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Abstrac t  Inductive logi c programming (ILP) is concerned with the 
induction of logic programs from examples and background knowledge. In 
ILP, the shift of attention from program synthesis to knowledge discovery 
resulted in advanced techniques that are practically applicable for discovering 
knowledge in relational databases. This paper gives a brief introduction to 
ILP, presents selected ILP techniques for relational knowledge discovery and 
reviews selected ILP applications. 

Keywords: Inductive Logic Programming, Machine Learning, Induction, 
Knowledge Discovery, Relational Database, Molecular Biology. 

w 1 I n t r o d u c t i o n  
Inductive logic programming (ILP) 30, 3,, 26) is a research area that  has 

its backgrounds in inductive machine learning and logic programming. ILP 
research aims at a formal framework as well as practical algorithms for induc- 
tive learning of relational descriptions that  typically have the form of logic pro- 
grams. From logic programming, ILP has inherited its sound theoretical basis, 
and from machine learning, an experimental  approach and orientation towards 
practical applications. ILP research has been strongly influenced also by com- 
putational learning theory (COLT), and recently, by knowledge discovery in 
databases (KDD) 1,) which led to the development of new techniques for rela- 
tional data  mining. 
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In general, an ILP learner is given an initial theory B (background knowl- 
edge) and some evidence E (examples), and its aim is to induce a theory H 
(hypothesis) that together with B explains some properties of E. In most cases 
the hypothesis H has to satisfy certain restrictions, which we shall refer to as 
the bias. Bias includes prior expectations and assumptions, and can therefore be 
considered as the logically unjustified part of the background knowledge. Bias is 
needed to reduce the number of candidate hypotheses. It consists of the language 
bias L, determining the hypothesis space, and the search bias which restricts the 
search of the space of possible hypotheses. 

The background knowledge used to construct hypotheses is a distinctive 
feature of ILP. It is well known that relevant background knowledge may sub- 
stantially improve the results of learning in terms of accuracy, efficiency and the 
explanatory potential of the induced knowledge. On the other hand, irrelevant 
background knowledge will have just the opposite effect. Consequently, much 
of the art of inductive logic programming lies in the appropriate selection and 
formulation of background knowledge to be used by the selected ILP learner. 

Let us illustrate some of the tasks that  ILP can address. Some of these 
concern predictive knowledge discovery where the goal is to induce classification 
and prediction rules from the given data and background knowledge. Others 
concern descriptive knowledge discovery where the goal is to induce a theory 
that describes properties of the data, but may have a form that can not be used 
for prediction and classification. 

A logic p r o g r a m m i n g  p r o b l e m .  Let the training set E consist of posi- 
tive and negative examples for the predicate s o r t / 2 .  A positive example e E E + 
provides information known to be true and should be entailed by the induced 
hypothesis. A negative example e 6 E -  provides information that is known not 
to be true and should not be entailed. 

E + = {sort([2,1,3],[1,2,3])} 
E- = {sort([2,1],[1]), sort([3,1,2],[2,1,3])} 

Let the background knowledge B contain correct definitions of predicates 
pe rmuta t ion /2 ,  which is true if the second argument is a permuted list of the 
first argument, and sorted~I, which is true if its list-argument is sorted in as- 
cending order. If the hypothesis language L contains all definite clauses using 
the predicate and functor symbols appearing in the examples and background 
knowledge, an ILP system can induce the following hypothesis: 

sort(X,Y) ~-permutation(X,Y), sorted(Y). 

The above logic program can be used to answer queries about the s o r t  
predicate, e.g. ? -  s o r t (  [ 4 , 3 ] ,  [3 ,4]  ). Hence, the illustrated program synthe- 
sis task belongs to predictive knowledge discovery. 

In descriptive knowledge discovery, using E + and B only, an induced the- 
ory could contain the following clauses: 



Inductive Logic Programming for Relational Knowledge Discovery 5 

sorted(Y) *- sort(X,Y). 
permutation(X,Y) ~-sort(X,Y). 
sorted(X) ~-- sort(X,X). 

Whereas predictive knowledge discovery results in a program for sort- 
ing lists, descriptive knowledge discovery results in uncovered regularities and 
relations among the involved predicates. 

While it is impractical at present to induce real-world logic programs from 
examples and background knowledge predicates only, ILP techniques have shown 
their potential as programming aids that can produce fully specified procedures 
when given examples, background predicates, and a partial specification of the 
target program as bias. '~ 

A knowledge discovery problem. Consider a problem of learning 
family relations where the predictive knowledge discovery task is to define the 
target relation daughter (X,Y), which states that person X is a daughter of person 
Y, in terms of relations defined in background knowledge B. 

E + = {daughter(mary,ann), daughter(eve,tom)} 

E-  = {daughter(tom,ann), daughter(eve,ann)} 

B = {mother(ann,mary), mother(ann,tom), fa ther ( tom,eve) ,  

fa ther ( tom,Jan) ,  female(ann), female(mary), female(eve), 

parent(X,Y) *-- mother(X,Y), parent(X,Y) +- father(X,Y), 

male(pat), male(tom)} 

In the hypothesis language of definite clauses, given E +, E -  and B,  a 

predictive ILP system can induce the following clause: 

daughter(X,Y) *-female(X), parent(Y,X). 

Alternatively, a learner could have induced a set of clauses: 

daughter(X,Y) ~-female(X), mother(Y,X). 
daughter(X,Y) ~-female(X), father(Y,X). 

In descriptive knowledge discovery, given E + and B only, an induced the- 
ory could contain the following clauses: 

~-daughter(X,Y), mother(X,Y). 
female(X) *-daughter(X,Y). 
mother(X,Y); father(X,Y) *-parent(X,Y). 
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One can see that  in the predictive knowledge discovery setting classifica- 
tion rules are generated, whereas in the descriptive setting database regularities 
are derived. 

The reminder of this paper gives a brief introduction to ILP and presents 
selected ILP techniques for relational knowledge discovery. The overview is 
restricted to techniques satisfying the strong criterion formulated for machine 
learning by Michie ~') that requires explicit symbolic form of induced descrip- 
tions. Finally, an overview of ILP applications is given, with an emphasis on 
applications where ILP shows its advantages over propositional learning. 

w Problem specification 
An inductive logic programming task can be formally defined as follows: 

Given: 
�9 a set of examples E 
�9 a background theory B 
�9 a language bias L that defines the clauses allowed in hypotheses 
�9 a notion of explanation 

Find:  a hypothesis H C L which explains the examples E with respect to 
the theory B. 

This definition needs to be instantiated for different types of ILP tasks.34) 
The instantiation will concern the representation of training examples, the choice 
of a hypothesis language and an appropriate notion of explanation. By expla- 
nation we here refer to an acceptance criterion for hypotheses: a hypothesis 
explains the data if it satisfies a certain user-defined criterion w.r.t, the data. 
We will discuss some formal acceptance criteria used in different ILP settings, 
but we also need to bear in mind that ILP aims at the induction of hypotheses 
that are expressed in an explicit symbolic form, that can be easily interpreted by 
the user/expert and may contribute to the better understanding of the problem 
addressed, ideally forming a piece of new knowledge discovered from the data. 

P r e d i c t i v e  I L P  is the most common ILP setting, often referred to as 
normal ILP, explanatory induction, discriminatory induction, or strong ILP. 
Predictive ILP is aimed at learning of classification and prediction rules. This 
ILP setting typically restricts E to ground facts, and H and B to sets of definite 
clauses. The strict notion of explanation in this setting usually denotes coverage, 
defined by logical entailment, and requires global completeness and consistency. 

Global completeness and consistency implicitly assume the notion of in- 
tensional coverage defined as follows. Given background theory B, hypothesis 
H and example set E, an example e E E is (intensionally) covered by H if 
B U H  ~ e. Hypothesis H is (globally) complete if re  E E + : B U H  ~ e. 
Hypothesis H is (globally) consistent if Ve E E -  : B U H ~: e. 
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Given the restriction to definite theories T = B U H ,  for which there exists 
a unique least Herbrand model M(T) ,  *~ and to ground atoms as examples, this 
is equivalent to requiring that  all examples in E + are true in M ( B  U H). 34) 

By relaxing the notion of explanation to allow incomplete and inconsis- 
tent theories tha t  satisfy some other acceptance criteria (high predictive accu- 
racy, significance, compression), the predictive ILP setting can be extended to 
include learning of classification and prediction rules from imperfect data. In a 
broader sense, predictive ILP incorporates also learning of logical decision trees, 2) 
first-order regression 2~ and constraint inductive logic programming 39) for which 
different acceptance criteria apply. 

D e s c r i p t i v e  I L P  is sometimes referred to as confirmatory induction, 
non-monotonic ILP, description learning, or weak ILP. Descriptive ILP is usually 
aimed at learning of clausal theories. *~ This ILP setting typically restricts B to a 
set of definite clauses, H to a set of (general) clauses, and E to positive examples. 
The strict notion of explanation used in this setting requires that  all clauses c in 
H are true in some preferred model of T - B U E, where the preferred model of T 
may be, for instance, the least Herbrand model M ( T ) .  (One may also require the 
completeness and minimality of H, where completeness means that  a maximally 
general hypothesis H is found, and minimality means tha t  the hypothesis does 
not contain redundant clauses.) 

By relaxing the strict notion of explanation used in clausal discovery ~ to 
allow for theories that  satisfy some other acceptance criteria (similarity, associa- 
tivity, interestingness), descriptive ILP can be extended to incorporate learning 
of association rules, s) first-order clustering, 6' 12) database restructuring TM 40) sub- 
group discovery, 44) learning qualitative models ~9) and equation discovery. 11) 

O t h e r  I L P  s e t t i n g s  have also been investigated, the most important  be- 
ing relational instance-based learning. 13~ Excellent predictive results have been 
achieved by the relational instance-based learner RIBL lz~ in numerous classifi- 
cation and prediction tasks. Recently, first-order reinforcement learning has also 
been studied by De Raedt and D~eroski. Since these two ILP settings do not 
involve hypothesis formation in explicit symbolic form, the developed techniques 
do not qualify as techniques for relational knowledge discovery. 

w D i m e n s i o n s  o f  t h e  p r o b l e m  
The computational  difficulty of an ILP learning problem depends on how 

its pr imary components are instantiated, i.e., which languages are allowed for 
the specification of examples, background knowledge, and hypothesis, and which 
notion of explanation is used. In the most general case, full first-order logic could 

�9 1 The least Herbrand model M(T) of a definite theory T is a set of ground facts M(T) = 
{a I a E Herbrand base of T and T ~ a}, where the nerbrand base of T is the set of 
all ground atoms which can be formed using the predicate, functor and constant symbols 
occuring in T. From a practical point of view, logical entailment of fact a by theory T 
can be verified using a Prolog interpreter with knowledge base T and query ?-a. Thus, 
roughly speaking, the least Herbrand model of T is the set of all facts that are logically 
entailed by theory T. 
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be used as a language, and as stated above for predictive ILP, explanation would 
be identified with logical entailment. Due to the undecidability of first-order 
logic, in this case it is not even decidable whether a hypothesis is a solution to 
the learning problem. One of the central goals of ILP is thus to find restrictions 
of the various components of the learning problem that on the one hand make the 
problem easier while on the other still allow interesting concepts to be learned. 

3.1 Cho ice  o f  the learning setting and acceptance c r i t e r i a  
The nature of the problem indicates what is the appropriate ILP setting 

and the corresponding acceptance criteria for hypotheses. 
When learning from real-life data which is imperfect, the strict notions of 

explanation need to be relaxed in order to deal with noise (random errors) in 
the examples E and background knowledge B, sparseness of the training set E, 
and inappropriateness of B that may contain predicates that are not relevant or 
are insufficient for reliably solving a learning task. 

Due to these reasons, and also due to the difference in the nature of various 
learning tasks, the strict notion of explanation needs to be replaced by a less 
strict, and typically different acceptance criteria for hypotheses. Section 4 gives 
an indication of the variety of tasks and criteria used in relational knowledge 
discovery. 

3.2 Choice of the hypothesis language 
All ILP systems use a language bias L to restrict the set of clauses allowed 

in the hypotheses, thus limiting the search space of hypotheses. Of course, an 
inappriopriate bias can prevent the learner from finding a hypothesis explaining 
the given examples. 

Most ILP systems in use today employ clausal first-order logic as their 
representation, usually concentrating on Horn clauses, i.e., clauses with one pos- 
itive literal (head). Entailment in these languages is still undecidable, so many 
systems in addition assume function-free languages which are decidable and have 
turned out to be adequate for many practical problems. Furthermore, it is pos- 
sible to automatically transform a clausal representation with function symbols 
into a function-free representation using a technique known as flattening. 38) The 
answer set of the transformed function-free program is, however, equivalent to 
the original program with functions only under certain conditions. 

3.3 Structuring the hypothesis space 
ILP can be regarded as a search problem, where the space of possible 

solutions is determined by the syntactic (language) bias L. Searching the whole 
hypothesis space is clearly inefficient, therefore structuring the search space is 
necessary. Nearly all ILP learners structure the search by means of the dual 
notions of generalization and specialization. 

There is also a decision criterion, e.g., global completeness and consistency 
in predictive ILP, to check whether a candidate hypothesis H is a solution to 
a problem. However, even for a Horn clause program consisting of one ground 
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fact, one ground query and two Horn clauses with two literals, the ILP problem 
defined above remains undecidable. Therefore, ahnost all ILP approaches have 
chosen to replace (semantic) logical entailment (~ )  by (syntactic) 0-subsumption 
(_>~), first used for learning by Plotkin. 

S e m a n t i c  generalization. A hypothesis H1 is 
than a hypothesis H2 with respect to theory B 

Syntactic generalization or  0 - s u b s u m p t i o n .  
als) is syntactically more general than a clause 
a substitution 0 such that clO C c2. In this 

semantically more general 
if and only i fBUH1 ~ H2. 

A clause cl (a set of liter- 
c~ if and only if there exists 
case we say that clause cl 

0-subsumes c2 (c1>~c2). A hypothesis H1 is syntactically more general 
than a hypothesis H2 if and only if for each clause c2 in H2 there exists 
a clause cl in H1 such that Cl is syntactically more general than c2. 

Plotkin has proved that the syntactic is more general than relation in- 
duces a lattice on the set of all clauses, up to equivalence classes and variable 
renamings, i.e., a lattice on the set of reduced clauses. Equivalence classes con- 
sist of clauses that  are 0-subsumption equivalent ( -~) :  c =~ d if and only if 
c >0 d and d >0 c. A clause is reduced if it is not 0-subsumption equivalent 
to any proper subset of itself. In a lattice, any two clauses have a least upper 
bound (lub) and a greatest lower bound (glb) which are unique up to renaming 
of variables. 

Notice that  when a clause cl (resp. hypothesis) is syntactically more 
general than a clause c2 it is also semantically more general: i.e., if cl >~c2, then 
el ~ C2. 

The converse is not true, as shown by the examples in Fig. 1. As illus- 
trated by the last example in Fig. 1, the incompleteness of 0-subsumption is due 
to clauses that can resolve with themselves. If these self-resolving clauses are not 
allowed, 0-subsumption is complete with respect to ~.  Checking 0-subsumption 
is an NP-complete problem, but in many cases it is possible to exploit structural 
properties of the data (determinacy and locality) to greatly reduce the com- 
binatorial matching problem and runtime when compared to a blind matching 
approach. 

Both is more general than relations are useful for induction because: 

�9 when generalizing a hypothesis H1 to H2, all formulae f entailed by the 
hypothesis H1 and background theory B will also be entailed by hypothesis 
H2 and theory B, i.e. (B U H1 ~ f )  --+ (B U H2 ~ f ) .  

�9 when specializing a hypothesis H1 to H2, all formulae f logically not en- 
tailed by hypothesis Hi and background theory B will not be entailed by 
hypothesis H2 and theory B either, i.e. (B U H1 ~ f )  -~ (B U H~ ~ f) .  

The two properties can be used to prune large parts of the search space. 

3.4 Sea r ch ing  t h e  h y p o t h e s i s  space  
In the 0-subsumption lattice of reduced clauses, an ILP learner can search 

the hypothesis space systematically, either top-down or bottom-up. 
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Cl:=daughter(X,Y) *-- parent(Y,X) 

c2:=daughter(mary,ann) *-- parent(ann,mary) 
c3:=daughter(mary,ann) +- female(mary), parent(ann,mary), parent(tom,mary) 
cl >_ec2 and cl _>oc3, b o t h  w i th  9 = {X/mary, Y/ann}. 

c4:=daughter(X,Y) ~- parent(Y,X), parent(U,V) 
cI=t9c4; c] is reduced, c4 is not reduced. 

cs:=q(Y,Z,X) +- q(X,Y,Z), c6:=q(Z,X,Y) ~-" q(X,Y,Z) 
c5 ~ c 6  andc6  ~ o c h ,  but  c5 ~ c 6  andc6 ~ c5. 

Fig. 1 t%subsumption examples 

Specialization techniques search the hypothesis space top-down, from 
the most general to specific hypotheses, using a specialization/refinement opera- 
tor, which ideally computes the set of all minimal (most general) specializations 
of the currently considered clause. 

Genera l iza t ion  techniques search the hypothesis space in a bottom- 
up manner: they start from the training examples (most specific hypotheses) 
and search the hypothesis space by employing a generalization operator. Ide- 
ally, generalizations are the least general generalizations of the given examples 
("cautious generalization"). 

In predictive ILP, both techniques repeat their procedure on a reduced 
example set if the found clause by itself does not entail all positive examples. 
They use thus an iterative process to compute disjunctive hypotheses consisting 
of more than one clause (often called the "covering" approach). 

Specialization techniques are better suited for empirical learning in the 
presence of noise since top-down search can easily be guided by heuristics. On 
the other hand, generalization techniques are best suited for interactive and 
incremental learning from few examples. 

3.5 Advanced search techniques 
One of the key problems in ILP is how to search the space of logic programs 

efficiently. Existing 1LP algorithms use variants of greedy search to explore the 
space of logic programs. Due to myopic behavior, a greedy search algorithm is 
easily trapped in a local minimum. To alleviate the problem of myopic greedy 
search, several advanced search techniques have been developed, such as beam 
search, bi-directional search, stochastic search and genetic search. The simplest 
is beam search in which a beam of literals is searched in order to find the best 
literals or conjunctions of literals needed in clause construction. 

Bi-direct ional  search is used in the Progol algorithm, 31) combining the 
advantages of top-down and bottom-up search. The algorithm (1) randomly 
selects an example ei, (2) uses (depth-bounded) inverse resolution to construct 
the most specific clause e(ei, B) that explains ei (such that e(ei, B) ~ el), (3) by 
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top-down search of the tg-subsumption lattice finds a clause ci which subsumes 
c(ei, B) ,  is consistent w.r.t, the current example set E and maximally compresses 
a set of examples subsumed by ci, (4) adds ci to the current hypothesis H. It 
repeats the process with the examples that are still not covered until no more 
compression is possible. Bi-directional search results in a substantial reduction 
of the search space. 

S t o c h a s t i c  s ea rch  in the state space of logic programs can be used to al- 
leviate the problem of myopic greedy search. In a stochastic ILP system MILP,~5) 
based on ideas from simulated annealing, transitions in the state space are prob- 
abilistic; the probability of a transition to a state is proportional to the (heuris- 
tically evaluated) quality of the state. 

G e n e t i c  s ea rch  is performed on a population of hypotheses. In each 
iteration, hypotheses are mutated and recombined, and the best n hypotheses 
are kept. To use such a strategy for ILP, a representation of hypotheses must be 
found that allows effective mutation and recombination operators to he formu- 
lated. In the GA-Smart system, 17) a restricted hypothesis space based on clause 
templates was selected to allow for an appropriate bitstring representation. In 
the system Gilp by Vargek, a genetic algorithm operating on a population of 
Prolog clauses was employed in conjunction with the covering principle. 

3.6 O t h e r  d imens ions  
E m p i r i c a l  ve rsus  i n c r e m e n t a l  l ea rn ing .  This dimension describes 

the way the examples E are obtained. In empirical ILP, the evidence is given at 
the start  and not changed afterwards. In incremental ILP, the user supplies the 
examples one by one, in a piecewise fashion. 

I n t e r a c t i v e  ve r sus  n o n - i n t e r a c t i v e  l ea rn ing .  In interactive ILP, the 
learner is allowed to pose questions to the user about the intended interpretation. 
Usually these questions query for the intended interpretation of examples or 
clauses. 

T h e o r y  rev is ion .  In addition to examples E and background knowl- 
edge B, an existing theory may be given to the learner as a starting point for 
hypothesis construction, often requiring that it be minimally modified to arrive 
at a hypothesis. Incremental and interactive learning approaches require theory 
revision. 

P r e d i c a t e  inven t ion .  Predicate invention denotes the process whereby 
entirely new predicates (not present in E and B) are induced. Predicate in- 
vention results in extending the vocabulary of the learner and may therefore 
facilitate the learning task. Generally speaking, search space becomes very large 
in predicate invention. In spite of this difficulty, some systems invent a predicate 
without any user interaction. :1) 

S ingle  ve r su s  mu l t i p l e  p r e d i c a t e  l ea rn ing .  In single predicate learn- 
ing, the evidence contains examples for only one predicate and the aim is to 
induce a definition for this predicate; in multiple predicate learning, the aim is 
to learn a set of possibly interacting predicate definitions or properties that hold 
among various predicates. Descriptive ILP tasks involving multiple predicates 
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are handled easier and more naturally, due to overcoming the order dependency 
problem of multiple predicate learning in predictive ILP. 

w T e c h n i q u e s  fo r  r e l a t i o n a l  k n o w l e d g e  d i s c o v e r y  

4.1 Predict ive  ILP  
Learning of  classification rules. This is the standard ILP setting that 

has been used in numerous successful predictive knowledge discovery applica- 
tions. The well-known systems for classification rule induction include Foil, 3~).~ 
Golem TM and Progol. 31) Foil is efficient and best understood due to its similarity 
to Clark and Niblett's CN2. On the other hand, Golem and Progol are champions 
concerning successful ILP applications, despite the fact that they are substan- 
tially less efficient. Foil is a top-down learner, Golem is a bottom-up learner, 
and Progol uses a combined search strategy. All are mainly concerned with 
single predicate learning from positive and negative examples and background 
knowledge; in addition, Progol can also be used to learn from positive examples 
only. They use different acceptance criteria: compression, coverage/accuracy 
and minimal description length, respectively. 

Induc t ion  of  logical decision trees. The system Tilde 2) belongs to 
Top-down induction of decision trees algorithms. It can be viewed as a first- 
order upgrade of Quinlan's C4.5, employing logical queries in tree nodes which 
involves appropriate handling of variables. The main advantage of Tilde is its 
efficiency and capability of dealing with large numbers of training examples, 
which are the well-known properties of Tilde's propositional ancestors. Hence 
Tilde currently represents one of the most appropriate systems for predictive 
knowledge discovery. Besides the language bias, Tilde allows for lookahead and 
prepruning (according to the minimal number of examples covered) defined by 
parameter setting. 

Fi rs t -order  regression. The relational regression task can be defined as 
follows: Given training examples as positive ground facts for the target predicate 
r(Y, X1, ...,X,~), where the variable Y has real values, and background knowl- 
edge predicate definitions, find a definition for r(Y, X1, ..., X,~), such that each 
clause has a literal binding Y (assuming that X1,.. . ,X, are bound). Typical 
background knowledge predicates include less-or-equal tests, addition, subtrac- 
tion and multiplication. An approach to relational regression is implemented in 
the system FORS (First Order Regression System)~o) which performs top-down 
search of a refinement graph. In each clause, FORS can predict a value for the 
target variable Y as the output value of a background knowledge literal, as a 
constant, or as a linear combination of variables appearing in the clause (using 
linear regression). 

Induct ive  Cons t ra in t  Logic Programming .  It is well known that 
Constraint Logic Programming (CLP) can successfully deal with numerical con- 
straints. The idea of Inductive Constraint Logic Programming (ICLP) zg) is to 

*2 The successor of Foil, the  sys tem Ffoil, can  successfully be used for induc ing  re la t iona l  
definit ions of funct ions.  
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benefit from the number-handling capabilities of CLP, and to use the constraint 
solver of CLP to do part of the search involved in inductive learning. To this 
end a maximally discriminant generalization problem in ILP is transformed to 
an equivalent constraint satisfaction problem (CSP). The solutions of the orig- 
inal ILP problem can be constructed from the solutions of CSP, which can be 
obtained by running a constraint solver on CSP. 

4.2 D e s c r i p t i v e  I L P  
L e a r n i n g  o f  c lausal  t heo r i e s  a n d  a s so c i a t i o n  ru les .  In discover- 

ing full clausal theories, as done in the system Claudien, 7) each example is a 
Herbrand model, and the system searches for the most general clauses that are 
true in all the models. Clauses are discovered independently from each other, 
which is a substantial advantage for data mining, as compared to the learning 
of classification rules (particularly learning of mutually dependent predicates in 
multiple predicate learning). In Claudien, search of clauses is limited by the 
language bias. Its acceptance criterion can be modified by setting two parame- 
ters: the requested minimal accuracy and minimal number of examples covered. 
In another clausal discovery system, Primus, 16) the best-first search for clauses 
is guided by heuristics measuring the "confirmation" of clauses. The Claudien 
system was further extended to Warmr ~) that enables learning of association 
rules from multiple relations. 

F i r s t - o r d e r  c lus te r ing .  Top-down induction of decision trees can be 
viewed as a clustering method since nodes in the tree correspond to sets of ex- 
amples with similar properties, thus forming concept hierarchies. This view was 
adopted in C0.5, 6) an upgrade of the Tilde logical decision tree learner. An 
approach combining learning and conceptual clustering techniques was imple- 
mented in the system Cola. 12) Given a small (sparse) set of classified training 
instances and a set of unclassified instances, Cola uses Bisson's conceptual clus- 
tering algorithm KBG on the entire set of instances, climbs the hierarchy tree 
and uses the classified instances to identify (single or disjunctive) class descrip- 
tions. 

D a t a b a s e  r e s t r u c t u r i n g .  The system Fender 40) searches for common 
parts of rules describing a concept, thus forming subconcept definitions to be 
used in the refurmulation of original rules. The result is a knowledge base 
with new intermediate concepts and deeper inferential structure than the initial 
"fiat" rulebase. The system Index 1~) is concerned with the problem of determin- 
ing which attribute dependencies (functional or multivalued) hold in the given 
relational database. The induced attribute dependencies can be used to obtain 
a more structured database. Both approaches can be viewed as doing pred- 
icate invention, where (user selected) invented predicates are used for theory 
restructuring. 

S u b g r o u p  d iscovery .  The subgroup discovery task is defined as follows: 
given a population of individuals and a property of those individuals we are 
interested in, find the subgroups of the population that are statistically "most 
interesting," i.e., are as large as possible and have the most unusual statistical 
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(distributional) characteristics with respect to the property of interest. The 
system Midos 4~) guides the top-down search of potentially interesting subgroups 
using numerous user-defined parameters. 

Learning qualitative models of dynamic systems. The automated 
construction of models of dynamic system may be aimed at qualitative model 
discovery. A recent qualitative model discovery system, 19) using a Qsim-like 
representation, is based on Coiera's Genmodel to which signal processing capa- 
bilities have been added. 

Equation discovery. The system LAGRANGE 11) discovers a set of 
differential equations from an example behavior of a dynamic system. Example 
behaviors are specified by lists of measurements of a set of system variables, 
and background knowledge predicates enable the introduction of new variables 
as time derivatives, sines or cosines of system variables. New variables can be 
further introduced by multiplication. 

w Selected ILP applications 
The number and diversity of ILP applications has been increasing at a 

steady pace. Application areas where ILP has been used for relational knowledge 
discovery range from ecology through mechanical engineering to traffic control. 
Even human feelings are modeled in a relational representation framework. 36) 
Applications in the area of molecular biology have come closest to practical rele- 
vance. Among the first was predicting protein secondary structure, 32) followed by 
predicting drug activity through modeling structure-activity relations 22.23) and 
predicting the mutagenieity of aromatic and heteroaromatic nitro-compounds. 41) 
On these problems, which are of immediate practical interest, results that are 
better or equal to the best previously known results have been obtained, in addi- 
tion to understandable and relevant new knowledge. Recent ILP applications in 
the area of molecular biology include prediction of rodent carcinogenicity bioas- 
says, 43) modeling structure-activity relations for modulating transmembrane cal- 
cium movement, 4~) pharmacophore discovery for ACE inhibition 3~) and diterpene 
structure elucidation. 10) In the remainder of this section we briefly summarize 
the abovementioned ILP applications in molecular biology domains. 

5.1 Predicting protein secondary structure 
A protein is basically a string of amino acids (or residues). Predicting the 

three-dimensional shape of proteins from their amino acid sequence is widely 
believed to be one of the 'hardest  unsolved problems in molecular biology. It 
is also of interest to the pharmaceutical industry since the shape of a protein 
determines its function. 

The sequence of amino acids is called the primary structure of the protein. 
Spatially, the amino acids are arranged in different patterns (spirals, turns, flat 
sections, etc.). The three-dimensional spatial shape of a protein is called the 
secondary structure. A limited version of the problem of predicting the shape 
(secondary structure), involving only the c~-helix shape, was considered by Mug- 
gleton et al. 3~) The ILP system GOLEM used information on the sequence of 
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residues and properties of the individual residues to predict whether a given 
residue will belong to an a-helix. The induced rules achieved an accuracies of 
81% on unseen cases, which at the time was better than the best previously 
reported result of 76%. 24) 

5.2 Modeling structure-activity relations 
A central concern of chemistry is understanding the relationships be- 

tween chemical structure and activity. In most cases, these relationships cannot 
be derived solely from physical theory and experimental evidence is essential. 
Such empirically derived relationships are called Structure Activity Relation- 
ships (SARs). In a typical SAR problem, a set of chemicals of known structure 
and activity are given, and the task is to find a predictive theory relating the 
structure of a compound to its activity. This relationship can then be used to 
select structures with high or low activity. Typically, knowledge of such rela- 
tionships is used for devising clinically effective, non-toxic drugs. 

The ILP system GOLEM 33) has been applied to several problems of this 
kind, including the problem of inhibition of E. Coli Dihydrofolate Reductase by 
two different groups of drugs (pyrimidines and triazines) 22, 23) and the proper- 
ties (toxicity, acetocholinesteraze inhibition, etc.) of Tacrine (a drug for treating 
Alzheimers disease) derivatives. 23) The ILP formulation of the problems com- 
pares the properties of pairs of compounds with known activity. The background 
knowledge contains predicates specifying the chemical structure of the drugs with 
known activity, as well as properties of some groups of atoms (substituents or 
radicals). For the problem of inhibition of E. Coil Dihydrofolate Reductase, 
GOLEM induced nine rules comparing drug activities. The Spearman rank cor- 
relation of the drug activity order predicted by GOLEM with the actual order 
was 0.46 for a testing set of drugs 22) as compared to a correlation of 0.42 by 
a classical SAR approach, taken by Hansch et al. 18) Besides achieving better 
accuracy than traditional methods, the induced rules also provide a description 
of the chemical laws governing the problem. 

5.3 Predicting mutagenicity 
Srinivasan et al. 41) applied the ILP system Progol ~1) to induce theories for 

predicting the mutagenicity of a set of 230 aromatic and heteroaromatic nitro- 
compounds. The prediction of mutagenicity is important as it is relevant to the 
understanding and prediction of carcinogenicity. The compounds used in this 
study are more heterogeneous structurally than those used in the drug design 
domains and can only be fully represented in a first-order setting. 

Of the 230 compounds, 138 have positive levels of log mutagenicity, these 
are labeled "active" and constitute the positive examples: the remaining 92 com- 
pounds are labeled "inactive" and constitute the negative examples. The target 
relation is in this case active(C), stating that compound C has positive log mu- 
tagenicity. The background knowledge contains the structure of the compounds 
represented as a list of atoms and bonds that can be found in each compound. 
The predicate atm(C,A, E, T, Charge) states that atom A in compound C is 
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an atom of element E (e.g., carbon), of type T (e.g., aromatic carbon) with 
charge Charge. The predicate bond(C, A1, A2, BT) states that there is a bond 
of type BT (e.g., aromatic bond) between atom A1 and atom A2 of compound 
C. The facts for these predicates were generated by the molecular modeling pro- 
gram QUANTA, where the compounds were entered through a chemical editing 
facility. 

In addition, four attributes are provided for analysis of the compounds. 
These can be used directly by both propositional and ILP learners. They are: 
(1) the hydrophobicity of the compound (termed logP); (2) the energy level 
of the lowest unoccupied molecular orbital (termed LUMO); (3) a boolean at- 
tribute identifying compounds with 3 or more benzyl rings (termed indicator 
variable I1); and (4) a boolean attribute identifying a sub-class of compounds 
termed acenthryles (termed indicator variable Ia). The last two are pre-selected 
structural features that  incorporate chemical expert knowledge. 

Generic structural knowledge was used as background knowledge in some 
experiments with Progol. It includes definitions of the concepts of methyl groups, 
nitro groups, aromatic rings, heteroaromatic rings, connected rings, ring length, 
and the three distinct topological ways to connect three benzene rings. These 
definitions are generic to the field of organic chemistry. 

The 230 compounds are divided into two sets: 188 compounds that could 
be fitted using linear regression (regression-friendly set), and 42 compounds that 
could not (regression-unfriendly set). In the Progol experiments, accuracies of 
theories constructed for the 188 compounds were estimated from a 10-fold cross- 
validation and the accuracy of theories for the 42 compounds were estimated by 
a leave-one-out procedure. 

In summary, Progol produced theories that perform as well as linear re- 
gression or neural networks (88% vs. 89% accuracy) on the regression-friendly 
set and much better (88% vs. 69% accuracy) on the regression-unfriendly set. In 
comparison with CART, a) no significant differences in performance exist when 
the pre-selected structural features are available. However, when these features 
are not available, Progol performs much better  on the regression-friendly set (88 
% vs 83 %). Progol also performed better than FOIL. aT) 

It is worth noting that Progol generated a single rule for the regression- 
unfriendly set. The structure indicated by this rule is a new structural alert for 
high mutagenicity in chemical compounds. 

5.4 P r e d i c t i o n  o f  r o d e n t  c a r c i n o g e n i c i t y  b ioassays  
The problem addressed by King and Srinivasan 4a) was to predict the car- 

cinogenicity of a diverse set of chemical compounds, learning from a dataset 
that originates from the US National Toxicology Program. The data on car- 
cinogencity was obtained by testing the chemicals on rodents, each trial taking 
several years and hundreds of animals (long term rodent bioassays). The train- 
ing set consisted of 291 compounds, of which 161 carcinogens, while the testing 
set consisted of 39 compounds, of which 22 carcinogens. 

An accuracy of 64% on unseen cases was achieved by Progol. No SAR 
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models (of either human or machine origin) were significantly more accurate 
than this. Progol was also the most accurate method that  did not use data from 
biological tests on rodents (these data were not available). A set of structural 
alerts for carcinogenicity was generated automatically and the chemical ratio- 
nale for them investigated. Unlike other SAR methods, the Progol alerts are 
statistically independent of those available from an existing carcinogenesis test 
based on Salmonella mutagenicity. 

5.5 S A R  m o d e l s  for for modulat ing transmembrane calcium move-  
m e n t  

The compounds considered in this study are a class of calcium-channel 
activators. Their activity is measured as the logarithm of the potency of the 
compound relative to an accepted standard calcium-channel activator. Initial 
experiments in the chemical literature used the hydrophobicity and molar reflec- 
tivity of the compounds to derive linear models of the SARs in this domain. 

Progol was applied to this dataset yielding structural concepts that were 
translated into boolean-valued attributes.42) These were added to the abovemen- 
tioned attributes and significanly improved the linear model predicting activity. 
The final model is comparable in accuracy to a much more complex model de- 
rived using computational chemistry methods. 

5.6 Pharmacophore discovery for ACE i n h i b i t i o n  
The task in this domain 3~) was to identify the structure (pharmacophore) 

responsible for the activity of ACE (Angiotensin-converting enzyme) inhibitors. 
Given were the structures of 28 molecules that display the activity of ACE 
inhibition, described by atom and bond information, including the 3D positions 
of the atoms. Background knowledge about atom groups and the distances 
between pairs of groups was available. 

Pharmacophores are typically described in terms of types of atoms (e.g., 
hydrogen donors) or functional groups and the pairwise distances among them. 
The pairwise distances define the geometric arrangement of the atoms or groups 
that is necessary for them to lock into a particular site of a protein such as 
ACE. P-Progol discovered a four-piece pharmacophore with one zinc-binder and 
three hydrogen acceptors present in all molecules. According to expert opinion, 
the discovered pharmacophore is equivalent to the generally accepted pharma- 
cophore for ACE inhibition. 

5.7 Diterpene structure elucidation 
Diterpenes are organic compounds of low molecular weight with a skeleton 

of 20 carbon atoms. They are of significant chemical and commercial interest 
because of their use as lead compounds in the search for new pharmaceutical 
effectors. The interpretation of diterpene 13C NMR-spectra normally requires 
specialists with detailed spectroscopic knowledge and substantial experience in 
natural products chemistry, more specifically knowledge on peak patterns and 
chemical structures. 
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Given a database of peak patterns for diterpenes with known structure, 
several ILP approaches were applied to discover correlations between peak pat- 
terns and chemical structure. 10) The approaches used include relational instance 
based learning, induction of logical decision trees and inductive constraint logic. 
Performance close to the one of domain experts was achieved, which suffices for 
practical use. 

More specifically, the task addressed was to identify the skeleton (type) 
of diterpenoid compounds, given their 13C-NMR-Spectra that include the multi- 
plicities and the frequencies of the skeleton atoms. The multiplicity of a carbon 
atom is the number of hydrogen atoms connected to it. Pre-processed (so-called 
reduced) multiplicities were used which result from eliminating measurement 
side-effects. Each molecule was thus represented by a set of facts of the form 
red(MoleculeID,  M u l t i p l i c i t y  ,Frequency) ,  yielding a nondeterminate repre- 
sentation. Twenty-three different skeleton types are represented in the whole set 
of 1503 compounds: there are thus 23 possible class values (target predicates). 

Several propositional versions of the problem were considered. The sim- 
plest represented a molecule by four numbers: the numbers of atoms of each of 
the four possible multiplicities. The most complex represented each molecule by 
860 attributes. All of these representations yield an accuracy of approx. 80% on 
unseen cases as estimated by cross-validation. 

Using the relational representation in combination with the four features 
mentioned above, the ILP systems RIBL ,3~ and TILDE ~) yield accuracies of 
over 90%. This is in the range of the accuracy with which experts classify 
diterpenes into skeleton types given 13C NMR spectra only. That  number can 
actually only be estimated since it is expensive to have an expert carry out 
a statistically significant number of structure predictions without using other 
additional information that often becomes available from heterogeneous sources 
(such as literature, and 1H NMR spectra). 

While RIBL is instance-based and does not yield understandable theories, 
TILDE is able to do so, at least in principle. In practice, understandability of 
the theories is diminished when only complex theories are accurate. Results 
with TILDE show, however, that it may be advantageous to find a slightly less 
accurate theory that  is more understandable. 

w Conclusions 
This paper gives a short overview of the field of ILP, its goals and main 

methods. It presents twd main ILP settings, predictive and descriptive 1LP, 
and outlines recently developed techniques for relational knowledge discovery. 
ILP applications are illustrated by a representative set of ILP applications in 
molecular biology. 
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