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Abstract

Widespread use of medical information systems and explosive growth of medical databases
require traditional manual data analysis to be coupled with methods for efficient computer-
assisted analysis. This paper presents selected data mining techniques that can be applied in
medicine, and in particular some machine learning techniques including the mechanisms that
make them better suited for the analysis of medical databases (derivation of symbolic rules,
use of background knowledge, sensitivity and specificity of induced descriptions). The
importance of the interpretability of results of data analysis is discussed and illustrated on
selected medical applications. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Modern hospitals are well equipped with monitoring and other data collection
devices which provide relatively inexpensive means to collect and store the data in
inter- and intra-hospital information systems. Extensive amounts of data gathered
in medical databases require specialized tools for storing and accessing data, for
data analysis, and for effective use of data. In particular, the increase in data
volume causes great difficulties in extracting useful information for decision sup-
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port. Traditional manual data analysis has become inadequate, and methods for
efficient computer-based analysis indispensable. To satisfy this need, medical infor-
matics may use the technologies developed in the new interdisciplinary field of
knowledge discovery in databases (KDD) [16], encompassing statistical, pattern
recognition, machine learning, and visualization tools to support the analysis of
data and the discovery of regularities that are encoded within the data.

KDD typically consisting of the following steps [14,13]: understanding the
domain, forming the dataset and cleaning the data, extracting regularities hidden in
the data and formulating knowledge in the form of patterns or rules (this step in the
overall KDD process is usually referred to as data mining (DM)), post-processing of
discovered knowledge, and exploiting the results. This paper is only concerned with
data mining, and presents some approaches to it which can be used to extract
medical knowledge for diagnosis, screening, prognosis, monitoring, therapy support
or overall patient management.

The results of computer-based analysis have to be communicated to people in an
understandable way. In this respect, the analysis tools have to deliver transparent
results and most often facilitate human intervention in the analysis process. A good
example is a machine learning tool that, as a result of data analysis, aims to derive
a symbolic model of high transparency and accuracy.

This paper presents selected data mining techniques that can be applied in
medicine, and in particular those techniques that are well suited for the analysis of
medical databases (derivation of symbolic rules, use of background knowledge,
sensitivity and specificity of induced descriptions). Due to space limitations we omit
the description of mechanisms for handling noise and missing data, as well as
mechanisms for dealing with real valued and temporal data, which are also crucial
for successful data mining in medicine. The importance of the interpretability of
results of data analysis is discussed and illustrated on selected medical applications.

2. The nature of medical data

The well developed information infrastructure of modern hospitals provides
relatively inexpensive means to store the data, which can become widely available
via internet/intranet. The rapidly emerging globality of data requires standards in
terminology, vocabularies and formats to support data sharing, standards for
interfaces between different sources of data and integration of heterogeneous data

Fig. 1. An example if–then rule induced by CN2 in the domain of early diagnosis of rheumatic diseases.
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(including images), and standards in the design of electronic patient records. Many
environments still lack such standards, which hinders the use of data analysis tools
on large global datasets, limiting their application to datasets collected for specific
diagnostic, screening, prognostic, monitoring, therapy support or other patient
management purposes.

Patient records collected for diagnosis and prognosis typically encompass values
of anamnestic, clinical and laboratory parameters, as well as results of particular
investigations, specific to the given task. Such datasets are characterized by their
incompleteness (missing parameter values), incorrectness (systematic or random
noise in the data), sparseness (few and/or non-representable patient records avail-
able), and inexactness (inappropriate selection of parameters for the given task).
The development of machine learning tools for medical diagnosis and prediction
was frequently motivated by the requirements for dealing with these characteristics
of medical datasets [3,5].

Datasets collected in monitoring (either acute monitoring of a particular patient
in an intensive care unit, or discrete monitoring over long periods of time in the
case of patients with chronic diseases) have additional characteristics: they involve
the measurements of a set of parameters at different times, requesting the temporal
component to be taken into account in data analysis. These data characteristics
need to be considered in the design of analysis tools for prediction, intelligent
alarming and therapy support.

3. Selected data mining techniques

Current trends in medical decision making show awareness of the need to
introduce formal reasoning, as well as intelligent data analysis techniques in the
extraction of knowledge, regularities, trends and representative cases from patient
data stored in medical records. Formal techniques include decision theory [17] and
symbolic reasoning technology [35], as well as methods at their intersection, such as
probabilistic belief networks [44]. Intelligent data analysis techniques include ma-
chine learning, clustering, data visualization, and interpretation of time-ordered
data (derivation and revision of temporal trends and other forms of temporal data
abstraction).

This paper is concerned with data mining methods for intelligent data analysis in
medicine [33], in particular machine learning methods [36]. Machine learning
methods can be classified into three major groups [36]: inductive learning of
symbolic rules (such as induction of rules [7], decision trees [47] and logic programs
[31]), statistical or pattern-recognition methods (such as k-nearest neighbors or
instance-based learning [9,1], discriminate analysis and Bayesian classifiers), and
artificial neural networks [51] (such as networks with back-propagation learning,
Kohonen’s self-organizing network and Hopfield’s associative memory).

Machine learning methods have been applied to a variety of medical domains in
order to improve medical decision making [26]. These include diagnostic and
prognostic problems in oncology [3], liver pathology [34], neuropsychology [39],
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and gynaecology [43]. Improved medical diagnosis and prognosis may be achieved
through automatic analysis of patient data stored in medical records, i.e. by learning
from past experiences.

Given patient records with corresponding diagnoses, machine learning methods are
able to diagnose new cases. More specifically, suppose E is a set of examples with
known classifications. An example is described by the values of a fixed collection of
features (attributes): Ai, i�{1,..., Nat}. Each attribute can either have a finite set of
values (discrete) or take real numbers as values (continuous). An individual example
ej, j�{1,..., Nex} is a n-tuple of values 6ik of attributes Ai. Each example is assigned
one of Ncl possible values of the class variable C (classifications): ci, i�{1,..., Ncl}.
For instance, in the domain of early diagnosis of rheumatic diseases [12,30], the
patient records comprise 16 anamnestic attributes. Some of these are continuous (e.g.
age, duration of morning stiffness) and some are discrete (e.g. joint pain, which can
be arthrotic, arthritic, or not present at all). There are eight possible diagnoses:
degenerative spine diseases, degenerative joint diseases, inflammatory spine diseases,
other inflammatory diseases, extraarticular rheumatism, crystal-induced synovitis,
non-specific rheumatic manifestations, and non-rheumatic diseases.

To classify (diagnose) new cases, machine learning methods can take different
approaches. They can construct explicit symbolic rules that generalize the training
cases (rule induction and decision tree induction). The induced rules or decision trees
can then be used to classify new cases. Another approach is to store (some of) the
training cases for reference (instance-based learning). New cases can then be classified
by comparing them to the reference cases. Yet another approach is to compute, for
a given case to be classified, the conditional probability of classes according to the
Bayesian formula and assign the most probable class to the case. These approaches
are outlined in some more detail in the rest of this section.

3.1. Rule induction

Given a set of classified examples, a rule induction system constructs a set of if–then
rules. An if–then rule has the form:

IF Conditions THEN Conclusion.

The condition part of a rule contains one or more attribute tests. The conclusion part
has the form C=ci, assigning a particular value ci to the class C. We say that an
example is covered by a rule if the attribute values of the example fulfil the conditions
in the IF part of the rule.

An example rule induced in the domain of early diagnosis of rheumatic diseases
[12,30] is given in Fig. 1. It assigns the diagnosis of crystal-induced synovitis to male
patients older than 46 years that have more than three painful joints and psoriasis
as a skin manifestation.

The rule induction system CN2 [6,7] uses the covering approach to construct a set
of rules for each possible class ci in turn: when rules for class ci are being constructed,
examples of this class are positive, all other examples are negative. The covering
approach works as follows: CN2 constructs a rule that correctly classifies
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some examples, removes the positive examples covered by the rule from the training
set and repeats the process until no more examples remain. To construct a single
rule that classifies examples into class ci, CN2 starts with a rule with an empty
antecedent (IF part) and the selected class ci as a consequent (THEN part). The
antecedent of this rule is satisfied by all examples in the training set, and not only
those of the selected class. CN2 then progressively refines the antecedent by adding
conditions to it, until only examples of the class ci satisfy the antecedent. To allow
for handling imperfect data, CN2 may construct a set of rules which is imprecise,
i.e. does not classify all examples in the training set correctly.

Consider a partially built rule. The conclusion part is already fixed and there are
some (possibly no) conditions in the IF part. The examples covered by this rule
form the current training set. For discrete attributes, all conditions of the form
Ai=6ik, where 6ik is a possible value for Ai, are considered for inclusion in the con-
dition part. For continuous attributes, all conditions of the form AiB(6ik+6ik+l

)/2
and Ai\ (6ik+6ik+ l

)/2 are considered, where 6ik and 6ik+ l
are two consecutive values

of attribute Ai that actually appear in the current training set. For example, if the
values 4.0, 1.0, and 2.0 for attribute Ai appear in the current training set, the
conditions AiB1.5, Ai\1.5, AiB3.0, and Ai\3.0 will be considered.

Note that both the structure (set of attributes to be included) and the parameters
(values of the attributes for discrete ones and boundaries for the continuous ones)
of the rule are determined by CN2. Which condition will be included in the
partially built rule depends on the number of examples of each class covered by the
refined rule and the heuristic estimate of the quality of the rule.

The heuristic estimates used in rule induction are mainly designed to estimate the
performance of the rule on unseen examples in terms of classification accuracy. This
is in accord with the task of achieving high classification accuracy on unseen cases.
Suppose a rule covers P positive and N negative examples of class cj. Its accuracy
an be estimated by the relative frequency of positive examples of class cj covered,
computed as P/(P+N). This heuristic, used in early rule induction algorithms,
prefers rules which cover examples of only one class. The problem with this metric
is that it tends to select very specific rules supported by only a few examples. In the
extreme case, a maximally specific rule will cover (be supported by) one example
and hence have an unbeatable score using the metrics of apparent accuracy (scores
100% accuracy). Apparent accuracy on the training data, however, does not
adequately reflect true predictive accuracy, i.e. accuracy on new testing data. It has
been shown [19] that rules supported by few examples have very high error rates on
new testing data.

The problem lies in the estimation of the probabilities involved, i.e. the probabil-
ity that a new example is correctly classified by a given rule. If we use relative
frequency, the estimate is only good if the rule covers many examples. In practice,
however, not enough examples are available to estimate these probabilities reliably
at each step. Therefore, probability estimates that are more reliable when few
examples are given should be used, such as the Laplace estimate which, in two-class
problems, estimates the accuracy as (P+1)/(P+N+2) [42]. This is the search
heuristic used in CN2. The m-estimate [4] is a further upgrade of the Laplace
estimate, taking into account also the prior distribution of classes.
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Fig. 2. Decision tree for outcome prediction after severe head injury. In the leaves, the percentages
indicate the probabilities of class assignment.

3.2. Decision tree induction

Systems for top-down induction of decision trees (TDITD) [47] generate a
decision tree from a given set of attribute-value tuples. Each of the interior nodes
of the tree is labelled by an attribute, while branches that lead from the node are
labelled by the values of the attribute.

The tree construction process is heuristically guided by choosing the ‘most
informative’ attribute at each step, aimed at minimizing the expected number of
tests needed for classification. Let E be the current (initially entire) set of training
examples, and c1,…, cN cl

the decision classes. A decision tree is constructed by
repeatedly calling a tree construction algorithm in each generated node of the tree.
Tree construction stops when all examples in a node are of the same class (or if
some other stopping criterion is satisfied). This node, called a leaf, is labelled by a
value of the class variable. Otherwise the ‘most informative’ attribute, say Ai, is
selected as the root of the (sub)tree, and the current training set E is split into
subsets Ei according to the values of the most informative attribute. Recursively, a
subtree Ti is built for each Ei

Ideally, each leaf is labelled by exactly one class name. However, leaves can also
be empty, if there are no training examples having attribute values that would lead
to a leaf, or can be labelled by more than one class name (if there are training
examples with same attribute values and different class names). One of the most
important features is tree pruning, used as a mechanism for handling noisy data.
Tree pruning is aimed at producing trees which do not overfit possibly erroneous
data. In tree pruning, the unreliable parts of a tree are eliminated in order to
increase the classification accuracy of the tree on unseen cases. The pruning
techniques are based on the heuristic called the expected/predicted classification
accuracy, or alternatively, the expected classification error [49].

An early decision tree learner ASSISTANT [5] that was developed specifically to
deal with the particular characteristics of medical datasets, supports the handling of
incompletely specified training examples (missing attribute values), binarization of
continuous attributes, binary construction of decision trees, pruning of unreliable
parts of the tree and plausible classification based on the ‘naı̈ve’ Bayesian principle
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to calculate the classification in the leaves for which no evidence is available. A
sample decision tree that can be used to predict outcome of patients after severe
head injury [45] is shown in Fig. 2. The two attributes in the nodes of the tree are
CT score (number of abnormalities detected by computer axial tomography) and
GCS (evaluation of coma according to the Glasgow coma scale).

Recent implementations of the ASSISTANT algorithm include ASSISTANT-R
and ASSISTANT-R2 [27]. Instead of the standard informativity search heuristic,
ASSISTANT-R employs ReliefF as a heuristic for attribute selection [24,21]. This
heuristic is an extension of RELIEF [20,21] which is a non-myopic heuristic
measure that is able to estimate the quality of attributes even if there are strong
conditional dependencies between attributes. In addition, wherever appropriate,
instead of the relative frequency, ASSISTANT-R uses the m-estimate of probabili-
ties, which typically improves the performance of machine learning algorithms [4].
ASSISTANT-R2 is a variant of ASSISTANT-R that, instead of building one
general decision tree for the whole domain, generates one decision tree for each
class (diagnosis). When classifying a new instance all trees are tried. If several trees
classify the instance into its corresponding class the most probable class is selected.
If none of the trees ‘fires’, the general tree for all the diagnoses generated by
ASSISTANT-R is used.

The best known decision tree learner is C4.5 [49] (C5.0 is its recent upgrade)
which is widely used and has been incorporated also into commercial data mining
tools (e.g. Clementine and Kepler). The system is well maintained and documented,
reliable, efficient and capable of dealing with large numbers of training examples.
As such, it is considered to be one of the best data mining tools among those
developed by the machine learning community.

3.3. Instance-based learning

Instance-based learning (IBL) algorithms [1] use specific instances to perform
classification tasks, rather than generalizations such as induced if–then rules. IBL
algorithms are also called lazy learning algorithms, as they simply save some or all
of the training examples and postpone all effort towards inductive generalization
until classification time. They assume that similar instances have similar classifica-
tions: novel instances are classified according to the classifications of their most
similar neighbors.

IBL algorithms are derived from the nearest neighbor pattern classifier [15,8].
The nearest neighbor (NN) algorithm is one of the best known classification
algorithms and an enormous body of research exists on the subject [9]. In essence,
the NN algorithm treats attributes as dimensions of an Euclidean space and
examples as points in this space. In the training phase, the classified examples are
stored without any processing. When classifying a new example, the Euclidean
distance between that example and all training examples is calculated and the class
of the closest training example is assigned to the new example.

The more general k-NN method takes the k nearest training examples and
determines the class of the new example by majority vote. In improved versions of



N. La6rac' / Artificial Intelligence in Medicine 16 (1999) 3–2310

k-NN, the votes of each of the k nearest neighbors are weighted by the respective
proximity to the new example [11]. An optimal value of k may be determined
automatically from the training set by using leave-one-out cross-validation [55]. In
our experiments in early diagnosis of rheumatic diseases [12], using the k-NN
algorithm implemented by Wettschereck [54], the best k from the range [1, 75] was
chosen in this manner. This implementation also incorporates feature weights
determined from the training set. Namely, the contribution of each attribute to the
distance may be weighted, in order to avoid problems caused by irrelevant features
[56].

Let n=Nat. Given two examples x= (x1,...,xn) and y= (y1,…yn), the distance
between them is calculated as

distance(x, y)=
' %

n

i=1

wi×difference(xi, yi)2

where wi is a non-negative weight value assigned to feature (attribute) Ai and the
difference between attribute values is defined as follows

difference(xi, yi)= �xi−yi � if Ai continuous

difference(xi, yi)=0 if Ai is discrete and xi=yi

difference(xi, yi)=1 otherwise

When classifying a new instance z, k-NN selects the set K of k-nearest neighbors
according to the distance defined above. The vote of each of the k nearest neighbors
is weighted by its proximity (inverse distance) to the new example. The probability
P(z, cj, K) that instance z belongs to class cj is estimated as

P(z, cj, K)=
%x�K xcj

/distance(z, x)

%x�K 1/distance(z, x)

where x is one of the k nearest neighbors of z and xcj
is 1 if x belongs to class cj.

The class cj with largest value of P(z, cj, K) is assigned to the unseen example z.
Before training (respectively before classification), the continuous features are

normalized by subtracting the mean and dividing by the standard deviation so as to
ensure that the values output by the difference function are in the range [0, 1]. All
features have then equal maximum and minimum potential effect on distance
computations. However, this bias handicaps k-NN as it allows redundant, irrele-
vant, interacting or noisy features to have as much effect on distance computation
as other features, thus causing k-NN to perform poorly. This observation has
motivated the creation of many methods for computing feature weights.

The purpose of a feature weight mechanism is to give low weight to features that
provide no information for classification (e.g. very noisy or irrelevant features), and
to give high weight to features that provide reliable information. In the k-NN
implementation of Wettschereck [54], feature Ai is weighted according to the mutual
information [53] I(cj, Ai) between the class cj and attribute Ai
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3.4. Bayesian classifier

The Bayesian classifier uses the naive Bayesian formula to calculate the probabil-
ity of each class cj given the values 6ik of all the attributes for a given instance to
be classified [22,23]. For simplicity, let (61,…, 6n) denote the n-tuple of values of
example ek to be classified. Assuming the conditional independence of the attributes
given the class, i.e. assuming P(61,...6n �cj)=PiP(6i �cj), then P(cj �61..6n) is calculated
as follows:

P(cj �61..6n)=
P(cj, 61..6n)

P(61..6n)
=

P(61..6n �cj)×P(cj)
P(61..6n)

=
5iP(6i �cj)×P(cj)

P(61..6n)

=
P(cj)

P(61..6n)
5

i

P(cj �6i)×P(6i)
P(cj)

=P(cj)
5P(6i)

P(61..6n)
5

i

P(cj �6i)
P(cj)

A new instance will be classified into the class with the maximal probability.
In the above equation, Pi P(6i)/P(61..6n) is a normalising factor, independent of

the class; it can therefore be ignored when comparing values of P(cj �61..6n) for
different classes cj. Hence, P(cj �61..6n) is proportional to:

P(cj)5
i

P(cj �6i)
P(cj)

(1)

Different probability estimates can be used for computing the probabilities (e.g. the
relative frequency, the Laplace estimate, the m-estimate). Instead of the simple
relative frequeny estimate, computed as N(cj)/Nex, [22,23] use the Laplace law of
succession for computing the prior probability [42]

P(cj)=
N(cj)+1
Nex+Ncl

(2)

where Nex is the number of examples, Ncl the number of classes, and N(cj) the
number of examples of class cj.

For computing the estimate of conditional probabilities [22,23] use the m-esti-
mate [4]

P(cj �6i)=
N(cj&6i)+m×p(cj)

N(6i)+m

where N(Cond) stands for the number of examples for which Cond is fulfilled, and
m is a user-defined parameter. The parameter m trades-off the contribution of the
relative frequency and the prior probability The default value m=2.0 empirically
gives good results [4].

The relative performance of the naive Bayesian classifier can serve as an estimate
of the conditional independence of attributes.

Continuous attributes have to be pre-discretized in order to be used by the naive
Bayesian classifier. The task of discretization is the selection of a set of boundary
values that split the range of a continuous attribute into a number of intervals
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which are then considered as discrete values of that attribute. Discretization can be
done manually by a domain expert or by applying a discretization algorithm [50].

The problem of (strict) discretization is that minor changes in the values of
continuous attributes (or, equivalently, minor changes in boundaries) may have a
drastic effect on the probability distribution and therefore on the classification.
Fuzzy discretization may be used to overcome this problem by considering the
values of the continuous attribute (or, equivalently, the boundaries of intervals) as
fuzzy values instead of point values [23]. The effect of fuzzy discretization is that
the probability distribution is smoother and the estimation of probabilities more
reliable, which in turn results in more reliable classification.

3.5. Using background knowledge in learning

The available patient data may be augmented with additional diagnostic knowl-
edge which can be considered as additional information for the learner. In machine
learning terminology, additional expert knowledge is usually referred to as back-
ground knowledge.

The main idea in LINUS [32,31] is to incorporate different attribute-value
learning algorithms into an environment for inductive logic programming [40,31],
which enables the effective use of specialist background knowledge in learning.
LINUS also enables the induction of relational descriptions. Several attribute-value
learners have been used within LINUS: a decision tree induction algorithm
ASSISTANT [3,5], the rule-induction algorithms NEWGEM [38], the CN2 al-
gorithm, and the k-NN implementation of Wettschereck [54].

LINUS thus extends attribute-value learners with the ability to use background
knowledge and learn relational descriptions. From the ILP perspective, on the other
hand, LINUS offers to use a variety of well-developed propositional learning tools
to solve restricted forms ILP problems, involving the handling of noisy data and
real numbers for which attribute-value learners have sophisticated mechanisms
available.

In addition to training examples, LINUS is given background knowledge repre-
sented in the form of logical definitions of relations or functions, such as the
functional definitions of groups of symptoms shown in Table 1. In the problem of
early diagnosis of rheumatic diseases, a specialist for rheumatic diseases has namely
provided his knowledge about the typical co-occurrences of symptoms. Six typical
groupings of symptoms were suggested by the specialist as background knowledge

Table 1
Characteristic combinations of values for the attributes ‘Joint pain’ and ‘Duration of morning stiffness’

Grouping 1 valueMorning stiffnessJoint pain

No pain 51 h No pain and dms51 h
Arthrotic Arthrotic and dms51 h51 h
Arthritic \1 h Arthritic and dms\1 h



N. La6rac' / Artificial Intelligence in Medicine 16 (1999) 3–23 13

Fig. 3. An example if–then rule induced by CN2 in the domain of early diagnosis of rheumatic diseases,
using the LINUS transformation for dealing with the available background knowledge. Tuple [0 1 0 1
0 12 0 0] denotes the number of examples, from each of the eight classes, covered by the rule (e.g. the
rule covers 12 examples of crystal induced synovitis).

to be considered by the learner [30]. One of the groupings relates the attribute ‘Joint
pain’ and the attribute ‘Duration of morning stiffness’. The characteristic combina-
tions are given in Table 1, whereas all other combinations are insignificant or
irrelevant.

The second of the six groupings relates Spinal pain and Duration of morning
stiffness. The following are the characteristic combinations: no spinal pain and
morning stiffness up to 1 h, spondylotic pain and morning stiffness up to 1 hour,
spondylitic pain and morning stiffness longer than 1 h. The third grouping relates
the attributes Sex and Other pain. Indicative is the pain in the thorax or in the heels
for male patients, all other combinations are non-specific: the corresponding values
of this grouping are ‘male and thorax’ and ‘male and heels’.

The fourth grouping relates joint pain and spinal pain. Grouping 5 relates Joint
pain, Spinal pain and Number of painful joints, and the sixth grouping relates
Number of swollen joints and Number of painful joints.

Using the background knowledge, LINUS generates attributes that are not
present in the initially given attribute set and extends the training examples with
these attributes. The transformed problem can be addressed by an attribute-value
learner. A sample if-then rule induced by CN2 is shown in Fig. 3.

An approach to automating the acquisition of background knowledge of co-oc-
currences of groups of symptoms from a dataset is presented in [58]. This method,
based on function decomposition, was evaluated on the same problem of early
diagnosis of rheumatic diseases.

3.6. Inducti6e logic programming

LINUS is an environment for inductive logic programming (ILP) [31], enabling
learning of relational descriptions by transforming the training examples and
background knowledge into the form appropriate for attribute-value learners. In
general, however, inductive logic programming systems learn relational descriptions
without such a transformation to propositional learning. The best known ILP
systems include FOIL [48], Progol [41] and Claudien [10].



N. La6rac' / Artificial Intelligence in Medicine 16 (1999) 3–2314

Fig. 4. A Prolog clause induced by GKS in the domain of ocular fundus image classification for
glaucoma diagnosis.

In ILP, induced rules typically have the form of Prolog clauses. A rule for ocular
fundus image classification for glaucoma diagnosis, as induced by an ILP system
GKS [37] specially designed to deal with low-level measurement data including
images, is given to illustrate the output of an ILP algorithm.

Compared to rules induced by a rule learning algorithm of the form IF
Conditions THEN Conclusion, Prolog rules have the form Conclusion :- Conditions.
The rule in Fig. 4, for example, means that Segment of Image is classified as
undermining (i.e. not normal) if the conditions of the right-hand side of the clause
are fulfilled. Notice that the conditions consist of a conjunction of predicate
clockwise/3 defined in the background knowledge, and predicate class–confirmed/3,
added to the background knowledge in one of the previous iterative runs of the
GKS algorithm. This shows one of the features of ILP learning, namely that
learning can be done in several cycles of the learning algorithm in which definitions
of new background knowledge predicates are learned and used in the subsequent
runs of the learner; this may improve the performance of the learner.

4. Selected measures for performance evaluation

Measures for performance evaluation depend on the learning task. If the task is
diagnosis or prognosis, classification accuracy is the most frequently used quality
evaluation measure, in addition to the interpretability of results (the issue discussed
in Section 5). However, even in medical diagnosis and prognosis, the classification
accuracy is not necessarily the best quality measure of a classifier. Selected
evaluation measures are outlined below.

4.1. Classification accuracy

Classification accuracy was already mentioned in this paper in the context of rule
induction, since it can be used as a heuristic for guiding the search and as a rule
quality evaluation criterion for deciding when to stop the search. Recall that, for
two-class problems, the accuracy of a rule can be estimated as P/(P+N) (relative
frequency of positive examples covered by the rule), or (P+1)/(P+N+2)
(Laplace estimate), where P is the number of positive and N the number of negative
examples of the selected class covered by the rule.

As opposed to the above classification accuracy as used for the evaluation of a
single rule on the covered training examples, consider the evaluation of the quality
of a classifier (a rule or a set of rules) on unseen cases, i.e. cases from a separate
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testing set. Let us assume a two-class classification problem (classes ‘positive’ and
‘negative’).

Consider four subsets: True positives (TP): True positive answers of a classifier
denoting correct classifications of positive cases; True negatives (TN): True negative
answers denoting correct classifications of negative cases; False positives (FP): False
positive answers denoting incorrect classifications of negative cases into class
positive; False negatives (FN): False negative answers denoting incorrect classifica-
tions of positive cases into class negative.

The classification accuracy measures the proportion of correctly classified cases:

Accuracy=
TP+TN

TP+TN+FP+FN

4.2. Sensiti6ity and specificity

For medical applications, two other measures are more frequently used than the
classification accuracy: sensitivity and specificity [29,52,37]. Sensiti6ity measures the
fraction of positive cases that are classified as positive. Specificity measures the
fraction of negative cases classified as negative.

Sensiti6ity=
TP

TP+FN

Specificity=
TN

TN+FP

In many medical problems, high classification accuracy is less important than high
sensitivity and/or specificity of a classifier’s answers.

Sensitivity can be viewed as a detection rate that one wants to maximize. If the
goal is to increase the sensitivity of answers, the learner should try to increase the
correct classifications of positive cases (TP) and/or decrease the number of incor-
rect classifications of positive cases into class negative (FN).

On the other hand, in order to increase the specificity, the learner should try to
increase the number of correct classifications of negative cases (TN) and/or
decrease the number of incorrect classifications of negative cases into class positive
(FP). Note that 1-Specificity can be interpreted as a false alarm rate which one
wants to minimize.

A ROC curve (recei6er operating characteristic) indicates a trade-off that one can
achieve between the false alarm rate (1-Specificity, plotted on X-axis) that needs to
be minimized, and the detection rate (Sensiti6ity, plotted on Y-axis) that needs to
be maximized (see e.g. [29]). An appropriate trade-off, determined by the expert,
can be achieved by applying different algorithms, as well as by different parameter
settings of a selected data mining algorithm.As shown in [29], improved perfor-
mance in terms of sensitivity, specificity and classification accuracy can be achieved
by the adaptation of selected data mining methods (Bayesian classifier, decision tree
learning, neural networks and k-nearest neighbors) to dealing with misclassification
costs in the estimation of probabilities.
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4.3. Post-test probability

It is important to recognise that medical diagnosis and prognosis are typically
stepwise processes. Diagnosis starts by first collecting anamnestic data. In the study
of early diagnosis of rheumatic diseases [46,30] subsequent steps involve the
evaluation of clinical manifestations, laboratory findings and finally radiological
findings.

In a recent study in coronary artery disease (CAD) prognosis [18,29], the first
next step concerns the evaluation of signs, symptoms and some laboratory results
that are evaluated clinically and ECG performed at rest. Positive and/or inconclu-
sive results require a further step: the sequential ECG testing during a controlled
exercise. The next step involves myocardial perfusion scintigraphy to be performed.
At each step of this sequential diagnostic process, the diagnostic value of each test
is most often assessed by its sensitivity and specificity [18]. Recall that sensitivity
represents the fraction of patients with positive results of the test where the
diagnosis CAD is confirmed, and specificity the fraction of patients without the
disease which will be excluded by the test. The test results are interpreted proba-
bilistically, i.e. after the test, the probability of the presence of CAD is given as the
post-test probability (P2), computed according to the Bayes theorem from the
pre-test probability (P1), sensitivity (Se) and specificity (Sp) as follows:

P2=
P1×Se

P1×Se+ (1−P1)× (1−Sp)
, if the test result is positive

P2=
P1× (1−Se)

P1× (1−Se)+ (1−P1)×Sp
, if the test result is negative

Sufficient diagnostic certainty is considered if the post-test probability is either
higher than 90 or lower than 10%. In particular if the post-test probability is below
10% the patient can be, according to the doctrine, excluded from medical control
and diagnostic procedures [18].

The application of data mining tools, appropriately adapted to improve the
sensitivity and specificity of results, may thus improve the results of post-test
probability computation. Consequently, many patients could avoid being submitted
to invasive and costly diagnostic procedures, thus improving the cost-benefit
trade-off of diagnostic procedures applied.

4.4. Information score

The information score of induced rules [25] is a performance measure for
classifiers. The most general answer a classifier can give is a probability distribution
over the Ncl classes. The information score takes into account the prior probabilities
of classes and can appropriately deal with probabilistic answers of the classifiers.

Let the correct class of example ek be ci, its prior probability Pa(ci) and the
probability returned by the classifier p(ci). The information score of this answer
I(ek) is computed as follows:
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I(ek)= − log Pa(ci)+ log P(ci) P(ci)]Pa(ci)

I(ek)= log (1−Pa(ci))− log (1−P(ci)), P(ci)BPa(ci)

As I(ek) indicates the amount of information about the correct classification of ek

gained by the classifier’s answer, it is positive if P(ci)\Pa(ci), negative if the
answer is misleading P(ci)BPa(ci) and zero if P(ci)=Pa(ci)

The a6erage information score Ia6 of the answers of a classifier on a testing set,
consisting of examples e1, e2,..., et, is calculated as:

Iav=
1
t
× %

t

k=1

I(ek)

To scale the evaluation of a classifier to the difficulty of the problem, the relative
information score takes into account the prior probability of classes (diagnoses).
Namely, a correct classification into a more probable diagnosis provides less
information than a correct classification into a rare diagnosis, which is only
represented by a few training examples. For example, in domains where one of the
diagnostic classes is highly likely, it is easy to achieve high classification accuracy.
The ‘default’ classifier that assigns the most common diagnosis to all patients would
in that case have undeservedly high classification accuracy. However, its relative
information score is zero, indicating that the classifier provides no information at
all.

4.5. Misclassification cost

Consider a learning problem with Ncl classes. Let ek be an example from a set of
t testing examples: e1, e2,..., et. Let the class of example ek be ci, and the probability
returned by a classifier p(ci).

A classifier correctly classifies example ek if P(ci)\P(cj), Öj�{1,…, Ncl} Example
ek is misclassified by a classifier if there exists class cl such that P(cl)=maxj P(cj),
j�{1,..., Ncl}, and P(cl)\P(ci)

Let us now introduce the misclassification cost matrix C, consisting of elements
cij=cost(ci, cj) representing the cost of misclassifying an example from class ci as
class cj, and Öi, cost(ci, ci)=0.

Suppose that a classifier assigns a most probable class to an example to be
classified. If the example is misclassified to class cl then the cost of misclassifying
example ek is C(ek)=cost(ci, cl).

In the more general case when a classifier returns a probability distribution over
the Ncl classes, and an example belonging to class ci (with prior probability Pa(ci))
is misclassified then, according to [29], the expected cost of misclassifying the
example belonging to class ci is

C(ek)=
1

1−Pa(ci)
× %

j" i

Pa(cj) cost (ci, cj)

The a6erage misclassification cost of the answers of a classifier on a testing set of
examples el, e2,..., et is computed as follows:
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Cav=
1
t
× %

t

k=1

C(ek)

See [29] for further information on misclassification costs.

5. Interpretability of results of selected applications

In medical diagnosis it is crucial that any computerised system is able to explain
and justify its decisions when diagnosing a new patient. Especially when faced with
an unexpected solution of a new problem, the user requires substantial justification
and explanation.

Decision tree learners often give an appropriate explanation: induced decision
trees are fairly easy to understand and can be used to support diagnosis without
using the computer—this is particularly valuable in situations which require
prompt decisions and in situations when computer interaction is psychologically
unacceptable. Positions of attributes in the tree, especially the top (most informa-
tive) ones, often directly correspond to domain expert’s knowledge. However, in
order to produce general rules, these methods use pruning [47,5] which drastically
reduces tree sizes. Consequently, the paths from the root to the leaves are shorter,
containing only few, most informative attributes. Frequently physicians dislike such
trees since too few parameters are taken into account and the tree describes the
patients too poorly (not sufficiently detailed) to provide reliable decisions. Another
problem is the variability of decision trees—frequently a small change in the
dataset causes a substantial restructuring of the decision trees—this also decreases
the physician’s trust in the proposed diagnosis and in its explanation.

As reported in [2], in the application of the ASSISTANT decision tree learner in
early diagnosis of rheumatic diseases [46], a specialist was asked to evaluate the
interpretability of induced decision trees. The expert considered many of the
induced trees as ‘unnatural’ and therefore unsatisfactory. Cited from [2]: ‘This was
despite the fact that the measured diagnostic accuracy of the trees was significantly
above the measured accuracy of medical experts themselves in this domain.’ The
study [2] reports that one specific expert’s comment was that ‘the trees didn’t tell
enough, they should give more information’. The expert was told that the trees had
in fact been pruned, because of noise in the learning data, in order to optimize their
accuracy. The expert was then encouraged to modify the trees to include the
‘missing information’, by adding parts of the pruned tree. In spite of the decrease
in accuracy, the expert found larger trees preferable to the ones originally induced.

Similar observations were recorded in our experiments in which the rule learner
CN2 was applied to induce rules for early diagnosis of rheumatic diseases [30,31].
Again many of the induced rules seemed unnatural since, according to the expert,
a lot of information needed for diagnosis was not present in the induced rules. The
evaluation of induced rules [30] showed the expert’s dissatisfaction with the
interpretability of induced rules. The expert’s satisfaction slightly increased (but not
substantially) when background knowledge was added to the definition of the
learning task and used by LINUS to provide additional attributes for the CN2 rule
learner.
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Fig. 5. Naive Bayes: An explanation of the decision in the diagnosis of sport injuries.

Similar experiences with physicians who typically disliked short decision trees
and short rules led to the study of explanation capabilities of the naive Bayesian
classifier [23,28]. Bayesian classifiers induce a table of conditional probabilities
which indicate how much a feature (an attribute value) contributes to a diagno-
sis. When explaining a decision for an individual patient, the explanation of a
decision is provided by the indicated ‘weight’ of a feature, i.e. the information
gain for each patient’s feature, as well as the sum of information gains of all
features that are in favor or against the individual decision (diagnosis).

Applying the function − log2 to Eq. (1) shows that − log2 P(cj �61..6n) is pro-
portional to:

− log2 P(cj)−%
i

(log2 P(cj �6i)− log2 P(cj)) (3)

The information gain of attribute value 6i for class cj, measured in bits, is defined
as the difference between the prior and posterior information necessary to deter-
mine the class cj :

log2 P(cj �6i)− log2 P(cj) (4)

where cj denotes an individual diagnosis, P(cj) the prior probability, and P(cj �6i)
the conditional probability.

Eq. (3) shows that the explanation of the decision is the difference between
the prior information necessary to determine the class cj and the sum of infor-
mation gains of all the features. One of the main advantages of this approach,
which is appealing to physicians, is that all the available information is used to
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explain the decision; such an explanation seems to be ‘natural’ for medical
diagnosis and prognosis [26].

Physicians like the explanation of decisions given by the naive Bayesian
classifier since in their opinion the sum of information gains in favor/against a
given diagnosis appears to be close to the way how they diagnose patients. For
example, Fig. 5 provides a sample explanation for a diagnosis proposed by the
naive Bayesian classifier in an application that is trying to reveal the yet un-
clear influence of anamnestic and clinical parameters for individual diagnoses of
sports injuries [57]. The expert involved liked the explanation provided by the
naive Bayesian classifier since it uses all the available attributes for classifica-
tion.

6. Discussion

The aim of this paper is to present a variety of data mining techniques and
to discuss some of their features used for medical problem solving. In addition
to the high accuracy requirement, the derivation of symbolic rules is a must
when the goal of data mining is to enable the interpretation of proposed solu-
tions. Sensitivity, specificity, information score, post-test probability and misclas-
sification cost are discussed as alternative measures to classification accuracy for
evaluating the quality of a classifier.

This paper is based on the author’s invited talk at the Second International
Conference on the Practical Application of Knowledge Discovery and Data
Mining, London, 25-27 March 1998 (PADD 1998 Proceedings, The Practical
Application Company, pages 11–31). The paper is not comprehensive in the
sense that the presented techniques are mainly selected from the arsenal of
techniques developed and used by the members of the Department of Intelligent
Systems at J. Stefan Institute and the Artificial Intelligence Laboratory of the
Faculty of computer and information sciences in Ljubljana, Slovenia.
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