However, MPC member Paul Tucker voted for a quarter point rise in interest rates to 5%. He
argued that economic growth was picking up, and that the equity, credit and housing markets had been stronger than
expected.||| The Bank’s minutes said that risks to the inflation forecast were “sufficiently to the downside” to keep rates
on hold at its latest meeting. However, the minutes added: “Some members noted that an increase might be warranted in
due course if the economy evolved in line with the central projection”. Ross Walker, UK economist at Royal Bank of Scot-
land, said he was surprised that a dissenting vote had been made so soon. He said the minutes appeared to be “trying to
get the market to focus on the possibility of a rise in rates”. “If the economy pans out as they expect then they are proba-
bly going to have to hike rates.” However, he added, any rate increase is not likely to happen until later this year, with
MPC members likely to look for a more sustainable pick up in consumer spending before acting.

This news article is split by a parser into the following four segments (and in short document setting only one paragraph is
used to represent the document).
c

�

13

orr
14
The decision to keep interest rates on hold at 4.75% earlier this month was passed 8-1 by the Bank of England’s rate-setting
body, minutes have shown.
�
 One member of the Bank’s Monetary Policy Committee (MPC) - Paul Tucker - voted to raise rates to 5%. The news sur-
prised some analysts who had expected the latest minutes to show another unanimous decision. Worries over growth
rates and consumer spending were behind the decision to freeze rates, the minutes showed. The Bank’s latest inflation
report, released last week, had noted that the main reason inflation might fall was weaker consumer spending.
�
 However, MPC member Paul Tucker voted for a quarter point rise in interest rates to 5%. He argued that economic growth was
picking up, and that the equity, credit and housing markets had been stronger than expected.
�
 The Bank’s minutes said that risks to the inflation forecast were“sufficiently to the downside” to keep rates on hold at
its latest meeting. However, the minutes added: “Some members noted that an increase might be warranted in due
course if the economy evolved in line with the central projection.” Ross Walker, UK economist at Royal Bank of Scot-
land, said he was surprised that a dissenting vote had been made so soon. He said the minutes appeared to be “trying
to get the market to focus on the possibility of a rise in rates.” “If the economy pans out as they expect then they are
probably going to have to hike rates.” However, he added, “any rate increase is not likely to happen until later this
year, with MPC members likely to look for a more sustainable pick up in consumer spending before acting.”
Appendix C. Impact of different number of features across data sets

Impact of the number of features on the F1 performance of the SVM (generic) classifier are shown in Figure C1.
Note that if the binary vector were instead composed exclusively of ones, the iteration would compute the global PageRank vector, and Equation A.1 would
espond to the standard PageRank iteration.
https://github.com/suraj-deshmukh/BBC-Dataset-News-Classification/blob/master/dataset/dataset.csv

https://github.com/suraj-deshmukh/BBC-Dataset-News-Classification/blob/master/dataset/dataset.csv


Fig. C1. Impact of the number of features used by the SVM (generic) on the F1 performance. The best performances were observed for feature numbers (word
tokens) � 10,000, hence these feature numbers were considered in the more expensive experiment stage with semantic vectors.
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