IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 3, 2020, accepted November 13, 2020, date of publication November 20, 2020,
date of current version December 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3039541

SNoRe: Scalable Unsupervised Learning
of Symbolic Node Representations

SEBASTIAN MEZNAR!', NADA LAVRAC!23, AND BLAZ SKRLJ"'1-2

! Department of Knowledge Technologies, JoZef Stefan Institute, 1000 Ljubljana, Slovenia
2Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
3University of Nova Gorica, 5000 Nova Gorica, Slovenia

Corresponding author: Blaz Skrlj (blaz.skrlj @ijs.si)

This work was supported in part by the ARRS National Research Programme Knowledge Technologies No. P2-0103, in part by the
European Union’s Horizon 2020 Research and Innovation Programme under Grant 825153 project EMBEDDIA (Cross-Lingual
Embeddings for Less-Represented Languages in European News Media), in part by the ARRS ERC Supplementary Grant SDM-Open; and
in part by the ARRS Grant for young researchers (last author).

ABSTRACT Learning from complex real-life networks is a lively research area, with recent advances in
learning information-rich, low-dimensional network node representations. However, state-of-the-art meth-
ods are not necessarily interpretable and are therefore not fully applicable to sensitive settings in biomedical
or user profiling tasks, where explicit bias detection is highly relevant. The proposed SNoRe (Symbolic
Node Representations) algorithm is capable of learning symbolic, human-understandable representations of
individual network nodes, based on the similarity of neighborhood hashes which serve as features. SNoRe’s
interpretable features are suitable for direct explanation of individual predictions, which we demonstrate
by coupling it with the widely used instance explanation tool SHAP to obtain nomograms representing
the relevance of individual features for a given classification. To our knowledge, this is one of the first
such attempts in a structural node embedding setting. In the experimental evaluation on eleven real-life
datasets, SNoRe proved to be competitive to strong baselines, such as variational graph autoencoders,
node2vec and LINE. The vectorized implementation of SNoRe scales to large networks, making it suitable
for contemporary network learning and analysis tasks.

INDEX TERMS Node embedding, feature construction, symbolic learning, interpretable machine learning.

I. INTRODUCTION
Networks can be used to model numerous real-world systems,
spanning from biological protein interaction networks to
social and transportation networks [5], [18]. By representing
areal-life system as a network, it is possible to study network
properties, such as the key network nodes, why they are
relevant, how sets of nodes group together and how network
nodes are classified [2], [4]. The latter task is the focus of
this research. By using networks to represent real-life sys-
tems, we can further explore interactions between instances
instead of conventional approaches that assume instance
independence.

The problem of node classification has been already con-
sidered in the 1990s [7]. However, it was popularized only
in the recent years due to the increase in the available

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano

212568

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

computational power. A well-known method capable of node
classification is label propagation [41], an algorithm that
asynchronously assigns labels to neighboring nodes, even-
tually reaching an equilibrium state that corresponds to the
final classification. Albeit efficient, label propagation and
similar approaches operate in a relatively naive manner, not
accounting for the rich structure of a given network that spans
beyond simple neighborhoods. To mitigate this issue, novel
representation learning methods emerged, offering efficient
ways of constructing real-valued vector representations of
individual nodes, suitable for down-stream learning such as
classification.

Contemporary structural node representation algorithms
are mostly concerned with the down-stream performance,
with insufficient focus on the interpretability, which is of
utmost importance when the user tries to understand why
the system decided to classify a given instance the way
it did. To mitigate this issue, we developed SNoRe, an

VOLUME 8, 2020


https://orcid.org/0000-0002-9916-8756
https://orcid.org/0000-0001-9027-298X

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

algorithm that compares node neighborhoods and is capa-
ble of learning interpretable feature sets through sym-
bolic expressions, describing a given node, which can
be used to obtain explanations of individual predictions,
being an improvement over state-of-the-art low-dimensional,
black-box node representations. The contributions of this
work are summarized as follows:

o We propose SNoRe, an efficient algorithm capable of
learning symbolic representations of nodes by account-
ing for global network topology.

o Theoretical and empirical comparisons with state-
of-the-art indicate competitive performance, whilst
offering the interpretability of individual predictions,
explained by the contributions of the neighboring nodes.

o We show that SNoRe scales to real-life networks with
tens of thousands of nodes, and does not require dedi-
cated hardware for effective performance.

o SNoRe is implemented as a simple-to-use Python
library, transpiled to lower-level code via the Numba
framework [16] for maximum efficiency. The imple-
mentation also features a highly efficient sparse imple-
mentation of the Hub Promoted Index (HPI).

Il. RELATED WORK

This section presents the state-of-the-art methods capable of
solving the node classification task along with their proper-
ties. Note that there are two main settings for learning from
networks, referred to as transductive and inductive learning.
In the transductive learning setting, node classification is per-
formed within the same network, where part of the network
is initially labeled, whereas the remaining part is not. The
task addresses the issue of extrapolating the information from
the known part of the network to the unknown (unlabeled)
part. Common examples of this task include gene function
prediction and social network-based tasks, such as user pro-
filing. On the other hand, in the inductive learning setting,
independent networks are fed as input and are also classified
on the network level. The focus of this work is on transductive
learning.

The types of learning algorithms can further be split based
on the information they are capable to exploit during learning.
An algorithm can perform solely by exploiting the network
structure, or can also incorporate potentially interesting fea-
tures assigned to nodes or edges. The focus of this work is on
structural classification with no assigned features.

A. STRUCTURAL NODE EMBEDDING

The notion of structural node embedding corresponds to the
process of learning a given node’s latent representation (most
commonly real-valued), based on its neighborhood within a
given network. The first branch of methods was inspired by
the widely known word2vec algorithm [24]: DeepWalk [29]
was one of the first node representation learners, and remains
state-of-the-art to this date. DeepWalk creates a network
representation by using sequences of nodes representing ran-
dom walks as input sentences for the word2vec algorithm.

VOLUME 8, 2020

Random walks created in a depth-first search manner intu-
itively map nodes with similar second-order proximity close
together.

Following similar ideas, methods such as node2vec,
struc2vec, LINE, PTE, NetMF and others emerged,
each considering additional network properties (e.g.,
network-topological properties) during representation learn-
ing. Algorithm node2vec [8] uses hyper-parameters p and
q to guide random walks. Parameter p dictates the return
probability whereas g dictates the probability of exploration
away from the previous node. If p and ¢q are set to 1 we get
the special case where the node2vec algorithm is equivalent
to DeepWalk.

LINE [36] derives an objective function for first and
second-order proximity that is computationally intensive and
thus not scalable. The algorithm is then made scalable with
the adoption of negative sampling. Function parameters of
the classification model are optimized with asynchronous
stochastic gradient descent.

NetMF [30] is presented along with the theoretical analysis
of DeepWalk [29], node2vec [8], LINE [36] and PTE [35],
showing that all the aforementioned methods approximate
matrix factorization and that the close forms of these matrices
are intrinsically connected to the graph Laplacian. NetMF
factorizes these closed form matrices, potentially offering
consistent improvement in performance over the methods
mentioned above.

Personalized Page Rank with Shrinking (PPRS) was intro-
duced as a part of the HINMINE methodology [15]. This
algorithm creates vectors representing personalized node
ranks by using the power iteration. Such vectors can be
used directly for learning purposes, or further compressed by
an autoencoder [47], offering small compact representations
trained in an end-to-end manner.

Similarly to these embedding algorithms, our proposed
approach uses information about a given node’s neighbor-
hood to create a representation in unsupervised manner.
Instead of creating a dense, latent embedding, our algorithm
returns a sparse embedding where features represent nodes,
which makes the result easily interpretable.

B. GRAPH NEURAL NETWORKS

Since networks as such are not bound to a given coordinate
system, direct input of e.g., adjacency matrices into neural
networks proves to be problematic. As a result, in parallel
with the aforementioned structural node embedding methods,
which are useful for representation learning in domains with
a well structured spatial structure (such as images), the area
of graph neural networks (GNNs) [3], [14], [40], [43], [45]
emerged, conceived to tackle the problem of learning from
unstructured domains.

Graph Neural Networks operate by passing feature infor-
mation from the considered node’s neighbors towards the
node itself. During this process, the latent representa-
tion (embedding) of the node is obtained. The final repre-
sentation is, in most cases, a result of gradient descent-based

212569



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

optimization. These algorithms are mostly divided into three
subgroups: graph recurrent neural networks, graph convolu-
tional neural networks and graph autoencoders. Graph recur-
rent neural networks try to capture and learn recursive and
sequential patterns by taking advantage of recurrent neural
networks. Graph convolutional neural networks learn local
and global patterns trough designed convolution and readout
functions.

Graph convolutional neural networks are divided into spec-
tral and spatial based algorithms, based on how they define
convolution. Spectral based algorithms define graph convo-
lution using filters from graph signal processing, whereas the
convolution in spatial algorithms relays on information prop-
agation. Graph autoencoders are often used for unsupervised
representation learning by assuming that the networks have
low-rank structures that are potentially nonlinear [45].

Graph convolutional networks (GCNs) [13] are among the
most influential works in graph-based deep learning since
CNNs bridge the gap between spectral and spatial based
graph convolutional neural networks. The GCN algorithm
simplifies filtering by only focusing on first-order neighbors.
Since the number of neighbors can vary, GraphSAGE [10]
samples a fixed amount of neighbors and aggregates them.
The Graph attention network (GAT) [38] further improves
both previously mentioned approaches by introducing the
attention mechanism. Attention mechanism allows the neural
network to learn how much each neighbor contributes instead
of assuming that all neighbors contribute the same amount
(like in GraphSAGE) or that this amount is predetermined
(like in GCN). Another interesting graph convolutional neu-
ral network is the Graph Isomorphism Network (GIN) [42]
that presents a readout function that uses summation and
a multi-layer perceptron to provably achieve the maximum
discriminative power.

A popular graph autoencoding algorithm is the Variational
graph autoencoder (VGAE) [12] that uses latent variables to
create a representation for undirected networks. The algo-
rithm encodes the network into mean and variance matrices
and decodes them with the dot product. The parameters of the
model are learned by minimizing the variational lower bound.

While Graph Neural Networks represent the state-of-the-
art in node classification, they differ significantly from our
approach as they usually use features that are not calculated
from the network and classify nodes in an end-to-end fashion.

Ill. THE SNoRe ALGORITHM

In this section we first define some essential compo-
nents and present the key ideas of the SNoRe algorithm
(Section III-A). The algorithm is divided into four steps: ran-
dom walk generation (Section III-B), random walk hashing
(Section III-C), feature selection (Section III-D), and simi-
larity calculation (Section III-E). For each step, we present
its description and its implementation. We also propose an
extension of the algorithm that chooses the number of fea-
tures based on the embedding size (Section III-F), show an

212570

overview of the algorithm (Section III-G) and present its
theoretical properties (Section III-H).

A. DEFINITIONS AND KEY IDEAS
Let us first define the key terms used throughout this paper.

Definition 1 (Network): A network is a tuple G = (N, E),
where N represents the set of nodes and E represents the
set of edges. An edge can be represented as an ordered pair
(e.g., (n1, n2) € N x N )—in this case the network is directed.
Alternatively, an edge can be represented as a subset of size 2
(e.g., {n1,n2} € N)—in this case the network is undirected.

For generality, we will use directed networks since we can
also represent the undirected ones using the same formalism.
We define a walk and a random walk as follows.

Definition 2 (Walk): A walk of length k in a directed
network is any sequence of k nodes ny,na,...,nx € N,
so that each pair of consecutive nodes n; and ni+1 has a
connection (nj, ni+1) € E.

Definition 3 (Random Walk): A random walk is a walk
generated in such way that at step i, node ni;1 € {a, (n;, a) €
E} is chosen with some probability.

The result of our algorithm is symbolic node embedding of
a network defined as:

Definition 4 (Symbolic Node Embedding): Symbolic node
embedding of network G = (N, E) is a matrix M € RINIxd
where d is the dimension of the embedding. Such embed-
ding is considered symbolic, when each column represents a
symbolic expression, which—when evaluated against a given
node’s neighborhood information—returns an integer num-
ber representing a given node. This definition uses the term
symbolic expression to describe the structure of data that can
be easily interpreted by a human (i.e. the similarity between
neighborhoods of nodes i and j).

Note that the above defined type of symbolic node embed-
ding can also be referred to as propositionalization (see a
recent review [17] for more details).

We use the above definitions to outline the proposed
SNoRe algorithm, illustrated in Fig. 1. In the figure, we high-
light a node and mark it red to present how an arbitrary node in
the network gets embedded. The first step generates random
walks, marked as a collection of red edges in Fig. 1. We then
aggregate walks starting at the red node into a vector of node
occurrences in step 2. Step 3 then selects the features based
on weights assigned by the PageRank algorithm [26]. In the
final step, we generate the embedding of any given node by
calculating cosine similarity between the hash values of nodes
selected as features and the red (considered) node.

B. RANDOM WALK GENERATION

Sampling the neighborhood of a given node can give us
information about the network structure and the connectivity
patterns in its vicinity. We can sample the neighborhood
using short random walks. These offer many advantages such
as ease and parallelization of computation, bound for the
distance of the farthest node and ease of representation.

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

Step 1: Random Walk Creation

Features: 13, 7, 3, 23, 25

Step 3: PageRank Based Feature
Selection

Hash

OOBOOO®O®

@‘0.3‘0.2‘ 0 | 0 |0.1‘0.05‘0.2‘---‘ 0 |0.1|
Step 2: Random Walk Hashing
OXONORONONOKO)

Similarity
@‘ 03 ‘ 02 ‘ 0 ‘ 0 |0.1 ‘0.05‘ 02 ‘ ‘ 0 ‘0.1 Measure
@‘ 05 ‘ 0.1 ‘0.05| 0 |0.05‘ 0 ‘ 0 ‘ ‘ 0.1 ‘ 0
Feature
1 7 2 2
Node 8 ‘ ‘ 8 ‘ 8 ‘ °
© 0.4 0.1 0 06 07 |

® 07 05 02 0 0

07 0 0.4 08 0.4

Step 4: Similarity Calculation

FIGURE 1. SNoRe key idea overview. Step 1 generates random walks that are then hashed in Step 2. These hashes
are represented as sparse vectors and used to calculate the similarity between two node neighborhoods in Step 4,
where the similarity is calculated between all nodes and the nodes that are chosen as features in Step 3 based on

their PageRank score.

The first step of the algorithm generates random walks
and represents them with a data structure such as a list of
visited nodes. We use the random walk generation scheme
(and vectorized implementation) presented in [49]. Let w €
RS, lw|l; = 1 be the distribution vector, where s is the
maximum length of the walk and w; denotes the probabil-
ity that the walk is of length i. We sample random walk
length i from w and create a random walk of length i using
Algorithm 1. In line 4 of the algorithm we append the current
node ¢ (together with some information) to the walk represen-
tation structure. Function neighbor in line 5 returns a neighbor
of the given node (randomly). This algorithm is repeated nw
times for each node, giving us nw random walks per node.

Algorithm 1 Classical Walk
Input : Starting node n;, Walk length wl
Output: Random walk structure Ws

I: ¢ < nj

2: Ws < @f
3: fori=0towl do
4 Ws <« WsUc
5
6
7

¢ < neighbor(c)
: end for
: return Ws

VOLUME 8, 2020

In our implementation, we represented a random walk with
a list of tuples denoting the node and step (n;, s;) € N X
{j,j=0,...,s}. The final random walk structure consists of
concatenated random walk lists /; for each node separately.

The time and space complexity of computing the random
walk structure is O(|N| - nw - 5), where 5 represents the mean
length of the walk. We get this time complexity because for
each node we create nw walks that make 5 steps on average.
Since only the random walk hashing step uses this represen-
tation of random walks, the space complexity can drop to
a constant if we merge the first two steps by incrementally
calculating the hash value after each walk. This way the walks
do not have to be stored.

C. RANDOM WALK HASHING
We represent the neighborhood of node n; numerically by
hashing random walks starting in n;. The hashing function can
incorporate different sources of information about the net-
work to make a vector, B € R, where dh is the dimension of
hashing function output. Some examples of this can include:
occurrences of nodes normalized, the number of nodes with
some degree normalized or occurrences of the communities
normalized. We will denote the hash value (vector) for the
i-th node as h;.

Our implementation uses only neighborhood-level infor-
mation about the network, i.e. how often a node appears in

212571



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

random walks that start at node n;. We also use threshold ¢ as
the lower bound for occurrences. Any node that occurs less
then length(l;) - € times is not included in k;. The final hash
is a normalized sparse row vector, where values represent
how frequently an included node was encountered during a
random walk.

D. FEATURE SELECTION

Features of the node embedding created by our algorithm are
symbolic expressions that can be easily interpreted. We use a
subset of nodes as our features to satisfy this goal. The feature
values represent the similarity between the neighborhoods of
a given node and the node that represents the feature. We will
use feature-map : N — N as the function mapping feature
index to the corresponding node.

Feature selection can be done in a supervised or
unsupervised manner [31]. We focus on unsupervised fea-
ture selection so that the whole algorithm can remain
unsupervised.

In feature selection, we want to select nodes that are impor-
tant for the network structure. We assign a score to each node
using the PageRank algorithm [26], then sort them based on
this score in the descending order, and select top d nodes as
our features.

The PageRank algorithm computes a probability distribu-
tion pr € RWI |pr|l; = 1, where pr; approximates the
probability of a random walker being at node i. When pr; is
high, node i is more likely to be visited and therefore it is
likely more important for the structure of the network. Let
r € RIWI represent a vector of PageRank values for each
node. Let d; represent the degree of the j-th node. If the
adjacency matrix of the considered network (A) is normalized
as follows:

z; Aij #0
0; otherwise

the computation of PageRank can be formulated as an eigen-
value problem:

r=Cr.

For larger networks, the power iteration is used to approx-
imate the final solution. This procedure first initializes r =
[ﬁ, ﬁ, e, ﬁ]T (i.e. a discrete uniform distribution), and

iterates by computing:
k41 = Cl‘k,

until the difference between r; and ry4; is smaller than
some predetermined threshold p. The final r represents the
final collection of PageRank values considered in this work.
Note that in practice, about 10-50 iterations are needed for
convergence, making this method highly scalable.

We chose PageRank as the scoring function used in feature
selection because it is fast, unsupervised and gives a good
approximation for node importance. This choice, however,

212572

is not very important since many times, choosing nodes ran-
domly gives us only slightly worse results. This is especially
true for sparse networks coupled with the extension of SNoRe
we present in Section III-F since most if not all nodes are
chosen. This extension uses feature ranking to estimate d such
that the embedding we get is equivalent in size to a chosen
dense embedding.

PageRank has a parameter, alpha, also known as the
damping factor. In our work, we used the value 0.85 as the
parameter since it is the default value in the NetworkX [9]
implementation we used.

E. SIMILARITY CALCULATION
The proposed SNoRe algorithm creates a symbolic node
embedding matrix M, where row m; represents the similar-
ity of the i-th node to the nodes chosen as features (pivot
nodes). This similarity is calculated in the final step from
hash values h; generated in the random walk hashing step.
We compare the hash value h; of the i-th node to the hash
value Rfeature-map(j) Of the j-th pivot node.

The cosine similarity metric is defined such that it repre-
sents the cosine angle between two non-zero vectors:

YW ai b
IN| IN| 2
\/25:1“1‘2\/2,':11’;'2

where a and b represent the two vectors.! The similarity
score between two vectors without common features is O,
and between two vectors with the same angle is 1. This
makes the similarity between two vectors easily interpretable.
Further, since the score can be 0, this metric works well with
sparse representations. Because of these properties, we use
cosine similarity as our main similarity calculation metric.
In Section V-D we further demonstrate the advantage of
cosine similarity and show how different distance measures
compare against it.

cos_sim(a, b) =

F. ESTIMATING THE REPRESENTATION DIMENSION
One of the key features of SNoRe is its ability to construct
sparse representations of individual nodes. Compared to e.g.,
DeepWalk and similar methods, where the dimension is pre-
determined, SNoRe exploits the following theoretical insight
to construct a high dimensional representation with the same
(or lower) memory footprint than the comparative methods.
As the dimensions in SNoRe can be computed independently
(walks w.r.t. individual nodes are independent), this feature
offers an iterative expansion of the representation until a
sufficient number of e.g., floating-point values is obtained.
The following example demonstrates the mentioned func-
tionality. Consider a situation where SNoRe is to be compared
against a dense representation learning algorithm, which
learns d dimensional representations of nodes. Assuming
|IN| instances, the total space required to store the

IWe use scikit-learn implementation [28] for efficient cosine similarity
calculation between sparse vectors.

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

representation can be denoted with 7 = |N| - d
(floating-point values). The SNoRe algorithm constructs
the representation requiring the same (or less) space in the
following manner. We follow the first three steps of the
algorithm to create hash values and the list of nodes sorted
in the descending order by their PageRank score. We then
add features incrementally calculating the similarity between
the added feature and all nodes. After each calculation,
we subtract the number of nonzero values for the feature
from t and return the created embedding when t drops below
Zero.

During testing, we realized that the quality of the embed-
ding is not affected much by small changes in the similarity
score and that sometimes digitizing it helps classification
(showcased in Appendix A). For this reason, we divide the
interval [0, 1] into b sub-intervals, where sub-interval; =
[}i;, %), and use them to discretize the similarity score
between two hashes. We replace the similarity score M ;
with ide, where idx denotes the index of sub-interval
containing M; ;. This allows us to store values using fewer bits
and consequently create the embedding with more features
that takes up the same amount of space.

The automatic sparse representation construction is out-
lined in lines 12-25 of Algorithm 2. This extension is pre-
sented as SNoRe with Size Dependent Features (SNoRe
(SDF)) in Section V. The behaviour of SNoRe and
SNoRe (SDF) only differs in the number of nodes used in
the final embedding, so we use the terms interchangeably in
the rest of the paper.

G. SNoRe OVERVIEW

The pseudocode of SNoRe (with the final step of SNoRe
(SDF)) is presented in Algorithm 2. Function SAMPLE
takes a distribution vector described in Section III-B as the
input and returns an integer representing walk length sam-
pled from it. Function WALK returns a structure that rep-
resents a random walk and takes as arguments the starting
node and the walk length. Function HASH returns the hash
value of the inputted walks. Function PAGE_RANK returns a
sorted list of nodes based on their PageRank scores. Function
SIM returns a number between 0 and 1 that represents
the similarity between two hashes given as input (distance
between the obtained walk distributions).

Lines 1-6 show the random walk generation step. The
outer loop iterates over nodes and the inner loop over random
walks for each node. In line 4 the generated random walk is
transformed into a suitable representation and appended to
the ones already generated. In the implementation, we use
memoization to sample walk lengths once and use them
for all nodes instead of sampling the length of each walk
independently. The generated walks are used in the random
walk hashing step that is outlined in lines 7-10.

Hash values (vectors) are generated in the loop shown in
lines 8—10. Since hashes are independent between nodes we
parallelized this step in the implementation.

VOLUME 8, 2020

Algorithm 2 SNoRe (SDF)
Input : Network G = (N, E), Length distribution w, Maxi-
mum size T, Number of walks num_walks
Output: Symbolic node embedding matrix M
1: walks < 0 ; > Random walk generation.
2: fori=1to |[N| do
3:  forj =1 to num_walks do
walks; < walks; U WALK(N;, SAMPLE(w))
end for
end for
h <0,
fori=1to |[N| do
h; < HASH(walks;)
10: end for
11: feature-map <~ PAGE_RANK(G) ;
> Unsupervised feature ranking.
12: M < [0]NIXIVI

> Random walk hashing.

R A A

13: [ < 0; > Embedding generation.
14: whilet >0 & [ < |N|do
15 <« 1+1

16:  num < 0
17 forj=0to |N| do

18: s < SIM(h;, hteature-map()) s > Similarity.
19: M,'/' <~ _rourlljd(s)

20: if M, # 0 then

21: num < num + 1

22: end if

23:  end for

24: T < T —num
25: end while

26: return M € RIVIX!

The version of the algorithm described in pseudocode
also estimates the representation dimension as shown in
Section III-F. This is done in lines 11-25. Line 11 calculates
the PageRank score of nodes and sorts them. The embedding
is iteratively calculated in lines 1425, adding one feature in
each pass until T < 0 or we run out of features that can be
added. We can see that the estimation also uses the similarity
calculation step denoted in lines 17-23. The algorithm fin-
ishes in line 26 where it returns the embedding of size |N | x [,
with < 7 = |N| - d floating point values.’

H. THEORETICAL PROPERTIES

For an algorithm to be useful it has to have time and space
complexities that are not too resource-intensive. Using the
definitions from the previous sections and the understanding
of how the algorithm works we next derive the time and space
complexities of SNoRe.

1) TIME COMPLEXITY
To present the time complexity we describe how each step
of the algorithm behaves and sum the gathered complexities.

2Stored using 16-bit NumPy [25], [37] type float16.

212573



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

We simultaneously describe the time complexity of random
walk creation and the hashing step, since they can be imple-
mented together efficiently as described in Section III-B.

Random walk creation and hashing are computed in
O(|N| - nw - 5), since we need to create nw walks with an
average of s steps for |N| nodes, whilst assuming that every
step takes (O(1) time. Hashing maintains this complexity
since each of |[N| - nw walks needs O(5) time to be hashed.

The time complexity of feature selection depends mostly
on the algorithm used for selecting the representative subset
of nodes. For feature ranking we used the PageRank algo-
rithm with time complexity O(c - |E|), when networks are
represented with a sparse adjacency matrix. In the aforemen-
tioned time complexity ¢ represents the maximum number of
iterations. We also need additional O(|N| - log|N|) to sort
feature scores and gather first d pivot nodes. This can be
done more efficiently by only selecting top d pivot nodes,
but we rank all nodes for use in the extension. To calculate
the time complexity of the last step we focus on the time
needed to calculate the similarity between two hash values
since this has to be calculated |[N| - d times to create the final
node embedding matrix. We use sparse implementation of the
cosine similarity function with sparse vectors containing at
most L%J non-zero values. Because of this, we need L%J time
to compute the similarity between two hashes. Consequently
we need O(|N| - d - Léj) to calculate the similarity between
each node and each feature.

The algorithm extension that is shown in Section III-F
only impacts the size of d, since other used operations do
not contribute significantly to time complexity and can be
omitted because of this. Since we use nodes as features
d < |N| still holds. Summing the time complexity of all steps
we get the following time complexity:

1
O(N|-nw-5+c-|E|+ |N|-log|N|+|N|-d - LEJ)

_ O(N|-- Léj +nw-5+log VD) + ¢ E])

2) SPACE COMPLEXITY

The space complexity can be calculated similarly to time
complexity by considering the four parts of the algorithm
and merging the random walk creation and hashing step.
Furthermore, we need O(|E|) for the sparse adjacency matrix
to represent the network.

We can compute the random walk creation and hashing
steps in O( LVZ—lj) space. Since random walks and hash value
calculation can be done for each node independently, we need
O(nw - 5) space for random walk creation and O( Léj) space
to store the sparse vector that represents the hash value for
this node. This holds because at most L%J values can be
greater than the threshold €. Since node occurrence is usually
not uniform and many nodes occur more frequently than e,
the used space is usually smaller than this. We get the space
complexity O( Luz—lj) for this two steps by concatenating hash
representations of each node.

212574

The space complexity of the feature selection depends
on d and the space complexity of the algorithm used for
feature selection. We use PageRank that uses O(E) space to
store a sparse adjacency matrix. We also need O(d) to store
the selected features.

The similarity calculation step creates a (sparse) matrix of
size [N |-d where d < |N|. To calculate the similarity between
two hashes we only need constant additional space. If we put
the space complexity of all steps together we get the final
space complexity:

N
O(E| + |6—| + IN|-d).

We further extend the analysis of space complexity with
the algorithm extension in Section III-F since we generate a
sparse matrix that uses less or equal than T = |N| - d space,
where d is the dimension of a dense embedding.

IV. DATASETS AND EXPERIMENTAL SETTING

In this section, we describe the datasets used to evalu-
ate the performance of the proposed embedding algorithm,
the experimental setting and the baselines we used to compare
the results with.

A. DATASETS

The datasets used for the evaluation of the embedding algo-
rithms consist of 11 real-world complex networks. The sum-
mary of the datasets is shown in Table 1. This table shows
that we use datasets that have different characteristics since
they differ a lot in the number of nodes, edges, classes, and
connected components. We also show visualizations of Cora
and Pubmed datasets in Fig. 2. In the figure, target classes are
represented using different colors.

TABLE 1. Basic statistics of the networks used for testing.

Name Nodes Edges CConnected Classes
omponents
ITons 1969 16092 326 12
Cora 2708 5278 78 7
Citeseer 3327 4676 438 6
Bitcoin Alpha 3783 14124 5 20
Homo sapiens (PPI) 3890 38739 35 50
Wikipedia 4777 92517 1 40
Bitcoin 5881 21492 4 20
BlogCatalog 10312 333983 1 39
Coauthor-CS 18333 100227 1 15
Pubmed 19717 64041 1 3
Coauthor-PHY 34493 282455 1 5

o lons [47], [48] is a network of ion binding sites, linked
by their structural similarity. The target class is the type
of ion that binds to a given protein substructure (node).

o Cora[19]is a network of scientific publications and the
citations between them. The labels represent the topic
categories of the publication.

o CiteSeer [19] is a network of scientific publications and
the citations between them. The labels represent the
topic categories of the publication.

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

FIGURE 2. Visualization of Cora and Pubmed networks, colored based on
node labels.

e Bitcoin Alpha [47] is a network of Bitcoin transac-
tions from the platform Bitcoin Alpha. The labels rep-
resent the level of trust in the transaction (integer range
from —10 to 10).

o Homo sapiens (PPI) (as used in [8]) is a network of the
proteome, i.e. a set of proteins which interact with each
other. The labels represent the protein functions.

o Wikipedia [22] is a network of co-occurrences of words
in the first million bytes of the Wikipedia dump. The
labels represent the part-of-speech tags.

e Bitcoin [47] is a network of Bitcoin transactions from the
platform Bitcoin OTC. The labels represent the level of
trust in the transaction (integer range from —10 to 10).

e BlogCatalog [44] is a network of social relationships
on the Blogger website. The labels represent interests
inferred from metadata provided by the authors.

o Coauthor-CS [32] is a computer science co-authorship
network where nodes represent authors and edges rep-
resent that two authors co-authored a paper. The labels
represent the authors most active fields of study.

o Pubmed (as used in [39]) is a network of scientific
publications and the citations between them. The labels
represent the topic categories of the publication.

o Coauthor-PHY [32] is a physics co-authorship network,
where nodes represent authors and edges represent that
two authors co-authored a paper. The labels represent the
authors’ most active fields of study.

B. EXPERIMENTAL SETTING

The conducted experiments focus on the multi-label node
classification task. In the multi-label classification task, many
different labels may be assigned to each instance. This can
be formally looked at as a problem where we search for a
function f : N — {0, 1}8, where g is the number of labels.
Labels where the value is 1, are assigned to the instance,
whereas the ones with 0 are not. An example of such a task is
the assignment of genres to a movie.

When comparing the proposed method to the baselines,
we evaluated the performance of a given embedding algo-
rithm with the same methodology as in state-of-the-art papers
such as node2vec [8]. The methodology is described below.

o We embedded a network’s nodes to a low-dimensional
representation.

VOLUME 8, 2020

« We made ten copies of the embedding with correspond-
ing labels and shuffled each.

« We evaluated the performance on each copy using a
training set of increasing size, i.e. from 10% to 90%
classified by logistic regression. We classified each node
into top k; classes based on the probability returned from
the classifier, where k; represents the number of classes
of a given node.

o We calculated micro and macro F1 scores and averaged
the results for each percentage.

o We performed the described test for each embedding
algorithm ten times.

The exception to this method of testing is the Label Prop-
agation algorithm that does not use an embedding. To test it
we ran the algorithm 100 times with the randomly selected
training set of increasing size from 10% to 90%, similarly to
how we tested the other embedding algorithms.

All experiments were conducted on a machine with 128 GB
RAM, Intel(R) Xeon(R) Gold 6150 @ 2.7 GHz with a
NVIDIA Tesla V100 SXM3 32 GB GPU. The approaches
that consumed more than 128 GB of RAM were marked
as unsuccessful and are shown as Out Of Memory (OOM)
in the results. We added this constraint because we use
medium-sized datasets for testing and the methods that need
more memory would probably not scale well to larger net-
works.

As default parameters for SNoRe we use ¢ = 0.005,
maximum walk length = 5, number of walks per node =
1024 and 2048 pivot nodes (d). For SNoRe (SDF) we use the
same parameters except that we use d equivalent to a dense
representation with 256 features (t = |N| - 256). We have
chosen 256 features because other embedding algorithms we
tested use 32-bit floating-point numbers with 128 features
whereas we use 16-bit floating-point values, making the size
of the embedding the same.

C. BASELINES

We compared the results of the proposed approach against the
results of eight other baselines outlined below. Seven of these
are embedding algorithms, the exception being Label Prop-
agation that performs classification directly by propagating
label information across the network structure.

o Random baseline creates an embedding of size [N | x 64
with random numbers drawn from Unif(0, 1).

o Label Propagation (LP) [41] propagates labels of anno-
tated nodes through the network until convergence or the
maximum number of iterations. We used alpha = 0.9 as
parameter.

o VGAE [12] is a variational auto-encoder that uses latent
variables to learn a model that can be interpreted. This
auto-encoder is used mostly for link prediction. We used
default parameters epochs = 200, learning rate = 0.01,
32-dim hidden layer and 16-dim latent variables in the
experiments.

o Personalized Page Rank with Shrinking (PPRS). This
variant of Personalized PageRank was developed as part

212575



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

of HINMINE methodology [15]. The algorithm, for each
node, computes its representation by iteratively obtain-
ing a discrete stationary distribution of walk visits. The
shrinking offers additional speedups. We use probability
threshold = 0.0005 and number of important = 1000
that are the default parameters for testing.

e DeepWalk [29] equates random walks to sentences.
These sentences are used to learn the network repre-
sentation using a simple language model-like procedure.
We use default parameters: representation size = 128,
walk length = 80, and the number of walks = 10 in the
experiments.

o NetMF (SCD)[33]is the PyTorch [27] re-implementation
of the NetMF embedder [30]. NetMF tries to approxi-
mate the closed form of the DeepWalk’s implicit latent
walk matrix. The re-implementation is suitable for
highly sparse matrices and is optimized for running on
GPUs, offering substantial performance improvements.
We use the default parameters: dimension = 128, win-
dow size = 10, rank = 248 and negative = 1 in the
experiments.

o LINE [36] is one of the first network embedding algo-
rithms. It uses an objective function that preserves first
and second-order proximities. We use default parame-
ters: embedding dimension = 200 and the number of
negative samples = 5 in the experiments.

o node2vec [8] learns a low dimensional representation of
nodes that maximizes the likelihood of neighborhood
preservation using random walks. We use default param-
eters: embedding dimension = 128, walk length = 80,
number of walks = 10 and window size = 10 in the
experiments.

V. RESULTS

We next present the results of the empirical evaluation.
We begin with the classification results across the considered
real-life datasets, followed by a series of ablation studies,
where we explored SNoRe’s behaviour in more detail, rang-
ing from its explainability capabilities to behaviour w.r.t.
different hyperparameter settings.

A. CLASSIFICATION RESULTS
Classification results are visualized in Fig. 3 and 4, as well
as presented in tabular format, where average performances
across different training percentages alongside the corre-
sponding standard deviations are reported (Tables 2 and 3).
It can be observed that the proposed SNoRe algorithm
performs competitively, or even outperforms the consid-
ered baselines. We can see that SNoRe and its extension
SNoRe (SDF) work well on co-authorship networks, citation
networks, Cora and the Ions dataset. Their results on both
co-authorship network are interesting, since F1 scores are low
at first, but then they rise fast and achieve the best results
out of all baselines when we use enough training instances.
Our algorithm performs poorly compared to other baseline
methods on datasets such as Wikipedia and BlogCatalog,

212576

Dataset = Bitcoin Dataset = Bitcoin Alpha

Dataset = BlogCatalog

T 075 | ggunges enm—

2 0.50
S

= 0.25 T = e :

L———6—0—0—0—0—0

Dataset = Citeseer Dataset = Coauthor CS atas Coauthor PHY

B e o o T ey —0—0—0—0—0

= 075 e W&-‘j O R Ga-an-a=

g(].BlJ e Q—o—rgzgvla OO

S 095 Vt o o oo  §—89—0—0—0—0—0—0—0 e eeree

B } —o—0—0—0—0—90—00

Dataset = Cora  Dataset = Homo sapiens (PPI) Dataset = Ions

ot 0—0—0=0=0=—0—0

E 0.75
e—o—o—9o—90—0—o 00
2 0.50 o—oo—o——t—0—=0
=
= 0.25 fo—ero—e—9—0—0—0—0
0.25 0.50 0.75
Dataset = Pubmed Dataset = Wikipedia Percent train
.75 == ‘ Sﬁttjmg
. pam o= == == == =5 =2 = ] ~ & i
2 0.50 e o vaaE
= S—00—0—1—0—0e—0 -8 PPRS
= 0.25 -~ LINE
—o—0—o—C—o—0—0—0 8~ Node2Vec
-~ Decpualk
025 050 0.75 025 050 0.75 @ NetMF (SCD)
Percent train Percent train SNoRs

®- SNoRe SDF

FIGURE 3. Micro F1 plots.

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

Macro F1
=)

0.0

Dataset = Citeseer

Dataset = Coauthor CS  Dataset = Coauthor PHY

o—0-l-0—a—b—0—0-0= 0—0—0—0=0—0—0—0—0

_ e—0—8—0=—0—0—C 3
805 ¥
= —o—r——e—0—0—0—0
= —0-1-o e—o *—o—9o—9o—o

0.0 00— 00—

Dataset = Cora  Dataset = Homo sapiens (PPI) Dataset = Ions

~ ot t—t—0=
= o000 o0
=] 5
2 0.5
K
= —o—0—0—0—0—0——0—¢

0.0
0.25 0.50 0.75

Dataset = Pubmed Dataset = Wikipedia Percent train
—0—— =1 Setting
- an-an-aD EDEDEDES ®- Random
[ ——— — = = ] .
-~ VGAE

Macro F1
=)
=

00 e e e e e

0.25 0.50 0.75 0.25 0.50 0.75
Percent train Percent train

@~ SNoRe SDF

FIGURE 4. Macro F1 plots.

where nodes with similar class do not necessarily have similar
neighborhoods (homophily), which is potentially the case
with the co-authorship datasets. We can see that all embed-
ding algorithms perform similarly to the random baseline
on both Bitcoin datasets. This potentially shows that some
datasets may not be suitable for direct learning.

Similar results can be observed in the averaged results
(Tables 2 and 3), indicating SNoRe and its extension offer
the state-of-the-art performance, albeit offering fundamen-
tally different representation learning capabilities (sparse and

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

TABLE 2. Mean aggregated micro F1 scores.

setting Random LP VGAE PPRS LINE Node2Vec Deepwalk NetMF (SCD) SNoRe SNoRe SDF
dataset
Bitcoin 0.670 (£0.011)  0.701 (£0.003)  0.700 (£0.004)  0.692 (£0.003)  0.662 (£0.008)  0.687 (£0.012)  0.696 (£0.016)  0.703 (£0.009)  0.716 (£0.007)  0.709 (£ 0.007)
Bitcoin Alpha 0.676 (£0.013)  0.701 (£0.002)  0.694 (£0.005)  0.699 (£0.003)  0.665 (£0.005)  0.678 (£0.011)  0.683 (£0.017)  0.694 (£0.010)  0.709 (£0.005)  0.703 (£ 0.003)
BlogCatalog 0.139 (£0.014)  0.070 (+£0.000) OOM 0.169 (£0.002)  0.289 (£0.030)  0.373 (+0.012)  0.385(£0.022)  0.420 (£0.017)  0.230 (£0.021)  0.226 (+ 0.019)
Citeseer 0.187 (£0.007)  0.657 (£0.062)  0.405 (£0.013)  0.334 (£0.027)  0.299 (£0.017)  0.583 (£0.024)  0.578 (£0.027)  0.590 (£0.019)  0.666 (£0.063)  0.664 (£ 0.066)
Coauthor CS 0.215(£0.014)  0.125 (£0.000) ~ 0.773 (£0.013)  0.227 (£0.002)  0.677 (£0.026)  0.878 (£0.008)  0.883 (+0.009)  0.883 (+0.006)  0.585 (£0.131)  0.854 (£ 0.081)
Coauthor PHY 0.505 (£0.001)  0.333 (+0.000) OOM 0.505 (£0.002)  0.754 (£0.010) ~ 0.931 (£0.003) ~ 0.935 (£0.003)  0.935 (£0.002)  0.605 (£0.061)  0.887 (& 0.082)
Cora 0.246 (£0.021)  0.834 (£0.038)  0.645 (£0.023)  0.445 (£0.041)  0.432(£0.028)  0.809 (£0.019)  0.817 (£0.026)  0.822 (£0.022)  0.822 (£0.052)  0.826 (£ 0.051)
Homo sapiens (PPI) ~ 0.061 (£0.003)  0.066 (£0.000)  0.167 (£0.010)  0.113 (£0.013)  0.143 (£0.014) ~ 0.205 (£0.019) ~ 0.205 (£0.023) ~ 0.227 (£0.022)  0.207 (+0.041)  0.210 (£ 0.038)
Tons 0.383 (£0.020)  0.691 (£0.051)  0.569 (£0.018)  0.529 (£0.026)  0.640 (£0.032)  0.661 (£0.029)  0.685 (£ 0.027)  0.706 (+0.031)  0.712 (£0.045)  0.708 (£ 0.047)
Pubmed 0.395 (£0.003)  0.399 (£0.001)  0.676 (£0.015)  0.398 (£0.001)  0.611 (£0.013) ~ 0.804 (£0.005)  0.806 (+0.005)  0.813 (+0.005)  0.783 (£0.033)  0.821 (£ 0.024)
Wikipedia 0.394 (£0.014)  0.068 (+0.000) OOM 0.441 (£0.011) ~ 0.382 (£0.015)  0.505 (+0.015)  0.465 (£0.023)  0.501 (£0.016)  0.427 (£0.014)  0.404 (& 0.002)
TABLE 3. Mean aggregated macro F1 scores.

setting Random LP VGAE PPRS LINE Node2Vec Deepwalk NetMF (SCD) SNoRe SNoRe SDF
dataset
Bitcoin 0.269 (£0.004)  0.287 (£0.002)  0.304 (£0.006)  0.277 (£0.006)  0.293 (£0.008) ~ 0.315(£0.012)  0.318 (+£0.012)  0.312(£0.009)  0.314 (£0.013)  0.293 (£ 0.009)
Bitcoin Alpha 0.270 (£0.006)  0.277 (+0.004)  0.288 (£0.005)  0.282 (+0.007)  0.282 (£0.006)  0.296 (£0.009)  0.299 (+£0.011) ~ 0.299 (+0.009)  0.303 (£0.009)  0.283 (£ 0.005)
BlogCatalog 0.037 (£0.004)  0.068 (+0.000) OOM 0.027 (£0.001) ~ 0.169 (£0.022) ~ 0.206 (£0.017)  0.243 (£0.025)  0.271(£0.022)  0.067 (£0.012)  0.065 (& 0.011)
Citeseer 0.157 (£0.006)  0.620 (£0.060)  0.344 (£0.011)  0.270 (£0.038)  0.255 (£0.018) ~ 0.532(£0.023)  0.532(0.025)  0.540 (£0.019)  0.621 (£0.066)  0.623 (& 0.067)
Coauthor CS 0.032 (£0.009)  0.120 (£0.000)  0.662 (£0.021)  0.026 (£0.002)  0.622 (£0.036)  0.849 (£0.011)  0.855(+0.013)  0.853 (+0.008)  0.451 (£0.155)  0.803 (£ 0.109)
Coauthor PHY 0.134 (£0.000)  0.309 (+0.000) OOM 0.134 (£0.000)  0.675 (£0.013)  0.908 (£0.003)  0.912 (£0.004)  0.914 (£0.003)  0.381 (£0.141)  0.853 (£ 0.118)
Cora 0.117 (£0.014) ~ 0.825 (+0.038)  0.616 (£0.029)  0.351 (£0.073)  0.366 (£0.043)  0.799 (£0.021) ~ 0.808 (+0.028)  0.812(+0.024)  0.811 (£0.054)  0.815 (£ 0.054)
Homo sapiens (PPI) ~ 0.046 (£0.002)  0.066 (£0.000)  0.104 (£0.010)  0.065 (£0.015)  0.121 (£0.015)  0.173(£0.019)  0.174 (£0.022) ~ 0.189 (£0.022)  0.142 (+0.037)  0.156 (£ 0.037)
Tons 0.076 (£0.005)  0.333 (£0.031)  0.163 (£0.013)  0.176 (£0.036)  0.288 (£0.031) ~ 0.299 (£0.030)  0.321 (£ 0.026)  0.309 (£0.029)  0.319 (£0.053)  0.312 (£ 0.052)
Pubmed 0.295 (£0.004)  0.190 (£0.000)  0.641 (£0.018)  0.190 (£0.000)  0.567 (£0.011) ~ 0.790 (£0.005)  0.792 (£0.006)  0.800 (£0.006)  0.742 (£0.059)  0.805 (£ 0.032)
Wikipedia 0.041 (£0.003)  0.059 (£0.000) OOM 0.080 (£0.011) ~ 0.058 (£0.004)  0.099 (£0.010)  0.087 (£0.008)  0.103 (£0.008)  0.050 (£0.009)  0.034 (& 0.001)

Node2Vec VGAE

Deepwalk LP

SNoRe PPRS

NetMF (SCD) LINE

SNoRe SDF Random

| I | I
1 2 3 1

critical distance: 4.2836
f

at

6 7 8 9 10

FIGURE 5. Micro F1 average rank diagram where best performing percentage is chosen.

SNoRe
Node2Vec
NetMF (SCD)
Deepwalk
SNoRe SDF

LINE
VGAE
LP
PPRS

Random

| I |
1 2 3 4

critical distance: 4.2836
L

FIGURE 6. Macro F1 average rank diagram where best performing percentage is chosen.

symbolic). The results of both SNoRe and SNoRe (SDF) in
the averaged tables suffer because the classification accuracy
drops when we use a small amount of data (less than 25%)
for training. The table also shows that SNoRe performs the
best on four datasets (same amount as NetMF (SCD)) in the
micro F1 metric while only achieving the best result on one
dataset in the macro F1 metric.

VOLUME 8, 2020

B. STATISTICAL ANALYSIS
This section presents the statistical comparison of embedding
algorithms by using average rank diagrams with critical dis-
tances [6] and also Bayesian comparisons [1].

Average rank diagrams are shown in Fig. 5 and 6. These
diagrams display the mean rank of algorithms over all
datasets along the horizontal line. The ranks used in these

212577



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

diagrams are assigned to the algorithms based on their best
performing percentage on a given dataset. We assigned ranks
in this way because we usually only want to classify a few new
instances using models trained on larger amounts of labeled
data. More diagrams showing the performance where ranks
are assigned based on mean results over all percentages on a
dataset can be found in Appendix B. The critical distance in
the figures group classifiers whose rank is not significantly
different (Friedman test with Nemenyi post-hoc correction).

We see that for both micro and macro F1 metric
SNoRe (SDF) performs best out of all algorithms and that
when a constant amount (2048) of pivot nodes are used,
SNoRe performs observably worse being fifth overall in the
macro F1 metric. We can see that NetMF (SCD), Deep-
Walk, node2vec, and both versions of SNoRe form a group
of algorithms that are state-of-the-art and perform signifi-
cantly better than the other embedding algorithms. Our claim
that SNoRe performs similar to other state-of-the-art algo-
rithms is further backed by the critical distance that groups
both versions of SNoRe with node2vec, DeepWalk, and
NetMF (SCD).

Bayesian variants of performance comparison classifiers
were recently introduced as a way to combat the shortcom-
ings of methods like null hypothesis significance testing
(NHST) [1]. We use the Bayesian variant of the hierarchical
t-test to determine differences in performance of compared
classifiers. This test distinguishes between three scenarios:
two where one of the classifiers outperforms the other and the
one in which the difference in classifier performance lies in
the region of practical equivalence (rope). The size of rope is
a free parameter set to 0.01 in our experiments, which means
that two performances are considered the same if they differ
by less then 0.01. An algorithm can be argued to perform
significantly better, if p(algorithm) > 0.95.

As Bayesian multiple classifier correction cannot be intu-
itively visualized for more than two classifiers, we show the
comparison between SNoRe (SDF) and node2vec as well
as Label Propagation in Fig. 7. The two comparisons are
used to demonstrate the performance against a strong and
a weak baseline. We chose node2vec as the strong baseline
because it is a generalization of Deepwalk and thus covers
both algorithms. The data used to make these comparisons
was collected over all datasets using ten repetitions of ten-fold
cross-validation.

The green dots in the triangles represent samples, obtained
from the hierarchical model. As the sampling procedure is
governed by the underlying data, green dots fall under one of
the three categories; classifier one dominates (left), classifier
two dominates (right), or the difference of the classifiers’
performance lies in the region of practical equivalence (up).
Upon model convergence, some areas of the triangle are more
densely populated, showing higher probability that the classi-
fier outperformed the other. We can see that in our experiment
SNoRe (SDF) significantly outperformed the Label Propaga-
tion algorithm in both micro and macro F1 metric, having
almost all green dots in the far left corner. More interesting

212578

p(rope) p(rope)

p(SNoRe (1.0)) p(LP (0.0)) p(SNoRe (0.67)) p(node2vec (0.02))

(a) SNoRe vs LP (micro F1) (b) SNoRe vs node2vec (micro F1)

p(rope) p(rope)

p(SNoRe (1.0)) p(LP (0.0)) p(SNoRe (0.61))

p(node2vec (0.02))

(c) SNoRe vs LP (macro F1) (d) SNoRe vs node2vec (macro F1)

FIGURE 7. Pairwise Bayesian performance comparisons of selected
classifiers. The probabilities following classifier names represent the
probabilities that a given classifier outperforms the other.

are the comparisons against node2vec where SNoRe still
outperforms node2vec whose probability of outperforming
SNoRe is only 2%. Here a lot of dots are in the region of
practical equivalence showing that both algorithm perform
similarly a lot of times.

C. ABLATION STUDY - PARAMETER SPACE EXPLORATION
Having shown that the default hyperparameter setting ¢ =
0.005, maximum walk length of 5, number of walks = 1024
and 2048 pivot nodes performs competitively to state-of-the-
art, we conducted additional experiments to better under-
stand SNoRe’s behaviour w.r.t. different parameter settings.
In this section, we present only plots of micro F1 perfor-
mance. Additional plots with macro F1 results can be found
in Appendix C.

As the default hyperparameter value of €, we chose
0.005 because we wanted hashes with at most 200 non-zero
values.

1) REPRESENTATION DIMENSION

Fig. 8 shows the impact of different number of pivot nodes.
From the figure, we can extract two types of datasets. Those
where the score rises gradually and those where the score is
similar no matter the number of features. Most tested datasets
can be easily put in one of those groups, the exception being
the BlogCatalog dataset and Homo Sapiens (PPI) dataset
where the score rises slowly. Since the score noticeably
rises on the Homo Sapiens dataset, we would put it in the
first group, whereas we would put the BlogCatalog dataset
into the second one. Coincidentally, BlogCatalog is the only
dataset where SNoRe performs significantly worse than some
other state-of-the-art methods. From Fig. 3 and 4 we can

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

0.25 o—a—t—t—0—t——0—2

Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY

R s s

Dataset = Cora  Dataset = Homo sapiens (PPI)

"./”'_._._._._._. W
= s

Dataset = Tons

025 050 0.75

Dataset = Pubmed Dataset = Wikipedia Percont train
Number of Features

75 |ttt P

0.25 0.50 0.75 0.25 0.50 0.75
Percent train

Percent train

FIGURE 8. Micro F1 plots for different number of features.

further observe that the results on datasets where the number
of features does not affect the score are usually similar no
matter which embedder we use and close in many cases to
those of the random baseline. These might mean that these
datasets are less susceptible to classification.

2) MAXIMUM WALK LENGTH

We show the effect of the maximum walk length parameter
in Fig. 9. From the figure, we can see that the score increases
when we increase the value of this parameter. The increase
of the score is especially apparent in the Coauthor PHY and
Coauthor CS datasets. On the other hand, scores on Homo
Sapiens (PPI), Wikipedia, BlogCatalog, and both Bitcoin
datasets do not change much when the maximum walk length
parameter is changed. This groups the datasets into almost
the same groups as those in Section V-C1, with the exception
being the Homo Sapiens dataset, where it was not clear to
which group the dataset belongs.

We have chosen 5 as the default value for the maximum
walk length parameter. We have chosen this value because
on most datasets, score does not significantly increase if we
increase the parameter value, while the embedding time does.
Execution time is explored further in Appendix D.

3) NUMBER OF RANDOM WALKS
We show the effect of the different number of random walks
per node in Fig. 10. We can see that the classification score on
most datasets does not change much when different values of
this parameter are chosen. The change is most observable on
Coauthor CS and Coauthor PHY datasets, where the param-
eter values of 32-64 work best.

We have chosen 1024 as the default value for the number
of random walks per node parameter. We selected this value

VOLUME 8, 2020

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

=
=

b o ~ o—
20.50
S
=0.25 —o——o—9—0—0—0—0
Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY
— 0.75
& = W
2 0.50 o0 A%
-~ 0.25
Dataset = Cora  Dataset = Homo sapiens (PPI) Dataset = Ions
075 == —
[
©0.50
=
=025 e e
0.25 0.50 0.75
Dataset = Pubmed Dataset = Wikipedia Percent train
—~ 0.75 .:.W =% =0=2 Max Length
= = -1
2 0.50 D
5 —0—0—0—0—0—0—0—0 |
=0.25 5
6
025 050 0.75 025 050 0.75 :
Percent train Percent train ==
-0

FIGURE 9. Micro F1 plots showing the effect of maximum walk length
parameter.

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

=
=

Micro F1
=
&

0.25 —s—t—0—0—0—0—0—2

Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY

“i‘r’ T f,.:;f*‘ S

Micro F1

Dataset = Cora  Dataset = Homo sapiens (PPI) Dataset = Ions

— 0.75 .
= ?
2050
=
= 0.25 ]
0.25 050  0.75
Dataset = Pubmed Dataset = Wikipedia Percent train
0.75 M:m Number of Walks
B -
00 b
= —o—e—o——0—0—0—¢
= 32
= 0.25 e
128
0.25 0.50 0.75 0.25 0.50 0.75 ‘::L_:

Percent train - 1024
—8— 2048

Percent train

FIGURE 10. Micro F1 plots showing the effect of different number of
random walks.

because it entails the maximum length needed across all
datasets, and the execution is still fast. We also believe it is
beneficial to create more walks since this gives us a greater
chance to sample out relevant sub-graph structures.

D. ABLATION STUDY - EFFECT OF DIFFERENT
DISTANCES (METRICS)

In our approach, we selected cosine similarity to calculate the
distance between two vectors because it offers good results

212579



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

and works well with sparse representation in both calculation
and final embedding matrix. Since the choice of this distance
metric is arbitrary we next show how the choice of
distance metric affects the results. Table 4 shows different
distance metrics we compared using same, default parame-
ters. In the formula for standardized Euclidean v; represents
the variance of the i-th feature in the hash vector. These
metrics where chosen because they represent different groups
of distance metrics. Euclidean distance is a special case of
Minkowski distance where p = 2. It measures the distance
between two points in the Euclidean space. By taking the
variance of each dimension into account during the calcula-
tion of Euclidean distance, we get the Standardized Euclidean
distance that is usually more robust when dimensions are
scaled differently. Canberra distance is mostly used in intru-
sion detection and computer security and is a metric suitable
for when the data is scattered around the origin. Jaccard sim-
ilarity works on binary data and calculates similarity based
on whether a feature is present or not. This metric can also
be generalized for use with numeric values. The last metric
we considered is the Hub Promoted Index (HPI) that was
designed originally for quantifying the topological overlap
between pairs of nodes in a network [46]. We generalized the
metric, as shown in Table 4, to be used alongside the proposed
hashing scheme.

TABLE 4. Used distance metrics and their formulas.

Metric Formula
. Z'f:v'l a;-b;
Cosine N T
\/Zi:1 a;i \/Zizl b
Euclidean \/le];jll (a; — b;)?
Standardized IN| (a;—b;)2
Euclidean i1 v?
IN| |ai|—|b;]
Canberra ‘ZNle rRES
Jaccard Zziﬁvﬂ aiiooandbbijoo
i=1 a; or 0;
Hub Promoted SV a0 and b, £0

[NV [NV

Index (HPD)  min(32, 5] ai#0,53, %) bi#0)

The results between different distance metrics are shown
in Fig. 11 and 12. We can see that most metrics perform
similarly on Bitcoin datasets, Citeseer, Cora, Homo sapiens,
Ions and Pubmed. On BlogCatalog both Euclidean metrics
and the HPI metric performed better than the other three.
On both co-authorship datasets, cosine similarity performed
worse than other metrics but the byte size of the embedding
is significantly smaller since the embedding matrix is very
sparse. Using SNoRe (SDF) where the size of representation
is less than t = |N| - 128 we get results that are better
than those of other metrics. Using different distance metrics
also helps on the Wikipedia dataset where the score is a lot
higher for the Jaccard, Canberra and HPI metrics. As it should
be expected both the Euclidean and Standardized Euclidean

212580

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

E 0.75
2 0.50
=

=02

Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY

E 0.75
£ 0.50
&

= 0.25

Dataset = Cora  Dataset = Homo sapiens (PPI) Dataset = Ions

= 0.75
£ 0.50
S

= 0.25

0.25 0.50 0.75
Percent train

Dataset = Pubmed Setting

Dataset = Wikipedia
0.75 Euclidean

Standardized Euclidean

Micro F1
;CZ

Canberra

Jaccard
025 050 0.75 025 050 0.75 HPI
Percent train Percent train Cosine

FIGURE 11. Micro F1 results for different distance metrics.

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

-
=
°05
g
3
=
0.0
Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY
-
=
205
g
3
=
0.0
Dataset = Cora Dataset = Homo sapiens (PPI) Dataset = lons
—
I
205
2
]
=
0.0
0.25 0.50 0.75
Dataset = Pubmed Dataset = Wikipedia Pc\rccl_}‘r train
Setting
b Euclidean
°05 Standardized Euclidean
g
= Canberra
=
Jaccard
0.0 §
025 050 075 025 050 075 HPL
Percent train Percent train Cosine

FIGURE 12. Macro F1 results for different distance metrics.

distance perform very similarly since SNoRe’s hash function
already normalizes the obtained values.

It should also be noted that cosine similarity, HPI and
Jaccard similarities give us sparse embeddings, which per-
form significantly better when compared to the embeddings
calculated using other metrics of the same size in bytes.

E. ABLATION STUDY - EVALUATION TIME
In Section III-H we give the theoretical boundaries for
time complexity. Here we give further empirical results and

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

compare them to other baselines. The results between dif-
ferent baselines are shown in Fig. 13. We can see that both
SNoRe and SNoRe (SDF) need a similar amount of time to
finish and are usually the fastest, just before NetMF (SCD).
We can see that SNoRe (SDF) is the fastest on small datasets
but needs a little more time then SNoRe on larger datasets
where more features need to be chosen.

Bitcoin Alpha :,"
Bitcoin =
BlogCatalog —= = —
Citeseer T
il
Coauthor CS T
Coauthor PHY — . PPRS
‘ SNoRe SDF
VGAE
Node2Vec
Deepwalk
LINE
NetMF (SCD)
S . SNoRe

Cora

Homo sapiens (PPI) : Y
Tons

Wikipedia “. : .

Pubmed

0 500 1000 1500 2000 2500
Seconds

FIGURE 13. Visualization of execution time across the considered
datasets.

A more extensive study of evaluation time for different
number of pivot nodes, maximum walk length, number of
random walks, and different distance metrics can be found
in Appendix D.

F. ABLATION STUDY - EXPLAINABILITY

In the final set of experiments, we demonstrate how
SNoRe can be coupled with the existing model expla-
nation approaches such as SHapley Additive exPlanations
(SHAP) [21], [34]. SHAP is a game-theoretic approach used
to explain any type of classification or regression model.
The algorithm perturbs subsets of input features to take into
account the interactions and redundancies between them. The
explanation model can then be visualized, showing how the
feature values of an instance impacted its classification.

We use the following methodology to explain how different
feature values representing nodes impact how the classifier
assigns a label to a node. This process will be showcased
on the Pubmed dataset. First, we create the embedding and
save indexes used as features. We then train the XGBoost
model and input it to the SHAP tree explainer. We can then
explain how different feature values impact an instance or
create a summary of impact for all instances. With a summary,
we can for example take the most impactful nodes, look at
which articles they represent and look how they influence
the assignment of classes. We created such a summary using
SHAP library [20] and visualized the results in Fig. 14. In the
figure, the features are already renamed to indexes of the node
(feature index i is renamed to node feature-map(i)). Red and
blue dots represent feature value, red being 1 and blue 0.

VOLUME 8, 2020

We can see that usually, only high (non-zero) values impact
how the model classifies a given instance since only those
give information about nodes neighborhood. This can be seen
in the figure, especially for the first three features of class
0. From the fourth feature in the summary table for class 0
(node 13757), we can see, that sometimes even low feature
values (merely their presence) can have a big impact on the
classification. The plot in the bottom right of Fig. 14 shows
how much impact a feature has on average. We can see that
node 4149 has the biggest impact on classification of nodes
and that usually when its value is high the node is classified
to class 1.

Similarly, we can show which nodes impacted the clas-
sification of a single instance to explain why the node was
classified as it was. This is further elaborated in Appendix E.

G. ABLATION STUDY - LATENT CLUSTERING WITH UMAP

We also look at how nodes cluster together using UMAP
algorithm [23] to transform embedding vectors into 2D space.
We saved the embedding of SNoRe (SDF) and used the
default parameters for the unsupervised UMAP algorithm to
generate node positions as shown in Fig. 15. The class to
which the node belongs to is shown as colour in the plot
and added only for visualization. In general, we see that the
nodes that belong to the same class are embedded near each
other as best seen on the Coauthor PHY dataset. On the
Pubmed dataset, we can observe that the classes coloured
red and blue cluster well together and that the green one
is scattered all over the plot, not clustering well. Nodes in
the Cora embedding cluster well, but the classes are close
together and sometimes overlap. The worst example we show
is on dataset Citeseer where nodes do not cluster well and
where classes overlap a lot, but some clusters can still be seen.

VIi. DISCUSSION

In this section we summarize the main results and their impli-
cations, and discuss the limitations of the proposed SNoRe
approach.

As empirically shown in Section V, SNoRe and
SNoRe (SDF) outperform state-of-the-art methods on most
datasets and perform comparably or slightly worse on others
(e.g., Homo sapiens, Wikipedia). Coupled with the ability to
use different distance metrics, speed and explainability of the
embedding, this algorithm provides a very good alternative to
the state-of-the-art algorithms. We further back this claim in
Section V-B, where we show that SNoRe outperforms the
strong baseline node2vec according to the pairwise Bayesian
performance comparisons. In both execution time and clas-
sification results, we show that the proposed algorithm is
scalable since it achieves best results on both the smallest
and the largest dataset while using the same amount of space
or less than the baselines we compared it to. This is further
shown in Appendix D, where the effects of parameters on
execution time are shown. We also show the importance of
efficient implementation of sparse algorithms and why such
implementations are crucial for the future.

212581



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

Class 0

High
node 4837 oo

node 13820

node 11141

node 13757

0o o o omemm——. cvmcomm

node 9477

node 677

node 18467 ‘- -

node 996 R ——
node 18791 * cmmm—

node 3756 w—mmemens o
node 16578 s

node 5311

node 18655

node 15176 e e ceemmem
node 4291 o ee s

node 13839 B
node 17723 . o
node 16302 e me smers
node 16198 e
node 11842 e—

T T T T T Low

-1.0 —0.5 0.0 0.5 1.0
SHAP value (impact on model output)
Class 2
High

node 14651
node 13364
node 10754
node 7929
node 19129
node 1842
node 11024
node 8024
node 19079
node 15999
node 8384
node 7830
node 2154
node 13133
node 8106
node 7097
node 4130
node 2646
node 1474
node 10769

T T T T T T Low
0.0 0.2 0.4 0.6 0.8 1.0
SHAP value (impact on model output)

FIGURE 14. SHAP summary on Pubmed dataset.

By observing the classification results of embeddings that
have a different number of pivot nodes, maximum walk length
and number of walks per node we have observed another
interesting phenomenon. On datasets where all baselines
achieved results that were similar to the random baseline,
the parameters did not matter and for example an embedding
with 4 features achieved similar results to the one with 4096.
This gives us the ability to judge how susceptible a dataset
is for classification and to judge if SNoRe is the suitable
embedding algorithm for the task.

212582

noc

node 11449 l
node 11894 -'— e o remme
node 8509 'I

noc

node 14821

node 13882

le 4149

le 8372

node 2549 --'-..-—.
1

node 16778 -
node 18745
node 15864

node 284

node

node 13235

> 12431

o commoce

High

Feature value

node 5604 [
node 17493 c s mem =
node 10699 .I}.. -

node 2080 fowme o0
node 18809 ofece e cmmmmee

node 3141 — o

T T T - Low
-1.0 -0.5 0.0 0.5 1.0

SHAP value (impact on model output)

node 4149 - | I —

node 11894 I
node 11449 I
node 14651 | I

node 13364

node 10754 [

node 14321 N

node 7929 I
node 4837 |G
node 8500 NG

node 13820 I
node 11024 | G N

node 8372 I
node 2549 |G

node 13832 I
node 16778 | INEG——
node 18745 I

node 4513 | RGN B Class 1
node 15864 NG EE Class 2
node 9477 [ HINNGGG EE Class 0
T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

mean(—SHAP value—) (average impact on model output magnitude)

While observing classification results between different
parameters can give us an idea how susceptible a dataset is
for classification, observing the number of features returned
by SNoRe (SDF) can give us some insight into the structure
of the network. This is most notable on the Wikipedia dataset
where SNoRe (SDF) gives us a dense embedding since all
nodes have at least one node in common. On the other hand,
when using the same amount of space as a dense embedding
on the Coauthor PHY dataset, our algorithm generates an
embedding with all nodes used as features. This shows that

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

Cora Citeseer

Pubmed Coauthor PHY

FIGURE 15. UMAP-based clustering of SNoRe (SDF) embedding on Cora,
Citeseer, Pubmed and Coauthor PHY datasets.

the Coauthor PHY network is a lot more decentralized than
the Wikipedia one.

SNoRe uses nodes as features, making it possible to
explain the reasoning behind why an instance was classified
in a certain way. This can be done with the use of tools such
as SHAP and allows us to use this embedding algorithm in
situations where explainability is crucial such as medicine.

In Section V-G we show that our algorithm creates an
embedding that embeds nodes belonging to the same class,
close together. We do this by using the UMAP algorithm to
transform each instance into 2D space and by coloring the
node w.r.t. the class they belong to. In the corresponding
figure, we can easily see how nodes with the same class
cluster on datasets Pubmed and Coauthor PHY and although
a little less prevalent also on the other ones. Some of the
limitations of our algorithm can be seen on datasets like
Wikipedia and BlogCatalog, where the neighborhood of the
node is not necessarily important and distinctive enough.
Since the algorithm is modular this can probably be avoided
sometimes by changing the hashing function is such a way
that it better encodes the relevant network structure.

Although PageRank works very well on most networks,
giving us features that give us good results, we cannot guar-
antee good features that span trough all the network will be
chosen. This can drastically decreases the performance on
some part of the network since some nodes may not have
neighborhoods that overlap with the neighborhoods of the
features.

The last problem to highlight is the number of features
(pivot nodes) in the final embedding. A small number of
features is usually not descriptive enough and therefore the

VOLUME 8, 2020

embedding performs badly. On the other hand, having a large
number of features may give good results but need longer to
train the classifier. Related to this, many classifiers are not
optimized for sparse matrices.

VIi. CONCLUSION AND FURTHER WORK

We introduced a scalable unsupervised algorithm for learning
symbolic node representations of networks. The algorithm
is fast, achieves results that are comparable or better than
those of state-of-art algorithms and can be interpreted when
coupled with methods like SHAP.

This work offers extensive exploration, as well as a proof
that symbolic representations, if learned based on a consid-
ered graph’s global topology, offer a competitive paradigm
to currently adopted black-box representation learning. The
proposed SNoRe is freely available and highly optimized,
and as such ready to be tested in many scenarios where
black-box approaches are currently adopted — for example in
bioinformatics where the canonical task of protein function
prediction is commonly addressed.

Further, the current version of SNoRe, offers symbolic
representations of individual nodes which are in principle
understandable and inspectable. However, we believe that,
as domain knowledge in the form of e.g., ontologies is many
times present, the obtained representations could be further
generalized in order to obtain even more informative descrip-
tions of why a particular node has a given property of study.
Hence, coupling SNoRe with existing work on relational
reasoning will be explored as part of the future work.

The key focus of this paper revolved around the task
of node classification. Analogous to how representations
of links can be learned from e.g., DeepWalk embeddings,
similar idea could be explored in the context of symbolic
representations, offering explainable link prediction. Here,
each link would be explained based on the presence of a
particular collection of nodes in its neighborhood, offering
a novel research venue applicable especially in high-risk
scenarios such as the biomedical domain (for example, this
ideas could be used to explore whether there is really an
interaction between e.g., a pair of micro RNA molecules, and
why this is the case?).

In further work, we plan to further explore how to incorpo-
rate different high-level network structures and the effect of
different hashing functions. We also want to explore how dif-
ferent feature selection algorithms affect the performance and
if the difference is significant when supervised algorithms
are used. Another venue worth exploring is the use of dif-
ferent walk length distributions, which is not explored in this
paper. In fields such as medicine, explainability of machine
learning might not be enough for practical use. Because
of this we want to further explore causal implications,
as defined in [11]. We also want to research which metrics
work best on different datasets (also known as metric learn-
ing). Lastly, SNoRe’s behavior in the inductive and dynamic
setting could be explored to further show the algorithms’
usefulness.

212583



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

AVAILABILITY
The proposed methodology is available as a Python library
at: https://github.com/smeznar/SNoRe.

APPENDIX A

COMPARISON BETWEEN DIGITIZED AND NON-DIGITIZED
EMBEDDING

Fig. 16 and 17 show how results performance is affected
if embeddings are digitized as described in Section III-F.
We can see that digitized embeddings usually perform simi-
larly and even outperform non-digitized embeddings on both
Co-authorship datasets, Homo sapiens (PPI) dataset, and
Pubmed dataset.

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

= 0.75
2 0.50
202
Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY
= 0.75
20.50
S 025
Dataset = Cora  Dataset = Homo sapiens (PPI) Dataset = lons
z 0.75
£ 0.50
S
= 0.25
0.25 0.50 0.75
Dataset = Pubmed Dataset = Wikipedia Fercent traim
z 0.75
2 0.50
=
= b
=025 Setting
025 050 075 025 050 075 Digitized
Percent train Percent train Not digitized

FIGURE 16. Micro F1 plots comparing digitized and non-digitized
embedding.

APPENDIX B

AVERAGE RANK DIAGRAMS OF MEAN CLASSIFICATION
RESULTS

Fig. 18 and 19 show the average rank diagrams when we
average classification results of every training set size. Here
we see that SNoRe (SDF) and SNoRe achieve similar ranks in
both micro and macro F1. We can see that here SNoRe (SDF)
achieves worse results than on Fig. 5 and 6. The reason behind
this can be seen on Coauthor CS and Coauthor PHY datasets
in Fig. 3, where the algorithm performs poorly compared to
others when a small amount of training data is used.

APPENDIX C

PARAMETER STUDY MACRO PLOTS

Fig. 20, 21, and 22 show the macro F1 plots for different
parameter settings. We can see that the overall parameter
number of features (pivot nodes) impacts classification the
most. On the other hand, the number of walks parameter only

212584

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

o
o
205
g
3
-
0.0
Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY
—
o
g 0.5
E
-
0.0
Dataset = Cora  Dataset = Homo sapiens (PPI) Dataset = lons
—
[
go5
3
!
=
0.0
0.25 0.50 0.75
Dataset = Pubmed Dataset = Wikipedia Percent train
—
[
g 0.5
3
=
Setting
0.0 e
025 050 0.75 025 050 075 Digitized
Percent train Percent train Not digitized

FIGURE 17. Micro F1 plots comparing digitized and non-digitized
embedding.

affects the macro F1 score on datasets Coauthor CS and Coau-
thor PHY. Datasets Bitcoin, Bitcoin Alpha, BlogCatalog, and
Wikipedia have the same score no matter which parameters
we use.

APPENDIX D

ADDITIONAL EXECUTION TIME PLOTS

In this section, we show how different distance metrics and
parameters affect execution time.

A. DISTANCE METRICS

We present the effect of different distance metrics in Fig. 23.
We use sparse matrices for storing random walk hashes,
which makes the implementation of similarity calculation
crucial to obtain good performance. This can be seen in the
figure, where Euclidean distance, HPI, and cosine similarity
need significantly less time than other distance metrics that
are not optimized for sparse matrices. Here we would like
to highlight that the HPI distance metric we implemented
even less time to execute than the implementation of sparse
euclidean distance and cosine similarity from the highly opti-
mized Python library scikit learn.

B. NUMBER OF PIVOT NODES

Fig. 24 shows how the parameter number of pivot nodes
affects execution time. From the figure, we see that the
difference between different values of the parameter is not
significant and that the impact of the number of nodes is far
greater. A small impact of the different number of pivot nodes
on execution time gives us further reason to use SNoRe (SDF)
since execution time stays similar.

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

Node2Vec

Deepwalk
SNoRe
SNoRe SDF
NetMF (SCD)

VGAE
LP
PPRS
LINE

Random

| I I I
1 2 3 4

critical distance: 4.2836

I
5 6 7 8 9 10

FIGURE 18. Micro F1 average rank diagram where average performance across all training

percentages is chosen.

SNoRe

SNoRe SDF
Node2Vec
Deepwalk
NetMF (SCD)

LP
VGAE
LINE
PPRS

Random

| | | |
1 2 3 4

critical distance: 4.2836
f

5 6 7 8 9 10

FIGURE 19. Macro F1 average rank diagram where average performance across all training

percentages is chosen.

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

=
© 0.5
g
= o—e 4 e—e—0—¢- e
=
—o—o—0—0—0—0—0—0
0.0 S
Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY
—
= '/',._.—0-0—0—4
© 0.5
3]
K]
= =
0.0 =
Dataset = Cora Dataset = Homo sapiens (PPI) Dataset = Tons
& s
© 0.5
S W
]
S ;F'*’:ﬁzﬁ ."*_._._._.=._.
0.0 ] . S -
0.25 0.50 0.75
Dataset = Pubmed Dataset = Wikipedia Percent tm.m
Number of Features
_ 'd::.’—:':.:‘*' -
=5} -8
2 0.5 16
S 32
= (=== 5 o S S 6
= 128
—o—0—0—0—0—0—0—0 256
0.0 o
0.25 0.50 0.75 0.25 0.50 0.75 1024
Percent train Percent train o 2018
—o— 109

FIGURE 20. Macro F1 plots for different number of features (pivot nodes).

C. MAXIMUM WALK LENGTH

The execution time is also affected by the maximum walk
length parameter. The execution time between different val-
ues of the parameter can be seen in Fig. 25. The execution

VOLUME 8, 2020

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

—
=
© 0.5
3} o—8
k] * ® o -—e
=
o—o—o—o—0—0—0—0—0
0.0
Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY
—
= -
205 T
g
]
= %ﬁ M
0.0
Dataset = Cora Dataset = Homo sapiens (PPI) Dataset = Tons
~ —
[
2 0.5
g
K]

0.0

N

0.25 0.50 0.75

Percent train

Dataset = Pubmed Dataset = Wikipedia

(.,.—4—0—0—*—0:‘ Max Length
W !
- 2

3
1

Macro F1

—o—0—0—0—0—0—0—0
0.0
0.25 0.50 0.75 0.25 0.50 0.75
Percent train Percent train

-
-0

FIGURE 21. Macro F1 plots showing the effect of maximum walk length
parameter.

time rises linearly on all datasets. Linear rise is expected
since we sample walks from the uniform distribution, making
s = w. As seen in Section III-H1 s affects time

linearly.

212585



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

Dataset = Bitcoin Dataset = Bitcoin Alpha  Dataset = BlogCatalog

—
P
g 0.5
= o—o— *—9 *—e—o—0—9
=
H—.——.—H—H_‘.
0.0
Dataset = Citeseer Dataset = Coauthor CS  Dataset = Coauthor PHY
= /ﬂ**.eo—o-. e
20.5 /“
S
2
= 4
0.0
Dataset = Cora Dataset = Homo sapiens (PPI) Dataset = Tons
— ﬁs :
=
205
S
- ,_..g*caoa&ﬁe
0.0
0.25 0.50 0.75
Dataset = Pubmed Dataset = Wikipedia Percent train
Number of Walks
= A;’ ¢ -
205 R
g P
= 6
oo o000 oo 2
0.0 o
0.25 0.50 0.75 0.25 0.50 0.75 512
Percent train Percent train oo
-~ 2048

FIGURE 22. Macro F1 plots showing the effect of different number of
random walks.

Bitcoin Alpha
Bitcoin

BlogCatalog =
Citeseer ]

Coauthor CS

Coauthor PHY =

Core
o B Canberra
Homo sapiens (PPI) e Jaccard
] e HPL
Ions

Standardized Euclidean

Wikipedia : Euclidean

osine
Pubmed Cosine

0 1000 2000 3000 4000 5000

Seconds

FIGURE 23. Time plot for different metrics.

D. NUMBER OF WALKS PER NODE

The last parameter we show is the number of random walks
per node. The effects of different values of this parameter on
execution time can be seen in Fig. 26. We see that execution
time grows linearly with the number of walks per node.
Linear growth is expected and further backs the claim made
in Section ITI-HI.

APPENDIX E

CLASSIFICATION EXPLANATION WITH SHAP

Fig. 27 shows how we can interpret the classification of an
instance using SHAP. In the figure, we see two examples,
one where class (label) O is assigned, and one where class
(label) 1 is not assigned. The classification for class O starts

212586

Bitcoin Alpha

Bitcoin
BlogCatalog Number of Features
- = . 4
Citeseer
— I
Coauthor CS 16
Coauthor PHY 32
— 64
Cora 198
Homo sapiens (PPI) 256
— 512
Tons
— 1024
Wikipedia 2048
Pubmed . 4096
0 20 40 60 80 100

Seconds

FIGURE 24. Time plot of different number of features (pivot nodes).

Bitcoin Alpha =

Bitcoin
BlogCatalog
Citeseer — Max Length
— .
Coauthor CS )
Coauthor PHY 3
= 4
Cora = 5
Homo sapiens (PPI) = 6
Ions !
C 8
Wikipedia o)
Pubmed - 10
0 10 20 30 40

Seconds

FIGURE 25. Time plot of different values of maximum walk length
parameter.

Bitcoin Alpha

Bitcoin
BlogCatalog
- E Number of Walks
Citeseer
— !
Coauthor CS . 3
Coauthor PHY 16
= 32
Cora E 64
Homo sapiens (PPI) = 128
E 256
Tons
i 512
Wikipedia . 1024
Pubmed 2048
0 10 20 30 10

Seconds

FIGURE 26. Time plot for different number of random walks.

at the expected value of 0.018. Then the value of features that
represent nodes 13820, 11141, and some others lower this

VOLUME 8, 2020



S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

IEEE Access

Class 0

Class 1
=0.183
1

Node 18655 Node 4149 0.03 '
Node 15178 Node 11449 0.03 .
Node 1872 Node 11894 0.03 '
Node 3634 Node 8509 0.02 '
Node 14622 ' +0.05 Node 13882 0.01 '
Node 9707 ’ +0.03 Node 8372 0.01 '
Node 13820 0.02 ‘ Node 2549 0.01 '
Node 11141 0.01 < Node 15864 “[”‘
Node 13668 } +0.01 Node 18745 0.01 ‘
19708 other features —0.36 19708 other features
T T LI T T T T T T T T T T T
—-0.50 —0.25 0.00 0.25 0.50 0.75 1.00 1.25 0.2 0.3 0.4 0.5 0.6
=0.018 = 0.684
FIGURE 27. Waterfall explanation for classification of a node.
value for around 0.39. Values of features that represent nodes [8] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for

13668, 9707, ..., 15178, and 18655 raise the value by 1.47 to
the final value 1.107. Since the final score is high the class
(label) O is assigned to the instance. We see that the value of
feature that represents node 18655 has the biggest impact and
that class (label) O is mostly assigned because of the high (or
less likely low) similarity between the neighborhood of node
18655 and the observed node (instance).

Class (label) 1 is not assigned to this instance. We can see
that the classification starts at the expected value of 0.684 for
class 1 and is only lowered. All features lower the score of the
classification from 0.501 to the final 0.183. Since this score
is low, the class (label) 1 is not assigned to this node. We can
see that the prediction is lowered the most by features that
represent nodes 4149, 11449, and 11894.

REFERENCES
(1]

A. Benavoli, G. Corani, J. Demsar, and M. Zaffalon, “Time for a change:
A tutorial for comparing multiple classifiers through Bayesian analysis,”
J. Mach. Learn. Res., vol. 18, no. 1, pp. 2653-2688, Jan. 2017.

S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in
social networks,” in Social Network Data Analytics. Cham, Switzerland:
Springer, 2011, pp. 115-148.

A. Bojchevski, J. Klicpera, B. Perozzi, M. Blais, A. Kapoor, M. Lukasik,
and S. Gilinnemann, “Is PageRank all you need for scalable graph neural
networks?”” in Proc. ACM KDD, 2019, pp. 1-5.

H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616-1637, Sep. 2018.

L. D. E Costa, O. N. Oliveira, G. Travieso, F. A. Rodrigues,
P.R. V. Boas, L. Antiqueira, M. P. Viana, and L. E. Correa Rocha, “Analyz-
ing and modeling real-world phenomena with complex networks: A survey
of applications,” Adv. Phys., vol. 60, no. 3, pp. 329—412, Jun. 2011.

J. Demsar, ““Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.

T. W. Farmer and P. C. Rodkin, “Antisocial and prosocial correlates of
classroom social positions: The social network centrality perspective,”
Social Develop., vol. 5, no. 2, pp. 174-188, Jul. 1996.

[2]

[3]

[4]

[5]

[6]

[71

VOLUME 8, 2020

[9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2016, pp. 855-864.

A. Aric Hagberg, A. Daniel Schult, and J. Pieter Swart, “Exploring net-
work structure, dynamics, and function using networkx,” in Proc. 7th
Python Sci. Conf., G. Varoquaux, T. Vaught, J. Millman, Eds., Pasadena,
CA, USA, 2008, pp. 11-15.

L. William Hamilton, R. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., Red Hook, NY, USA, 2017, pp. 1025-1035.

A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Miiller, “Causabil-
ity and explainability of artificial intelligence in medicine,” WIREs Data
Mining Knowl. Discovery, vol. 9, no. 4, p. e1312, Jul. 2019.

T. N. Kipf and M. Welling, ““Variational graph auto-encoders,” in Proc.
NIPS Workshop Bayesian Deep Learn., 2016, pp. 1-5.

T. N. Kipf and M. Welling, ““Semi-supervised classification with graph
convolutional networks,” Int. Conf. Learn. Represent. (ICLR), 2017,
pp. 1-5.

J. Klicpera, A. Bojchevski, and S. Giinnemann, “‘Predict then propagate:
Graph neural networks meet personalized pageRank,” in Proc. Int. Conf.
Learn. Represent. (ICLR), 2019, pp. 1-15.

J. Kralj, M. Robnik-gikonja, and N. Lavra¢, “HINMINE: Heteroge-
neous information network mining with information retrieval heuristics,”
J. Intell. Inf. Syst., vol. 50, pp. 2661, Feb. 2017.

S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
JIT compiler,” in Proc. 2nd Workshop LLVM Compiler Infrastruct., 2015,
pp. 1-6.

N. Lavra¢, B. §krlj, and M. Robnik—§ik0nja, “Propositionalization and
embeddings: Two sides of the same coin,” Mach. Learn., vol. 109, no. 7,
pp. 1465-1507, Jul. 2020.

L. Lii and T. Zhou, “Link prediction in complex networks: A survey,”
Phys. A, Stat. Mech. Appl., vol. 390, no. 6, pp. 1150-1170, Mar. 2011.

Q. Lu and L. Getoor, “Link-based Classification,” in Proc. 20th Int. Conf.
Mach. Learn., Jan. 2003, pp. 496-503.

M. Scott Lundberg, G. Erion, H. Chen, A. DeGrave, M. Jordan Prutkin,
B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I1. Lee, “From local
explanations to global understanding with explainable Al for trees,” Nature
Mach. Intell., vol. 2, no. 1, pp. 2522-5839, 2020.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proc. Adv. Neural Inf. Process. Syst., 1. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
R. Garnett, Eds., 2017, pp. 4765-4774.

M. Mahoney. (2011). Large Text Compression Benchmark. [Online].
Available: http://www.mattmahoney.net/text/text.html

212587



IEEE Access

S. MezZnar et al.: Scalable Unsupervised Learning of SNoRe

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

L. Mclnnes, J. Healy, N. Saul, and L. GroBberger, “UMAP: Uniform
manifold approximation and projection,” J. Open Source Softw., vol. 3,
no. 29, p. 861, Sep. 2018.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘“Dis-
tributed Representations of Words and Phrases and their Compositional-
ity,” in Proc. Adv. Neural Inf. Process. Syst., C.J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, K. Q. Weinberger, Eds., 2013, pp. 3111-3119.
E. T. Oliphant, Guide to NumPy. North Charleston, SC, USA: CreateSpace
Independent, 2015.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pageRank citation
ranking: Bringing order to the Web,” in Proc. WWW, 1999, pp. 1-5.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in Proc. NIPS Workshop, 2017, pp. 1-5.

F. Pedregosa, “Scikit-learn: Machine learning in Python,” J. Mach. Learn.
Res., vol. 12, pp. 2825-2830, Oct. 2011.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of
Social Representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, New York, NY, USA, 2014, pp. 701-710.

J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding
as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec,”
in Proc. 11th ACM Int. Conf. Web Search Data Mining, 2018, pp. 459-467.
Y. Saeys, I. Inza, and P. Larranaga, ““A review of feature selection tech-
niques in bioinformatics,” Bioinformatics, vol. 23, no. 19, pp. 2507-2517,
Oct. 2007.

O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann, ‘Pitfalls of
graph neural network evaluation,” in Proc. Relational Represent. Learn.
Workshop (NeurlIPS), 2018.

B. Skrlj, J. Kralj, and N. Lavra¢, “Embedding-based silhouette community
detection,” Mach. Learn., vol. 109, no. 11, pp. 2161-2193, Jul. 2020.

E. Strumbelj and 1. Kononenko, “Explaining prediction models and indi-
vidual predictions with feature contributions,” Knowl. Inf. Syst., vol. 41,
no. 3, pp. 647-665, Dec. 2014.

J. Tang, M. Qu, and Q. Mei, “PTE: Predictive text embedding through
large-scale heterogeneous text networks,” in Proc. 21th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2015, pp. 1165-1174.

J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE:
Large-scale information network embedding,” in Proc. WWW, 2015,
pp. 1067-1077.

S. Van Der Walt, S. C. Colbert, and G. Varoquaux, ‘“The NumPy array:
A structure for efficient numerical computation,” Comput. Sci. Eng.,
vol. 13, no. 2, p. 22, 2011.

P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1-5.

H. Wang and J. Leskovec, “Unifying graph convolutional neural networks
and label propagation,” Stanford Univ., Stanford, CA, USA, Tech. Rep.,
2020. [Online]. Available: https://arxiv.org/abs/2002.06755

Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive
survey on graph neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
early access, Mar. 24, 2020, doi: 10.1109/TNNLS.2020.2978386.

Z. Xiaojin and G. Zoubin, “‘Learning from labeled and unlabeled data with
label propagation,” Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech.
Rep. CMU-CALD-02-107, 2002.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, ‘““How powerful are graph neural
networks?”” in Proc. Int. Conf. Learn. Represent., 2019, pp. 1-5.

K. Xu, C. Li, Y. Tian, T. Sonobe, K.-I. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in Proc. Mach. Learn. Res., Stockholm, Sweden, vol. 80, Jul. 2018,
pp. 5453-5462.

R. Zafarani and H. Liu, “Social computing data repository at ASU,”
Tech. Rep., 2009, doi: 10.17616/R3Z33N.

212588

[45] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A sur-
vey,” IEEE Trans. Knowl. Data Eng., early access, Mar. 17, 2020, doi:
10.1109/TKDE.2020.2981333.

[46] T. Zhou, L. Lii, and Y.-C. Zhang, “Predicting missing links via local
information,” Eur. Phys. J. B, vol. 71, no. 4, pp. 623-630, Oct. 2009.

[47] B. §krlj, J. Kralj, J. Konc, M. Robnik—gikonja, and N. Lavra¢, “Deep node
ranking: Structural network embedding and end-to-end node classifica-
tion,” JoZef Stefan Inst., Ljubljana, Slovenia, Tech. Rep., 2019. [Online].
Available: https://arxiv.org/abs/1902.03964

[48] B. Skrlj, T. Kunej, and J. Konc, “Insights from ion binding site network
analysis into evolution and functions of proteins,” Mol. Informat., vol. 37,
nos. 67, Jul. 2018, Art. no. 1700144.

[49] B. Skrlj, N. Lavra¢ and J. Kralj, “Symbolic graph embedding using
frequent pattern mining,” in Proc. Int. Conf. Discovery Sci., Dec. 2019,
pp. 261-275.

SEBASTIAN MEZNAR is currently pursuing the
master’s degree in mathematics and computer sci-
ence with the University of Ljubljana. His interests
include data science, machine learning, and algo-
rithm design.

NADA LAVRAC is currently a Professor with the
Jozef Stefan International Postgraduate School,
Ljubljana, and also with the University of Nova
Gorica. Her main research interests are in knowl-
edge technologies, with a particular interest in
machine learning, data mining, text mining,
knowledge management, and computational cre-
ativity. She is an author of several books, includ-
ing the recently published Foundations of Rule
Learning (Springer 2012). Her special interest is
supervised descriptive rule induction, where the goal is to automatically
induce rules from class labeled data, stored either in simple tabular format or
in complex relational databases. Her areas of applied interests include data
mining applications in medicine, health care, and bioinformatics.

BLAZ SKRLJ is currently pursuing the Ph.D.
degree with the Department of Knowledge
Technologies, Jozef Stefan Institute. His inter-
ests include the intersection of symbolic and
non-symbolic machine learning, with applications
to computational biology.

VOLUME 8, 2020


http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.17616/R3Z33N
http://dx.doi.org/10.1109/TKDE.2020.2981333

