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appear incomprehensible, natural logarithms are applied to node representations—
filled circles based on individual node degrees—which simplifies visualization of denser
networks.

Py3plex can easily visualize more than ten layers with tens of thousands of nodes. Com-
pared to existing solutions, diagonal projection of multiple layers enables visualization
using standard layout algorithms, with additional specification of inter-layer edges. An
example visualization using the presented Py3plex library is shown in Fig. 2, with an
alternative visualization using a single layer force-directed layout of the whole network is
included for comparison.

Strengths and potential drawbacks
In this section, we discuss the strengths and weaknesses of the proposed visualization. We
begin by describing the strengths and continue with the discussion of the cognitive load

and other potential drawbacks.

Strengths

Many aspects of the visualization presented in this paper can be customized to empha-
size either the node or layer properties. For example, in Fig. 3 we colored differently the
inter-layer edges corresponding to specific relations. Additionally, such edges can be plot-
ted either on the upper or the lower side of the diagonal containing networks, making it
possible for the user to emphasize only the selected inter-layer edges. The height, types
of lines, colors and transparency can be fine-tuned to the user’s preferences. The colors
of intra-layer edges and nodes can also be customized—for example, special nodes or sets
of nodes can be colored to emphasize the intra-layer structure.

Potential drawbacks

In this section, we also discuss some of the drawbacks the presented approach intro-
duces, especially when considering larger networks. One of the main problems with such
complex visualizations is the amount of overlapping edges, which was shown to be prob-
lematic for the user experience by Purchase (1997). We split the following discussion into
two main parts: intra-layer overdrawing and inter-layer overdrawing.
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(a) Multilayer diagonal projection (b) Single layer spring layout plot

Fig. 2 Comparison between a multilayer visualization and single layer (spring layout) layout supported in
Py3plex. The presented diagonal projection is shown in subfigure (a), and the spring layout plot in (b). The
inter-layer connectivity is more clearly expressed in (a) than in (b). Further, organization between the nodes
of the same type can not be observed in subfigure (b), as the layout algorithm considers all the connections.
Py3plex supports both visualization styles
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Fig. 3 A customized Py3plex visualization. Here, the blue inter-layer edges correspond to refers to relation,
orange ones to codes for and red to belongs to relation

Intra-layer edge overdrawing. Non-planar, real-world networks are impossible to draw
without some edge overlap. The problem with drawing networks within layers is
thus inherent to all other libraries which visualize such network. Py3plex tackles
this issue by enhancing transparency of edges based on density, edge threshold-
ing, as well as controlling edge widths. Further, node sizes also take up substantial
amounts of layout space, thus need to be adapted accordingly. Even though the space
in which individual intra-layer networks are drawn is smaller than the whole canvas,
the Force Atlas 2 algorithm which is used for intra-layer layout computation, dis-
perses the nodes based on their connectivity patterns. This way, it partially separates
the densely connected clusters (some arc overlap is reduced this way). To preserve
topological properties of intra-layer networks, some overlap (e.g., within functional
clusters) is inevitable.

Inter-layer edge overdrawing. In our visualization, the majority of the inter-layer over-
laps are noticed at the upper-most (or bottom-most) parts of the parabolic
arcs. Techniques for emphasizing edges (e.g., transparency-based filtering etc.)
that can be adopted to further emphasize individual edges are discussed in

“Strengths” section. Additionally, as the presented inter-layer edges span between
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layers on the upper and the lower part of the main diagonal, some of the edge over-
lap can be reduced by redistributing the edges accordingly across the empty regions
of the canvas. Such positioning can be automaticaly determined by Py3plex. Next,
heights of individual arcs can be manually configured, enabling definition of cus-
tom, less overlapping groups of arcs. While presented solutions do not entirely solve
the problem, we believe that for non-planar graphs (especially in 2D), if the user
knows what aspect to emphasize, the proposed solution can provide sensible visual-
izations. While separating the layers may incur more overall edge overdrawing, we
believe that this cost is outweighed by the benefits (i.e. added visual clarity offered
by visually separated layers) of our visualization.

Finally, we discuss how intra- as well as inter-layer edges contribute to understanding
of the plots. Should the number of inter-layer edges increase in layers that are very close
together, such setting is prone to cognitive overload and can be addressed by specifying
a different layer order. Very sparse networks with many layers are also harder to visualize
using the presented visualization, as with many layers, information regarding connectivity
can become harder to comprehend—the inter-layer edges can span across larger regions

of canvas and are harder to follow.

Cognitive load
In this section we discuss the potential implications of the presented methodology with
respect to cognitive load, as this aspect of visualization can be critical in determining the
usability of a given visualization method. This section follows guidelines from Huang et al.
(2009), who investigated how complex networks remain understandable to a non-expert
human observer. Via a variety of cognitive tasks (such as triangle counting), Huang et al.
showed that networks with only tens of nodes and hundreds of edges can already pose
a problem when it comes to their interpretation and understanding. While the work by
Huang et al. is not focused on multilayer networks, visualization properties they recognize
as relevant are also applicable when visualizing multilayer networks.

Huang et al. (2009) identify several key factors of cognitive load presented by a given
network visualization. The factors that are most relevant for the following discussion

regarding cognitive load of Py3plex plots are the following:

Domain complexity. Not all domains are equally complex. Huang et al. point
out that visualizations of biological networks should differ from the ones used for
displaying social networks. Py3plex is adapted in line with these findings. The layer-
level diagonal visualization introduced in this work offers intuitive segmentation of
e.g., biological information (e.g., DNA, RNA, protein etc.); however, such levels are
not necessarily present in social networks. In order to address this issue, Py3plex
offers functionality to aggregate layers, which can be adapted to specific use-cases.
Data complexity. This aspect is closely related to the studied domain. We observed
for example, that biological networks contain more node and edge types, than
the social networks, requiring different visualization strategies. The internal data
structure used for visualization and manipulation is a heterogeneous information
network with (optional) attributes assigned to nodes. This structure was expressive
enough for the examples shown in this work, consisting of multiple node and edge
types. It could be further adapted to e.g., hypergraphs, should the need arise.
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Visual complexity. Visualizations can have varying degrees of complexity. Here,
aspects such as edge or node overlaps and the number of different elements visu-
alized need to be considered. The complexity of the visualizations obtained using
Py3plex can be high, as it displays multiple layers along with inter- and intra-layer
edges. We refer the reader to “Potential drawbacks” section for detailed discussion
of the visualization aspects which influence the final output the most.

Interactivity
Because one of the output options supported by Py3plex is a Matplotlib canvas (Hunter
2007), the resulting visualizations can easily be:

e Zoomed-into. A square region of the visualization is selected and zoomed-into. This
functionality offers e.g., a way to emphasize only certain layers of interest.

e Stretched. The interactive viewer offers simple functionality for adapting the shape of
the resulting visualization, offering fine-tuning with respect to e.g., overlapping text.

e Animated. Matplotlib offers animation functionality, making possible the
construction of e.g., dynamic visualizations, consisting of multiple (e.g.,
time-dependent) frames. An example of such an animation is available online in .gif
format®.

Embedding-based network layout
Visualization of large networks commonly results in long computation times and incom-
prehensible layouts. Recent advancements in the field of machine learning on graphs can
be leveraged to facilitate the process of network visualization. Even though embedding-
based data visualization is becoming commonplace in contemporary machine learning,
such techniques span back to Harel and Koren (2002), who initially investigated how
network embeddings can be used for visualization. They use principal component anal-
ysis (PCA) as the main embedding mechanism. Even though PCA can offer valuable
insights when projecting the data into orthogonal space of lower dimension, it does not
necessarily maintain all network-topological properties which represent key parts of the
considered network. The initially considered network embedding (PCA) does not take
into account higher-order node neighborhoods, missing out on e.g., densely connected
parts of networks that can only be accessible when considering longer random walks.
This section is structured as follows. First, we describe the role of network embed-
ding algorithms in a standard machine learning setting. Next, we show how methods for
non-linear dimensionality reduction can be combined with scalable node embeddings for
network layout construction. Finally, we present a simple benchmark of the presented
layout algorithm compared with a generic, force-directed layout.

Network embedding

Recent advancements in learning from complex networks commonly consist of two main
steps: network embedding and learning. Recent approaches for embedding construction
include DeepWalk (Perozzi et al. 2014), Node2vec (Grover and Leskovec 2016), Struc2vec
(Ribeiro et al. 2017), and similar approaches, all of which attempt to capture node infor-
mation and encode it in the form of d-dimensional vectors. In this work we are interested

Shttps://github.com/SkBlaz/Py3plex/raw/master/example_images/animation.gif
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in the embedding phase of the these algorithms, as well as the use of resulting node
embeddings as the first step in the presented layout calculation algorithm. The feature
matrix (table) can be used with less additional preprocessing compared to sophisticated
relational nature of a graph. The presented visualization approach first constructs such
an embedding, and subsequently projects it to a two-dimensional vector space; this space
of (x,y) pairs represents initial node coordinates. Schematic representation of this idea is
shown in Fig. 4.

We next describe some of the key steps of node2vec, as recently given in (Kralj et al.
2019). We believe understanding of how node2vec operates shall offer the reader intu-
ition as to why use the selected embedding method as a building block of the proposed

visualization.

Network embedding using node2vec
A recently developed approach to vectorizing network nodes is the node2vec algorithm
(Grover and Leskovec 2016), which uses the random walks to calculate features that
express similarities between pairs of nodes.

The node2vec algorithm takes as input a network of # nodes, represented as a graph
G = (V,E) where V is the set of network nodes and E is the set of connections, or edges,

IVIxd with a pre-defined number of

in the network. The algorithm returns a matrix f € R
columns d. Matrix f is interpreted as a collection of d-dimensional feature vectors with
the i-th row of the matrix corresponding to the feature vector of the i-th node in the
network. We write f () to mean the row of matrix f, corresponding to node u. The goal
of the algorithm is to construct feature vectors f () in such a way that the feature vectors
of all nodes that share a certain neighborhood will be similar. Matrix f is calculated as

follows:

£(G) = argMax ) _ | —log (Z P <V>> + Y SO f(w (1)
eV

SfeRIVIxd veV n;€Ng (1)

where N (u) denotes the network neighborhood of node u given a sampling strategy, and
& the embedding constructor (node2vec in this case). In the above expression the inner
sum calculates the similarities between a node and all nodes in its neighborhood. This

—> > >
Edge list Structural Projection
embedding Layout

Fig.4 Schematic representation of network embedding based layout proposed in this work. Input network
is first projected to a d-dimensional vector space, where structural properties of individual nodes are
captured. Next, the obtained embedding is projected to two dimensions. The two dimensional projections
serve as initial points for force-directed layout computation (Layout)
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sum is large if the feature vectors of nodes in the same neighborhood are collinear, how-
ever it also increases if feature vectors of nodes have a large norm. The first value of
each summand decreases when the norms of feature vectors increase, thereby penalizing
collections of feature vectors with large norms.

Expression (1) has a probabilistic interpretation which models a process of randomly
selecting nodes from the network. The probability P(n|u) of node n following node u
in the selection process is proportional to ¢ 7@ Assuming that selecting one node is
independent from selecting any other node, we can calculate the probability of selecting
all nodes from a given set A as P(A|u) = [],,c4 P(n|u), and Eq. 1 can then be rewritten as
follows:

E(G) = arg Max Z log (P(Ns(u)[f(u))) . (2)
feRVI ey

Term Ng(u) in Egs. (1) and (2) denotes the neighborhood of u given a sampling strategy

S and is calculated by simulating a random walker traversing the network starting at node

u. The transition probabilities for traversing from node n; to node n; depends on the

node np the walker visited before node 7, making the process of traversing the network

a second order random walk. The unnormalized transition probabilities are set using two
parameters, p and ¢, and are equal to:

if My = Ny

P(ny|previous step moved from node ng to n;) = if ny can be reached from n; .

Q= e

otherwise

Parameters p and g are referred to as the return parameter and the in-out parameter,
respectively. A low value of the return parameter p means that the random walker is more
likely to backtrack its steps, meaning the random walk will be closer to a breadth first
search. On the other hand, a low value of the parameter g encourages the walker to move
away from the starting node and the random walk resembles a depth first search of the
network. To calculate the maximizing vector f, a set of random walks of limited size is
simulated starting from each node in the network to generate several samples of the set
Ns(u).

The function maximizing expression (1) is calculated using stochastic gradient descent.
The value of (1) is estimated at each generated sampling of the neighborhoods Ns(u) for
all nodes in the network to discover the vector f that maximizes the expression for the
simulated neighborhood set.

Extensions to multilayer networks

In this section, we discuss how the node2vec embedding algorithm relates to the consid-
ered multilayer network visualization. The original implementation of node2vec operates
only on homogeneous, weighted networks. As such, we primarily use it to obtain intra-
layer layout, which is also the computationally more expensive part of the layout compu-
tation. However, as Py3plex can easily return the supra-adjacency matrix, node2vec could
also be applied to such matrix directly in order to obtain global node representations. The
considered node2vec was also recently extended to multilayer tissue networks indicat-
ing such extensions are possible (Zitnik and Leskovec 2017). We test a similar idea with
dynamic networks in “Experiment one: benchmark of layout computation time” section.



Skrlj et al. Applied Network Science (2019) 4:94 Page 15 of 24

Reducing embedding dimensionality using t-SNE

Note that even though the nodes of a network can be embedded in 2 dimensional space
directly, the obtained representations are normally not representative of the network’s
structure. If £(G) represents the network embedding function, we introduce an additional
operation, P(€£(G)), i.e. a projection of the obtained network embedding (see previous
section) to a 2-dimensional, real-valued vector space. Embedding-based graph drawing
was previously proven to scale to very large networks (Hachul and Jiinger 2006), thus we
believe similar ideas implemented with more recent approaches could offer similarly good
performance on large multilayer networks with many layers.

In the experiments shown in the following sections, we use t-SNE projections (Maaten
and Hinton 2008) for obtaining the final set of node coordinates. The t-SNE algorithm
taks as input a set of high dimensional vectors and projects them to a low-dimensional
vector space while maintaining (as much as possible) the similarities between the vec-
tors. For use in data visualization, the low-dimensional space has dimension 2 or 3. The
algorithm works in two steps.

1  Similarities between pairs of input vectors (in our case, the d-dimensional node
embeddings) are calculated.

2 Low-dimensional vectors are calculated such that the vector-pair-similarities of the
low dimensional vectors re-create the original similarities as closely as possible.

Similarities between input vectors {x1,...,%,} are modeled as follows. Let x; and x;
denote two points in the input d-dimensional embedding. The similarity between data
point x; and x; is modeled as the probability that x; would pick x; as its neighbor if neigh-
bors were picked in proportion to their probability density under a Gaussian centered at
x; and is calculated as follows:

e(=llxi=xjl1%/207)

B gt (= llxg—nl2/207)

Pij

where o; is the variance of the Gaussian, centered on data point x;. In t-SNE, o; is deter-
mined so that the perplexity of the Gaussian equals a fixed value, specified by the user.
The desired perplexity parameter can be interpreted as the number of neighbors of each
data point. From p;;, the joint probability p;; is calculated as p;; = Iw.

In finding the low-dimensional representation {y,...,y,}, t-SNE models similarities
between pairs of representation vectors using the Cauchy distribution, calculated as

follows:

(L4 llyi — 12~
Y g (L lyg — yul2) ™

Using this model, t-SNE uses stochastic gradient descend to minimize the Kullback-

qi =

Leibler divergence (Kullback and Leibler 1951) between the original probabilities p;; and
the new probabilities g;;. We refer the interested reader to the original paper (Maaten and
Hinton 2008) for technical details of this optimization.

Final formulation
Embedding &, described in “Network embedding using node2vec” section and projec-
tion P, described in “Reducing embedding dimensionality using t-SNE” section, represent
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two fundamentally different mappings. First, £ attempts to capture a given node’s neigh-
bourhood information, whilst P attempts to construct a low-dimensional embedding by
preserving the input’s dimension (distances between input feature vectors).

The mappings £ and P are applied sequentially to obtain coordinate tuples %, € R?,
where t,, can already serve as the coordinates for plotting individual nodes, or can be
used as the initialization of the force-directed layout. The presented algorithm can thus
be described in three simple steps:

1 Network embedding into d-dimensional vector space.
2 Projection of d-dimensional embeddings into two dimensions.
3 (Optional) few iterations of distance minimization.

For the experimental evaluation discussed in the next section we used node2vec for
the network embedding part, and t-SNE for projections. Note that the idea discussed in
this section is both embedding, as well as projection-agnostic—arbitrary embedding algo-
rithm’s output can be projected to two dimensions using an arbitrary projection method.
We recognize as relevant related work the body of literature focusing on node embedding
learning, summarized in (Goyal and Ferrara 2018), a survey in which node2vec proved to
be one of the best performing algorithms. Similarly, the recently introduced Embedding
Projector (Smilkov et al. 2016) offers visualization of embeddings projected via PCA or

other non-linear projections.

Experimental evaluation

In the following sections, we discuss the performance of Py3plex with respect to visual-
ization, as well as analysis tasks. We begin by comparing the proposed embedding-based
layout to some of the contemporary layout algorithms. Next, we demonstrate the scal-
ability of the library and conclude with an analysis of a dynamic multiplex social

network.

Experiment one: benchmark of layout computation time

We next present a simple benchmark, where we tested the speed of the presented method
in comparison with the Force Atlas 2 algorithm (FA2) (which uses Barnes-Hut approxi-
mation for the n-body problem for faster minimization). We used the FA2 algorithm as
it is widely used in software such as Gephi (Bastian et al. 2009), representing a relevant
baseline for this task.

We compared the computation time of the two algorithms on a real-life protein-protein
interaction network described below. The IntAct protein-protein interaction network is
currently one of the largest resources for mining the human proteome. To perform the
experiments, we first downloaded the current version of protein-protein interaction net-
work from the IntAct database (Orchard et al. 2013), which at the time of writing consists
of more than 350,000 nodes and approximately 3.8 million edges. In IntAct, the nodes
represent individual proteins, and the (undirected) edges represent their interactions.
The edges are weighted, where the edge weights correspond to experimental reliabil-
ity of the interactions between the corresponding proteins, and take values between 0
and 1. This data base consists of protein-protein interaction pairs, scored with a real
value representing the confidence of a given interaction. For comparing layouts, we used
all edges with score of at least 0.2, yielding a network with more than 100,000 nodes
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and 400,000 edges. We computed layouts for each network five times, and averaged the
computation times.

The obtained benchmark times along with computed layouts are summarized in
Table 2. It can be observed that the embedding based layout looks notably different to any
of the force-directed ones. After many rounds of minimization, the embedding based lay-
out starts to resemble the force-directed one. We believe this experiment demonstrates
the power of using network embeddings for qualitative analysis. We additionally dis-
cuss the obtained results in “Conclusions and further work” section. We continue with a
benchmark study, where we compare the visualization time of Py3plex, compared with
Pymnet, an alternative Python based library for visualization of such networks.

Experiment two: overall performance

In this section we first present the result of comparing visualization times of Py3plex and
Pymnet libraries. Next we discuss a practical case study where we visualize a multiplex
dynamic social network. Multiplex networks are comprised of the same set of nodes pro-
jected across layers. Here, no physical inter-layer edges are commonly present, as they
correspond to is  relation.

We present the results for the times needed to obtain a visualization of networks of
different complexities; here, we compare Py3plex to Pymnet library. Even though Pym-
net does not support the diagonal projection and Py3plex does not support the default
3D linear projections, both methods are useful for visualization of different aspects of
multilayer networks.

The main aim of this section is to demonstrate that Py3plex offers better support for
visualization of larger networks.

The experimental setting for this task was designed as follows. Random multilayer
Erdés-Rényi (ER) networks were generated using the Pymnet (Kiveld et al. 2014) library.
We used this network model purely for its simplicity and control over the node and edge
space. While ER networks do not exhibit such real-world properties as, for example,
Stochastic Block Models (Holland et al. 1983), we believe the larger ER networks con-
sidered exhibit enough complexity for comparisons to be meaningful for the considered

Table 2 Comparison of force directed layout with the presented embedding based layout

[terations Time (BH) Visualization (BH) Time (Embedding) Visualization (Embedding)

0 Tmin 23 min
10 24min 61 min
~
N
) s
# S
~ //
100 426min P 480 min

The BH denotes the Barnes-Hut-based Force Atlas2 layout computation. Note that apart from force minimization of the
non-embedded network we also present results of minimizing a network’s coordinates, initialized using embedding projections
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comparisons — in this section, we are only interested in comparing the computation time
needed to visualize the networks. As the computation and visualization times are mostly
dependent on the numbers of nodes and edges, if Py3plex outperforms Pymnet on these
networks, we also expect it to outperform Pymnet on other networks of comparable size.

Such random networks are parameterized using parameter N corresponding to the total
number of nodes, parameter L corresponding to the number of layers, and parameter p
corresponding to the re-wiring probability. We generated the networks in the following
parameter ranges:

p € {0.05,0.1,0.2,0.3},

N € {5,10, 20, 50, 80, 100},

Le{1,2,34,5,6,78,9,10}.

Once generated, the time needed for visualization was recorded. We compared visu-
alization times of Pymnet and Py3plex, as the remaining Python-based alternative,
MultinetX, does not support drawing of coupled edges.

We show the final results of our experiment in the form of box plots, where |[N| or
|E| is plotted on the x-axis and the time needed is plotted on the y-axis (Figs. 5 and 6).
Networks with more than 100 nodes were not considered for this benchmark, as it took
Pymnet more than two hours for visualization. Nonetheless, Py3plex was able to visu-
alize a network with |N| = 4,000 and |E| = 18,600 under two hours, even though the
obtained network is not necessarily useful for visualization purposes. The machine used
for benchmark testing was an off-the-shelf Lenovo y510p laptop.

Visualization of dynamic multiplex networks

Real-world multilayer or multiplex networks are commonly subject to either edge or node
dynamics; for example, friendships form over time, or biological phenotypes emerge and
disappear (Secrier et al. 2012). Here, the number of e.g., edges can be subject to notable

Fig. 5 An example benchmark network used for computation time comparison




