
This article was downloaded by: [Columbia University]
On: 10 December 2014, At: 01:01
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Journal of Experimental & Theoretical Artificial
Intelligence
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/teta20

Weakening the language bias in LINUS
NADA LAVRAČ a & SAŠO DŽEROSKI a

a Jožef Stefan Institute , Jamova 39, Ljubljana, 61000, Slovenia Phone: tel.: (+386)(61) 1259
199 Fax: tel.: (+386)(61) 1259 199 E-mail:
Published online: 27 Apr 2007.

To cite this article: NADA LAVRAČ & SAŠO DŽEROSKI (1994) Weakening the language bias in LINUS, Journal of Experimental &
Theoretical Artificial Intelligence, 6:1, 95-119, DOI: 10.1080/09528139408953783

To link to this article: http://dx.doi.org/10.1080/09528139408953783

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/teta20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/09528139408953783
http://dx.doi.org/10.1080/09528139408953783
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

J. ExPT. THEOR. ARTIF. INTELL. 6(1994)95-119.

Weakening the language bias in LINUS

NADA LAVRAC and SASO DZEROSKI

Iozef Stefan Institute, lamova 39, 61000 Ljubljana, Slovenia
tel.: (+386)(61) 1259 199, fax: (+386)(61) 219 385
email: {nada.lavrac.saso.dzeroski}@ijs.si

Abstract. The two main limitations of propositional inductive learning algorithms
are the limited capability of taking into account available background knowledge
and the limited expressiveness of the knowledge representation formalism used
for describing examples, background knowledge and concepts. The paper presents
a method for using background knowledge effectively in learning both propositional
and relational descriptions. The method, implemented in the system LINUS,
uses propositional learners in a more expressive logic programming framework.
This allows for learning of logic programs in the form of constrained deductive
hierarchical database clauses and determinate deductive database clauses.

I. Introduction
Given a set of training examples and background knowledge, the task of inductive
learning is to find a hypothesis which explains the examples. In inductive concept
learning, hypotheses are concept definitions, usually expressed in some logic­
based language; examples are descriptions of instances and non-instances of the
concept to be learned; and while background knowledge provides additional
information about the examples and the domain under study.

For the representation of training examples, background knowledge and
induced hypotheses, many inductive learning algorithms use an attribute-value
language which has the same expressive power as the language of propositional
logic. This language is limited and does not allow for representing complex
structured objects and relations among objects or components of objects.
Therefore, the background knowledge that can be used in the learning process
is of a very restricted form (Nunez 1991). As a consequence, many learning
tasks cannot be solved by propositional learning algorithms such as the members
of the AQ (Michalski et al. 1986) and TDIDT (top down induction of decision
trees, Quinlan 1986) families of inductive learning programs.

There are several ways to overcome the problem of a limited description
language:

• Methods for constructive induction enable a learning system to generate new
terms, which do not appear in the descriptions of the examples, and use them
in the induced hypothesis (Fu and Buchanan 1985, Muggleton 1987), thus
extending the initial vocabulary.

• New terms can be proposed by the expert based on his/her domain knowledge.

0952-B13XJ94 $10·00 © 1994 Taylor & Francis lid

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

96 N. Lavrac and S. Dieroski

This background knowledge can take the form of functions of attribute values
used to describe the training examples, or relations among attribute values
which reflect relations among objects in the problem domain (Michalski 1983).

• A language more expressive than a propositional language can be selected for
describing concepts and richer background knowledge used in the learning
process. In inductive logic programming (ILP, Muggleton 1991, Muggleton
1992), the selected first-order concept description language is the language of
logic programs.

The paper presents a method which implements the latter two approaches, i.e.
which can effectively use background knowledge for learning in a logic
programming framework. The presented approach builds an integrated environ­
ment for learning both attribute and relational descriptions using propositional
inductive learning algorithms. The method is implemented in the system LINUS
which was successfully applied to the problem of learning diagnostic rules in
rheumatology (Lavrac et al. 1991b, 1993), to the problem of learning relational
descriptions in several domains known from the machine learning literature
(Lavrac et al. 1991a) and to the problem of learning rules for finite element
mesh design in CAD (Dzeroski 1991). Using propositional attribute-value learning
algorithms, LINUS allows for recent advances in handling imperfect data in these
algorithms to be applied easily to real-life, imperfect data. Experiments in a
chess endgame domain with a controlled amount of noise (Dzeroski and Lavrac
1991, Lavrac and Dzeroski 1992) show that LINUS performs well on imperfect,
noisy data of relational nature.

The common logical framework into which LINUS integrates various attribute­
value learners is, in fact, the ILP framework. More specifically, in the current
implementation, LINUS uses the deductive hierarchical database (DHDB)
formalism (Lloyd 1987). LINUS is a descendant of the learning module of
QuMAS (qualitative model acquisition system, Mozetic 1987) which was used to
learn functions of components of a qualitative model of the heart in the KARDIO
expert system for diagnosing cardiac arrhytmias (Bratko et al. 1989).

The paper discusses the potential of the LINUS approach in the following
dimensions. First, in Section 2, it gives the intuition of how background knowledge
can be used in the propositional and in the ILP learning framework. Section 3
discusses the declarative language bias in LINUS which is initially set to
constrained deductive hierarchical database clauses, and shows how the approach
can be extended to solve more complex ILP problems by weakening the language
bias to determinate deductive database clauses. The extended LINUS algorithm
is given in Section 4. Finally, in Section 5 we briefly compare the extended
LINUS approach to other ILP approaches and conclude.

2. Using background knowledge in learning
This section shows how background knowledge can be effectively used to induce
compact hypotheses in a propositional learning setting (Section 2.1), and illustrates
how this same approach can be used within the ILP framework (Section 2.2). It
also addresses the issue of the complexity of the learning task for the ILP case.

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 97

2.1. Attribute-value learning
In a propositional concept learning setting, the examples are tuples of attribute
values labelled with a concept name (or EB for positive instances of the concept
and 8 for negative instances), and the induced hypotheses typically have the
form of if-then rules or decision trees.

2.1.1. An example learning problem. Suppose that the learning task is to find
a description of friendly and unfriendly robots (Wnek et al. 1990) from a given
set of examples. In the original problem, there are 432 examples, described by
6 attributes. In our simplified problem, given in Table 1, robots are described
by five attributes: Is.smiling E {no, yes}, Holding E {sword, balloon, flag}.
Has- tieE {no. yes}, Head.ishape E {round, square, octagon}, and Body.shape
E {round, square, octagon}.

From the examples in Table I, an algorithm from the AQ family induces the
following if-then rules:

Class = friendly if [ls...smiling = yes)/\
[Holding = balloon V flag)

Class = unfriendly if [ls...smiling = no)
Class = unfriendly if [Is...smiling = yes]/\

[Holding = sword]

Using ASSISTANT (Cestnik et al. 1987), a member of the TDIDT family, the
decision tree in Figure 1 is induced. When transcribed into if-then rules, the
tree produces exactly the same rules as above.

2.1. 2. Using background knowledge in attribute-value learning. Background
knowledge can be expressed in the form of functions of attribute values or
relations among attribute values. In learning attribute descriptions, these functions/
relations give rise to new attributes which are considered in the learning process.
If the background knowledge is represented in the form of functions, the value
of a new attribute is computed as a function of the values of existing attributes,
in turn for each training example. The range of values for the function is either
a finite set of discrete values or an interval of real numbers. On the other hand,
if the background knowledge has the form of relations, the only values the new

Table 1. Examples of friendly and unfriendly robots

Class Attributes and values

Is.smiling Holding Has.sie Head.shape Body...shape

friendly yes balloon yes square square
friendly yes flag yes octagon octagon
unfriendly yes sword yes round octagon
unfriendly yes sword no square octagon
unfriendly no sword no octagon round
unfriendly no flag no round octagon

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

98 N. Lavrac and S. Dieroski

Figure 1. Decision tree for the robot world.

attribute can have are true and false (if the values of the corresponding attributes
of the example do/do not satisfy the relation). In other words, relations are
Boolean functions.

For example, background knowledge can check for the equality of attribute
values for pairs of attributes of the same type (i.e. attributes with the same set
of values). In the world of robots, this would lead to two new attributes that
test the equalities ls.smiling = Has.Iie and Head.shape = Body.shape. For
simplicity, let us consider only the new attribute Head.shape = Body.shape and
name it Same.shape, the values of which are true and false. Using this idea,
initially introduced by Mozetic (1987), an extended set of tuples is generated
and used in learning. The set of attribute-value tuples for the world of robots is
given in Table 2.

Since its two values true and false completely distinguish between the friendly
and unfriendly robots, the new attribute Same.shape is the only attribute in the
decision tree induced by ASSISTANT. The tree is shown in Figure 2. The
example shows that new attributes, expressing functions of (relations among) the
original attributes that describe the examples, can be more informative than the
original attributes.

Table 2. Examples of friendly and unfriendly robots. The last column gives the
values of the new attribute Same.shape (i.e. Head.shape = Body....shape)

Class A ttributes and values

Is.smiling Holding Has.iie Head.shape Body.shape Same.shape

friendly yes balloon yes square square true
friendly yes flag yes octagon octagon true
unfriendly yes sword yes round octagon false
unfriendly yes sword no square octagon false
unfriendly no sword no octagon round false
unfriendly no flag no round octagon false

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS

Figure 2. Decision tree built by using background knowledge.

99

2.2. Inductive logic programming
Background knowledge plays a central role in inductive logic programming (ILP)
where the task is to define, from given examples, an unknown relation in terms
of (itself and) known relations from the background knowledge. In this section,
we first introduce some logic programming and deductive database terminology
and then define the task of inductive logic programming. We proceed with a
description of the LINUS algorithm that transforms the ILP learning task to a
propositional learning task and conclude with an analysis of the complexity of
the generated propositional task.

2.2.1. Logic programming and deductive database terminology. This section
briefly introduces the basic logic programming and deductive database terminology,
which will be used throughout the rest of the paper. For a comprehensive
introduction to logic programming and the programming language Prolog, we
refer the reader to Bratko (1990). An introduction to deductive databases can
be found in Ullman (1988). A detailed theoretical treatment of logic programming
and deductive databases can be found in Lloyd (1987). The following definitions
are abridged from Lloyd (1987), and take into account the Prolog syntax.

A first-order alphabet consists of variables, predicate symbols and function
symbols (which include constants). A variable is represented by an upper case
letter followed by a string of lower case letters and/or digits. A function symbol
is a lower case letter followed by a string of lower case letters and/or digits. A
predicate symbol is a lower case letter followed by a string of lower case letters
and/or digits.

A variable is a term, and a function symbol immediately followed by a
bracketed n-tuple of terms is a term. Thus f(g(X),h) is a term when f, g and h
are function symbols and X is a variable. A predicate symbol immediately
followed by a bracketed n-tuple of terms is called an atomic formula, or atom.
Both L and its negation I are literals whenever L is an atomic formula. In this
case L is called a positive literal and I is called a negative literal.

A clause is a formula of the form

where each L, is a literal and Xt>X2 , ""Xs are all the variables occurring in
L I V L2 V ... Lm . A clause can also be represented as a finite set (possibly
empty) of literals. Thus the clause (L I V L2 V ... L, V L'+l V ...) is equivalently
represented as {LJ,L2 , ... , L" L,+J, ... } or most commonly as Lt>L2 , ... +- Lt>
L,+J, ... A set of clauses is called a clausal theory and represents the conjunction
of its clauses.

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

100 N. Lavrac and S. Dieroski

Literals, clauses and clausal theories are all well-formed-formulae (wff's). Let
E be a wff or term. Let vars(E) denote the set of variables in E. E is said to be
ground if and only if vars(E) = 0.

Horn clause: A Horn clause is a clause which contains at most one positive
literal.

Definite program clause: A definite program clause is a clause which contains
exactly one positive literal. 11 has the form

T <,- L" ... , Lm

where T, L" ... , Lm are atoms.

The positive literal (T) in a definite program clause is called the head of the
clause while the negative literals (L" ... , L m) are collectively called the body of
the clause. A Horn clause with no positive literal is a definite goal. A positive
unit clause is a clause of the form L <'-, that is, a definite program clause with
an empty. body. In Prolog terminology, such a clause is called a fact and is
denoted simply by L.

Definite program: A set of definite program clauses is called a definite logic
program.

Only atoms are allowed in the body of definite program clauses. In Prolog,
however, literals of the form not L, where L is an atom, are allowed, where not
is interpreted under the negation-as-failure rule.

Program clause: A program clause is a clause of the form

(1)

where T is an atom, and each of L" ... , L m is of the form L or not L, where
L is an atom.

Normal program: A normal program is a finite set of program clauses.

Predicate definition: A predicate definition is a set of program clauses with the
same predicate symbol (and arity) in their heads.

Let us now illustrate the above definitions by some simple examples. The
clause

daughter(X, Y) <,- female(X),mother(Y,X)

is a definite program clause, while the clause

daughter(X, Y) <,- not male(X) ,father(Y,X)

is a normal program clause. Together, the two clauses constitute a predicate
definition of the two-place predicate daughter, which is also a normal logic
program. The first clause is an abbreviated representation of the formula

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS

\;jX\;jY: daughter(X, Y) V female(X) V mother(Y,x)

and can also be written in set notation as

101

{daughter(X, Y) ,female(X), mother(Y,X)}

Among the important developments in relational databases are deductive
databases (Lloyd 1987, Ullman 1988) which allow for both extensional and
intensional definitions of relations. The logic programming school in deductive
databases (Lloyd 1987) argues that deductive databases can be effectively
represented and implemented using logic and logic programming. The definitions
below are adapted from Ullman (1988) and Lloyd (1987).

Relation: A n-ary relation is a set of tuples, i.e. a subset of the Cartesian product
of n domains D 1 x D2 X ••. x Dm where a domain (or a type) is a set of values.
It is assumed that a relation is finite unless stated otherwise.

Relational database: A relational database (ROB) is a set of relations.

Database clause: A database clause is a typed program clause of the form:

T+-L" ... , Lm

where T is an atom and L"Li; are literals.

(2)

Deductive database: A deductive database (DOB) is a set of database clauses.

A relation in a deductive database is essentially the same as a predicate in a
logic program. The basic difference between program clauses (1) and database
clauses (2) is in the use of types. In typed clauses, a type is associated with each
variable appearing in a clause. The type of a variable specifies the range of
values which the variable can take. For example, in the relation lives.Int X, Y),
we may want to specify that X is of type person and Y is of type city.

It should be noted that types provide a simple syntactic way of specifying
semantic information and can increase the deductive efficiency by eliminating
useless branches of the search space. In logic, the terms sorts and many-sorted
logic are used, whereas in logic programming the term type is used instead of
sort (Lloyd 1987). We will adopt the term type.

Database clauses use variables and function symbols in predicate arguments.
Although recursive types and recursive predicate definitions are allowed, the
language is substantially more expressive than the language of relational databases.

Deductive hierarchical database: A deductive hierarchical database (OHOB) is a
deductive database restricted to nonrecursive predicate definitions and to non­
recursive types.

Nonrecursive types determine finite sets of values which are constants or
structured terms with constant arguments.

2.2.2. Definition of ILP. One of the early systems that made use of relational
background knowledge in the process of learning structural descriptions was

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

102 N. Lavrac and S. Dieroski

INDUCE (Michalski 1980). Recent inductive learning systems learn descriptions
of relations in the form of logic programs and are named inductive logic
programming (ILP) systems (Muggleton 1991, Muggleton 1992). Shapiro's work
on model inference (Shapiro 1983), Plotkin's work on inductive generalization
(Plotkin 1969) and the work of Sammut and Banerji (1986) have inspired most
of the current work in the field of ILP.

Systems that learn inductively from examples (including ILP systems) can be
divided along several dimensions. First of all, they can learn either a single
concept or multiple concepts (predicates). They may require all the training
examples to be given before the learning process (batch learners) or may accept
examples one by one (incremental learners). During the learning process, a
learner may rely on an oracle to verify the validity of generalizations and/or
classify examples generated by the learner. The learner is called interactive in
this case and non-interactive otherwise. Finally, a learner may try to learn a
concept from scratch or can accept an initial hypothesis (theory) which is then
revised in the learning process. The latter systems are called theory revisors.

Although these dimensions are in principle independent, existing ILP systems
are situated at two ends of the spectrum. At one end are batch non-interactive
systems that learn single predicates from scratch, while at the other are interactive
and incremental theory revisors that learn multiple predicates. Following De
Raedt (1992) we call the first type of ILP systems empirical ILP systems and the
second type interactive / LP systems.

Examples of empirical ILP systems are GOLEM'(Muggleton and Feng 1990),
FOIL (Quinlan 1990), LINUS (Lavrac et al. 1991a) and MOBAL (Wrobel 1988,
Kietz and Wrobel 1992). However, MOBAL learns multiple predicate definitions.
Interactive ILP systems include MIS (Shapiro 1983), CLINT (De Raedt 1992)
and CIGOL (Muggleton and Buntine 1988).

The task of empirical inductive logic programming can be now formulated as
follows:

Given:

• a set of training examples ~, consisting of true ~ + and false ~ - ground facts
of an unknown predicate p,

• a description language 5£, specifying syntactic restrictions on the definition of
predicate p ,

• background knowledge \13, defining predicates qi (other than p) which may be
used in the definition of p and which provide additional information about
the arguments of the examples of predicate p

Find:

• a definition 'ill for p , expressed in 5£, such that 'ill is complete, i.e., 'tie E ~+:

\13 U 'ill 1= e, and consistent with respect to the examples and background
knowledge, i.e. 'tie E ~-: ~ U 'ill \io e.

In the following, we refer to the true facts ~+ as positive examples, the false
facts ~ - as negative examples and the definition of p as the definition of the
target relation. When learning from noisy examples, the completeness and

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 103

consistency criteria need to be relaxed in order to avoid overly specific hypotheses
(Lavrac and Dzeroski 1992).

2.2.3. Transforming ILP problems to propositional form. The method of using
background knowledge, outlined in Section 2.1.2, is based on the idea that the
use of background knowledge can introduce new attributes for learning. This
same method can be used within the ILP framework.

In ILP, various restrictions on the complexity of the hypothesis language 9:
and various kinds of information about the background knowledge predicates
can be used to further constrain the hypothesis space, which is initially determined
by the predicates from background knowledge '1A. For example, some of the
current empirical ILP systems constrain 9: to function-free program clauses, as
is the case in FOIL, or determinate clauses as in GOLEM. LINUS is limited to
constrained DHDB clauses. MOBAL uses rule models (also called program
schemata) which define the form of induced predicate definitions.

To illustrate our method, let us currently assume the following restrictions on
the hypothesis language 9::

Datalog clauses: A hypothesis is a set of Datalog clauses (Ullman 1988), i.e.
program clauses with no function symbols in the arguments. Datalog allows only
variables and constants as predicate arguments.

Typed clauses: Clauses are typed, i.e. each variable appearing in arguments of
literals is associated with a set of values.

Constrained clauses: Clauses are constrained, i.e. all variables in the body also
appear in the head.

Nonrecursive clauses: Clauses are nonrecursive, i.e. the predicate symbol in the
head does not appear in any of the literals in the body.

Let us further assume that background knowledge '1A is represented by typed
Datalog clauses (with no further restrictions) and training examples have the
form of ground facts.

In this setting, the algorithm which solves ILP problems by transforming them
into propositional form consists of the following three steps:

• The learning problem is transformed from relational to attribute-value form.
• The transformed learning problem is solved by an attribute-value learner.
• The induced hypothesis is transformed back into relational form.

The outlined algorithm allows for a variety of approaches developed for
propositional problems, including noise-handling techniques in attribute-value
algorithms such as ASSISTANT (Cestnik et al. 1987) or CN2 (Clark and Niblett
1989), to be used for learning relations.

The algorithm is illustrated on a simple ILP problem of learning family
relationships. The task is to define the target relation daughteri X, Y), which
states that person X is a daughter of person Y, in terms of the background
knowledge relations female, male and parent. These relations are given in Table 3,

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

104 N. Lavrac and S. Dieroski

Table 3. A simple ILP problem: learning the daughter relationship

Training examples Background knowledge

daughter(sue,eve)
daughter(ann,pat)
daughter(tom,ann)
daughter(eve,ann)

E9 parenueve ,sue)
E9 parent(ann,tom)
e parent(pat,ann)
e parent(tom,sue)

female(ann)
female(sue)
female(eve)

male(pat)
male(tom)

where all variables are of type person. The type person is defined as person = {ann,
eve, pat, sue, tom}. There are two positive and two negative examples of the
target relation.

The first step of the algorithm, i.e. the transformation of the ILP problem
into attribute-value form, is performed as follows. The possible applications of
the background predicates on the arguments of the target relation are determined,
taking into account argument types. Each such application introduces a new
attribute. In our example, all variables are of the same type person . .The
corresponding attribute-value learning problem is given in Table 4, where f stands
for female, m for male and p for parent. The attribute-value tuples are
generalizations (relative to the given background knowledge) of the individual
facts about the target relation.

In Table 4, variables stand for the arguments of the target relation, and
propositional features denote the newly constructed attributes of the propositional
learning task. When learning function-free Datalog clauses, only the new attributes
are considered for learning. If we remove the function-free restriction, the
arguments of the target relation are used as attributes in the propositional task
as well (see Sections 3.1.2 and 3.1.3 for a more detailed explanation).

In the second step, an attribute-value learning program induces the following
if-then rule from the tuples in Table 4:

Class = E9 if (female(X) = true] /\ [parent(Y,X) = true]

In the last step, the induced if-then rules are transformed into Datalog clauses.
In our example, we get the following clause:

daughter(X, Y)~ female(X) .parenti Y,X)

Note that the same result can be obtained on a similar learning problem,

Table 4. Propositional form of the daughter relationship problem

Class Variables Propositional features
X Y fiX) feY) m(X) m(Y) p(X,X) p(X, Y) p(Y,X) p(Y, Y)

E9 sue eve true true false false false false true false
E9 ann pat true false false true false false true false
e tom ann false true true false false false true false
e eve ann true true false false false false false false

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 105

where the target relation daughter(X, Y) is to be defined in terms of the relations
female, male and parent, given the background knowledge from Table 5. It
illustrates that non-ground background knowledge containing rules in addition to
facts can be used within our approach.

2.2.4. The complexity of learning constrained logic programs. To show the
complexity of the ILP learning task, obtained by using background knowledge
in the learning process, let us consider the number of attributes in the transformed
learning task (Lavrac et at. 1991a). For simplicity, only background knowledge
predicates qi are considered in this analysis; a more detailed analysis can be
found in (Dzeroski and Lavrac 1992).

The total number of attributes kAttr to be considered by a propositional learner
equals:

I

kAnT = kArl{ + 2: kNew.qj
;=1

where k Arg = n is the number of arguments of the target relation p (i.e. variables
in Table 4), and kN,w,a, is the number of new attributes resulting from the
possible applications of the background predicate q; on the arguments of the
target relation.

Under the function-free restriction, kAttr is equal to the total number of new
attributes resulting only from the possible applications of the I background
predicates on the arguments of the target relation (i.e. propositional features in
Table 4):

I

kAt/r = 2: kNew,qj
;=1

(4)

Suppose that u is the number of distinct types of arguments of the target
predicate p, u, is the number of distinct types of arguments of the background
predicate q., ni.s is the number of arguments of qi that are of type 'fl, and
kArgTs is the number of arguments of target predicate p that are type s; Then
kN,w, qi is computed by the following formula:

v,

kN,w, qi = n (kArgT)n;,s
s=l

(5)

The ni.s places for arguments of type '!Is can be, namely, filled in (kArg1)n;,s ways
independently from choosing the arguments of q, which are of different types.

Since a relation where two arguments are identical can be represented by a

Table 5. Intensional background knowledge for learning the daughter relationship

Background knowledge

mother(eve .sue)
mother(ann, tom)
father(pat,ann)
father(tom,sue)

parent(X,Y) ~
mother(X,Y)

parent(X,Y) ~
father(X, Y)

female(ann)
female(sue)
female(eve)

male(pat)
male(tom)

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

106 N. Lavrac and S. Dieroski

(6)

relation of a smaller arity, the arguments of a background predicate can be
restricted to be distinct. In this case the following formula holds:

u, k
kNew.qj = IT (ATgT,) x ni)

s=1 ni.s

To illustrate the above formulae on the simple example from Tables 3 and 4,
observe that q, = female, q2 = male and q3 = parent. As all arguments are of
the same type 5"1 (person), u, = U2 = U3 = 1 and kATgTI = 2. Since there is only
one type, n, can be used instead of ni.s' In this notation, nl = nz = 1 and n3 = 2.
Thus, according to equation (5), kNew.q, = kNewm = (kATgT,)n, =
(k ATgT,)"2 = 2' = 2. This means that there are two applications of each of the
predicates female and male, namely female(X), female(Y) and male(X), male(Y),
respectively. Similarly, kNew.q3 = (kATgT,)n3 = 22 = 4, the four applications of
parentl'Z being parent(X,X), parenttX, Y), parent(Y,X) and parent(Y, Y). Finally,
kAttT = kNew.q, + kNew.q2 + kNew.q3 = 2 + 2 + 4 = 8.

if the built-in background predicate equality (=/2) is used, the number of its
possible applications equals to:

= ~ (kATgTs) = ~ kATgT, X (kATgTs - 1)
kNew,= L... 2 L... 2

s=l 5=1 .

where kATgT, denotes the number of arguments of the same type 5"" and u is
the number of distinct types of arguments of the target relation; from the
arguments of type 5",. (kATgTs x (kATgT2 - 1)12 different attributes of the form
X = Y can be constructed.

Assuming a constant upper bound j on the arity of background knowledge
predicates, the largest number of attributes that can be obtained in case that all
variables are of the same type is of the order Otlni), where I is the number of
predicates in the background knowledge and n is the arity of the target predicate.
In other words, the size of the transformed learning task is polynomial in the
arity n of the target predicate p and the number I of background knowledge
predicates. This allows us to use PAC-learnability results for the propositional
case in the ILP framework (Dzeroski et al. 1992a).

3. Declarative language bias in LINUS
Any mechanism employed by a learning system to constrain the search for
concept descriptions is named bias (Utgoff and Mitchell 1982). Declarative bias
denotes explicit, user-specified bias which can preferably be formulated as a
modifiable parameter of the system. Bias can either determine how the hypothesis
space is searched (search bias) or determine the hypothesis space itself (language
bias). This paper is only concerned with the language bias. By selecting a stronger
language bias (a less expressive hypothesis language) the search space becomes
smaller, and learning more efficient; however, this may prevent the system from
finding a solution which is not contained in the less expressive language. This
expressiveness/tractability tradeoff underlies much of the current research in
inductive learning.

The term expressiveness captures two different dimensions. The first dimension
is the expressive power of a formalism; in its standard meaning, stronger expressive
power means that there are concepts that can be represented in the stronger

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 107

formalism which cannot be represented in the weaker formalism. The other
dimension is the length of the concept representation. For example, it is possible
to state that two Boolean attributes have the same value in both an attribute­
value language and a first-order language. But, whereas in the former we have
to say (A = 01\ B = 0) V (A = 1 1\ B = I), we can simply say A = B in the
latter.

Various forms of language bias have been employed by existing ILP learners,
including types and symmetry of predicates in pairs of arguments (Lavrac et al.
1991a), input/output modes and ij-determination (Muggleton and Feng 1990),
program schemata (Wrobel 1988), predicate sets (Bergadano et al. 1989),
parametrized languages (De Raedt and Bruynooghe 1990), integrity constraints
(De Raedt and Bruynooghe 1992) and determinations (Russell 1989).

In this section we describe the syntactic language bias which is currently used
in LINUS. We then present a weaker bias of determinate deductive database
clauses that can be used within the LINUS framework, extending LINUS to
solve more complex ILP problems that require a more expressive hypothesis
language.

3.1. Language bias in LINUS
The learning method which transforms an ILP problem to a propositional learning
problem (Section 2.2.3) is implemented in the system LINUS (Lavrac et al.
1991a). Before giving the restrictions imposed by the hypothesis language ;e of
deductive hierarchical database clauses in LINUS, it is important to consider the
form of training examples ~ and, in particular, predicates in ~ which actually
determine the hypothesis space. Training examples have the form of ground facts
(which may contain structured, but nonrecursive terms) and background knowledge
has the form of deductive database clauses (possibly recursive). Variables are
typed.

3.1.1. Background knowledge. In LINUS, predicate definitions in the back­
ground knowledge ~ are of two types:

Utility functions: Utility functions jj/nj are annotated predicates; mode declarations
specify the input and output arguments, similar to mode declarations in GOLEM
and FOIL2.0 (Quinlan 1991). When applied to ground input arguments from the
training examples, utility functions compute the unique ground values of their
output arguments. When used in an induced clause, output variables must be
bound to constants.

Utility predicates: Utility predicates qfn, have only input arguments and can be
regarded as Boolean utility functions having values true or false only.

A reduction of the hypothesis space is achieved by taking into account the
pre-specified types of predicate arguments and by exploiting the fact that some
utility predicates are symmetric:

Symmetric predicates: Utility predicates can be declared symmetric in a set of
arguments of the same type. For example, a binary predicate qi(X, Y) is symmetric
in {X, Y} if X and Yare of the same type, and qi(X, Y) = qi(Y,X) for every

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

108 N. Lavrac and S. Dieroski

value of X and Y. A built-in symmetric utility predicate equality (=/2) is defined
by default on arguments of the same type.

Note that the complexity analysis in Section 2.2.4 (equation (5» does not take
into account symmetry and the use of utility functions f/nj.

3.1.2. Hypothesis language. In the current implementation of LINUS, the
selected hypothesis language ;e is restricted to constrained deductive hierarchical
database (DHDB) clauses. In DHDB, variables are typed and recursive predicate
definitions are not allowed. In addition, all variables that appear in the body of
a clause have to appear in the head as well, i.e. only constrained clauses are
induced.

To be specific, the body of an induced clause in LINUS is a conjunction of
literals, each having one of the following four forms:

(1) a binding of a variable to a value, e.g. X = a;
(2) an equality of pairs of variables, e.g. X = Y;
(3) an atom with a predicate symbol (utility predicate) and input arguments

which are variables occurring in the head of the clause, e.g. qi(X, Y);
and

(4) an atom with a predicate symbol (utility function) having as input
arguments variables which occur in the head of the clause, and output
arguments with an instantiated (computed) variable value, e.g.
f,(X, Y,Z), Z = a.

In the above, X and Yare variables from the head of the clause, and a is a
constant of the appropriate type. Literals of form (2) and (3) can be either
positive or negative. Literals of the form X = a under items (1) and (4) may
also have the form X > a and/or X < a, where a is a real-valued constant.

The attributes given to propositional learners are (1) the arguments of the
target predicate, (2)-(3) binary valued attributes resulting from applications of
utility predicates and (4) output arguments of utility functions. Attributes under
(1) and (4) may be either discrete or real-valued. For cases (2) and (3) an
attribute-value learning system will use conditions of the form A = true or
A = false in the induced rules, where A is an attribute (cf. example in Section
2.2.3). These are transcribed to literals A and not A, respectively, in the DHDB
clauses. For case (1) an attribute-value system will use conditions of the form
X = a, X > a or X < a, which can be immediately used in DHDB clauses. For
case (4), in addition to the conditions Z = a, Z> a and Z < a, the literal
fi(X, Y,Z) has to be added to the DHDB clause so that the value of Z can be
computed from the arguments of the target predicate.

To guide induction, LINUS uses meta-level knowledge which can exclude any
of the above four cases, thus reducing the search space. For example, if only
case (I) is retained, the hypothesis language is restricted to an attribute-value
language. This can be achieved by using only the arguments of the target relation
as attributes for learning. Cases (2)-(4), on the other hand, result from the use
of predicates/functions from ~ as attributes for learning. The equality predicate
(=/2), which generates literals of the form (2), is built-in in LINUS.

The complexity of learning with LINUS is analysed in Section 2.2.4 and shows

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 109

the number of new attributes leading to literals of form (1)-(3) above. A detailed
analysis of the actual hypothesis space, including the number of attributes which
result in literals of form (4), can be found in (Dzeroski and Lavrac 1992).

3.1.3. Language biases for two typical learning tasks. As mentioned above,
meta-level knowledge can be used to adjust the language bias in LINUS, which
is done by the user according to the type of learning task at hand. Below we list
two types of tasks with the appropriate settings of the language bias:

Class learning mode: As an attribute-value learner, LINUS is used to induce
descriptions of individual classes. In this case, the classes can be different from
EB and e and are determined by the values of a selected argument (or a set of
arguments) of the target relation. The induced clauses have the form

class(Class)~ L., ... , Lm

where Class is a class name and literals L; can take any of the four forms
outlined in Section 3.1.2.

Relation learning mode: As an ILP learner, LINUS induces constrained DHDB
clauses of the form

piX, ""Xn)~L., ... , Lm

where p is the name of the target predicate and literals L, have any of the forms
(1)-(4) from Section 3.1.2. In most of the experiments reponed elsewhere
(Lavrac et al. 1991a, Lavrac and Dzeroski 1992) LINUS was used to learn
function-free clauses; thus only literals of form (2) and (3) were actually used.

To summarize, the language bias in LINUS is declarative. The user can set
the language bias to any of the above forms, depending on the learning task at
hand.

3.2. Weakening the language bias in LINUS
In this section, the language bias of i-determinacy is described and illustrated by
a simple example.

3.2.1. The i-determinacy bias. To weaken the language bias in LINUS and
allow for more expressiveness, an idea from GOLEM is borrowed, also used in
FOIL2.0 (Quinlan 1991). While LINUS allows only 'old' variables from the head
of a clause, the idea of determinacy allows for a restricted form of 'new' variables
to be introduced into the learned clauses. The very type of restriction (determinacy)
allows the LINUS transformation approach to be used in this case as well.

It is assumed that an integer constant j is given. Only the class of ILP problems
where all predicates in 2ll are of arity at most j will be considered. The notion
of variable depth is first defined.

Variable depth: Consider a clause p(X"Xz•.... Xn)~ L"Lz.... ,L" ... Variables
that appear in the head of the clause have depth zero. Let a variable V appear
first in literal L; Let d be the maximum depth of any of the other variables in

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

110 N. Lavrac and S. Dieroski

L; that appear in the clause p(X"X2, ... ,X,,) <- LI>L2, ... ,Lr - , • Then the depth
of variable V is d + 1.

By setting a maximum variable depth i, the syntactic complexity of clauses in
the hypothesis language is restricted.

The following definition of determinacy, adapted to the case of function-free
clauses, is taken from (Dzeroski et al. 1992b).

Determinacy: A predicate definition is determinate if all of its clauses are
determinate. A clause is determinate if each of its literals is determinate. A literal
is determinate if each of its variables that do not appear in preceding literals has
only one possible binding given the bindings of its variables that appear in
preceding literals.

i-determinacy: The determinacy restriction is called i-determinacy for a given
maximum variable depth i. Given the arity bound i, i-determinacy implies ij­
determination as defined by Muggleton and Feng (1990).

Note that while i and j restrict the syntactic complexity of clauses, the notion of
determinacy is essentially a semantic restriction, as it depends on the given
training examples and background knowledge.

If we set the hypothesis language to the language of i-determinate clauses, the
transformation approach of LINUS is still applicable, as demonstrated in Section 4.
Determinate literals are a natural extension of the utility functions used presently
in LINUS. In the light of the above definitions we can say that, in the current
implementation of LINUS, only variables of depth 0 and 1 are allowed and that
variables of depth I may not be used in other literals, except as described in
Section 3.1.2.

The arity bound j is fixed. On the other hand, the parameter i can be increased
to increase the expressiveness of the hypothesis language. For a fixed i. the user
can consider the following series of languages:

;eo - ;el - ;e2 - ...

where the expressiveness of ;ej (and thus the complexity of the search space)
grows with i. The language ;eo is the language of constrained function-free
DHDB clauses. If a solution for the ILP problem cannot be found in the selected
language, the next language in the series may be chosen, and the learning process
repeated until a complete and consistent solution is found. Along these lines,
LINUS could, in principle, shift its bias dynamically, similarly to CLINT (De
Raedt 1992) and NINA (Ade and Bruynooghe 1992).

However, there are several problems with shifting bias dynamically. First of
all, the series of languages considered has to be in some sense complete.
Consider, for example, the case where the target definition is not determinate
(is not in any of the languages in the series). In this case the system may continue
to shift its bias forever without finding a satisfactory solution. Next, the learning
process is repeated for each language in the series, up to the appropriate one.
This leads to less efficient learning, although some improvements are possible.
The most important problem, however, is when and how to shift the bias if

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 111

learning data is imperfect, which can easily be the case in empirical 1LP.
Therefore, we will rather assume a fixed language bias :£,.

3.2.2. An example determinate definition. Let us illustrate the notion of i­
determinacy on a simple ILP problem. The task is to define the predicate
grandmother, where grandmother(X, Y) states that person X is grandmother of
person Y, in terms of the background knowledge predicates father and mother.
The training examples and background knowledge are given in Table 6.

A correct target predicate definition is:

grandmother(X, Y) ~ father(Z. Y) .mother(X,Z)
grandmother(X, Y) ~ mother(U,Y) .mother(X, U)

This hypothesis can be induced in a language which is at least as expressive as
:£\. The clauses are determinate (but not constrained), because each occurrence
of a new variable (i.e. Z in father(Z, Y) and U in mother(U,Y» has only one
possible binding given particular values of the other (old) variables in the literal
(i.e. Y in this case); this is the case since each person has exactly one mother
and father. The hypothesis is function-free and the maximum depth of any
variable is one (i = 1). The arity bound j has to be at least two to allow induction
of the above definition.

However, the logically equivalent hypothesis

grandmother(X, Y) ~ mother(X,Z),father(Z, Y)
grandmotheriX, Y) ~ mother(X,U),mother(U, Y)

is not determinate, since the new variable Z in the literal mother(X, Z) can have
more than one binding for a fixed value of X (e.g. X = ann, Z = tom or
Z = jim); each person can namely have several children. We can thus see that
the property of determinacy of a clause does not depend only on the given
training examples and background knowledge, but also on the ordering of literals
in the body of a clause.

4. Learning determinate clauses with LINUS
In this section, LINUS is treated exclusively as an ILP learner using only
background knowledge in the form of predicates which may have both input and
output arguments. We show how to weaken the language bias in LINUS and
learn determinate DDB clauses. An algorithm that transforms the problem of
learning nonrecursive function-free i-determinate clauses into a propositional
form is first presented and then illustrated on the example from Section 3.2.2.

Table 6. A simple ILP problem: Learning the grandmother relationship

Training examples Background knowledge

grandmother(ann,bob)
grandmother(ann,sue)
grandmother(bob.sue)
grandrnotherttom.bob)

(jj fathertzak .torn)
(jj mother/ann.tom)
e fatherttom.sue)
e mothert eve.sue)

fatherfpat .ann)
mother(liz,ann)
falher(tom,bob)
mother(eve.bob)

father(zak,jim)
mothertann.jim]
father(jim,dave)
mother(jean,dave)

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

112 N. Lavrac and S. Dzeroski

The back transformation 'of induced propositional concept descriptions to the
program clause form is then briefly described and illustrated by an example.
Finally, we discuss how the algorithm can be extended to learn recursive clauses.
Dealing with nonrecursive clauses is easier, as the recursive case may require
querying the user (oracle) in order to complete the transformation process.

4.1. Learning nonrecursive determinate clauses
For simplicity, we first consider the problem of learning nonrecursive clauses.
The transformation of the ILP problem of constructing an i-determinate definition
for target predicate p(X"Xz, .. .,Xn) from examples ~ and from predicate
definitions in @ is described below.

4.1.1. The transformation algorithm. The algorithm consists of the following
steps (the first step contains the most important differences to the original LINUS
algorithm described in Section 2.2.3).

• Transform the ILP problem to propositional form.

(I) Construct a list L of determinate literals that introduce new variables
of depth at most i. Construct a list Vi of old variables and new
variables introduced by determinate literals from L.

(2) Construct a list F of all literals that use predicates from the background
knowledge and variables from Vi' The determinate literals from L
are excluded from this list, as they do not distinguish between positive
and negative examples (since the new variables have a unique binding
for each example, due to the determinacy restriction). The resulting
list is the list of features (attributes) used for propositional learning.

(3) Transform the examples to propositional form. For each example,
the truth value of each of the propositional features is determined
by calls to the background knowledge (iJI.

• Apply a propositional learning algorithm to induce a propositional concept
description.

• Transform the induced propositional description to a set of determinate DDB
clauses, adding the necessary determinate literals which introduced the new
variables.

Algorithm 1 from Figure 3 describes the transformation of the ILP problem
into propositional form, i.e. the first step of the above algorithm for learning
nonrecursive determinate clauses. The algorithm assumes that the learning task
is to find a predicate definition as a set of determinate DDB clauses with
p(X"Xz, .. .,Xn) in the head. Given are the training examples ~ as ground facts
defining predicate pin, the language bias :£i of i-determinate DDB clauses, the
definitions of background knowledge predicates qfn, in @, and the types
of arguments of predicates pin and qJns • The output of the algorithm is a
set of examples ~f for attribute-value learning formed of tuples f labelled ffi for
p(aJ,az, ... ,an) E ~+ and labelled e for p(aJ,az....,an) E ~-.

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS

Algorithm 1: Learning nonrecursive determinate clauses
Initialize the list of variables Vo := {X.,X2, ... ,Xn}.
Initialize the list of literals L := 0.
Initialize the set of tuples '&f : = 0.

113

1. for r = 1 to i do
• Dr := {q.(Y t .Y2, Yj,}lqs E ~. Yt , Y2, ..., Y js are of the appropriate

types, qs(Y" Y2 • .. . , Yj) is determinate and contains at least one new
variable not in Vr-d.

• L := L U Dr.
• Vr := Vr_1 U {y!Yappears in a literal from Dr}.
endfor

2. F:= {qs(Y"Y2•... ,Yj,}lqsE~,Y"Y2 • ""YjsE V,} - L.
3. for each p(a.,a2' ... ,an) E '& do

• Determine the values of variables in Vi by executing the body of the
clause p(X"X2, ... ,Xn)-L with variables X., ""Xn bound to a.,an.

• Given the values of variables in Vi, determine the tuple f of truth values
of literals in F. by querying the background knowledge ~.

• '&f: = '&f U {f}.
endfor

Figure 3. The algorithm for learning nonrecursive determinate clauses.

The knowledge base ~ of background predicates may take the form of a
(normal) logic program. In step (3) of Algorithm 1, two types of queries have
to be posed to this knowledge base .

• The first type are existential queries. which are used to determine the values
of the new variables. Given a partially instantiated goal (literal containing
variables that do not appear in previous literals), an existential query returns
the set (possibly empty) of all bindings for the unbound variables which make
the literal true. For example, the query mother(X,A) where X = ann and A
is a new variable would return the set of answers {A = tom, A = jim}. Note.
however. that for the determinate literals in L. the set of answers is always a
singleton.

Table 7. Propositional form of the grandmother learning problem

g(X, y) Variables New variables Propositional features

X Y f(U, X) f(V, y) m(W,X) m(Z, Y) ... m(X.V) m(X,Z) ...
Class X Y U V W Z AI A2

Ef> ann bob pat tom liz eve true false
Ef> ann sue pat tom liz eve true false
e bob sue tom tom eve eve false false
e tom bob zak tom ann eve false false

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

114 N. Lavrac and S. Dieroski

• The other type of queries are ground (membership) queries about background
knowledge predicates, where the goal is completely bound. These are used to
determine the truth values of the propositional features.

In an actual implementation of Algorithm 1, steps (1) and (3) should be
interleaved, i.e. the values of the new variables and the propositional features
should be calculated for each example as they are introduced. In this way, the
determinacy of literals in step (1) is automatically tested when the existential
query determining the values of the new variables in a literal is posed. A literal
is determinate if the set of answers to the existential query is a singleton for all
the examples. If the set of answers for some example is not a singleton, the
literal is not determinate.

4.1.2. The algorithm at work: an example. For the grandmother example,
given in Table 6 of Section 3.2.2, we have i = 1, I = 2, and n = 2. Let j 2: 2.
The literal father(X,A), where X is an old and A is a new variable, is not
determinate (e.g. X = tom, A = sue or A = bob). However, if A is old and X
is new, the literal is determinate. As the target predicate is grandmother(X, Y),
we have V" = {X, Y} and D 1 = {f(U,X), f(V, Y), m(W,X), m(Z, Y)}, where f
and m stand for father and mother, respectively.

This gives L = D I , VI = {X,Y,U,v,W,Z}. The list Finetudes literals such as
f(X,X), f(X,Y), f(Z,Y), f(W,X) and similarly m(Z,Z), meV, Y), meW, W),
m(U,X), m(X,v), m(X,Z). In fact, the pairs of arguments of f and m are all
the pairs from the Cartesian product VI x VI> excluding the pairs that produce
literals from D 1•

The transformation process for the ILP problem as defined by the training
examples and background knowledge from Table 6 is illustrated in Table 7. For
the two positive and the two negative examples of g(X, Y) (g stands for
grandmother), given are the values of the old variables X and Y, the values of
the new variables U, V, Wand Z introduced by the determinate literals from
the list L, and the values of two of the propositional features from the list F,
namely m(X, V) and m(X,Z), denoted by A I and A z, respectively. Note that
only the propositional features (attributes A"Az, ...) are actually considered in
the attribute-value learning task.

4.1.3. Back transformation to DDB clause form. The algorithm that converts
the induced propositional concept definition to DDB clause form is fairly
straightforward. First, transcribe the induced rules into DDB clauses (as in the
constrained case). Then add in the necessary determinate literals, ensuring that
the values of the new variables can be uniquely determined from the value of
old variables. For each clause repeat the following process, until all variables in
the body of the clause and not in its head are introduced by determinate literals:
choose a new variable and add to the clause the literal in L that introduced the
new variable. The literals are then ordered according to the maximum depth of
variables appearing in them.

To illustrate this transformation to a set of DDB clauses, the grandmother
example is used. Suppose that a propositional learner induces the following two
rules from the examples in Table 7:

Class = EEl if [A I = true]

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 115

Class = EB if(A z = true]

This description is consistent with the examples, i.e. does not cover any negative
example. (Note, however, that it is not too probable that any propositional
learner would actually induce this description, since the first rule would suffice
for discriminating between the positive and negative examples.) The two rules
are transcribed to the clauses:

grandmorher(X, Y) +- mother(X, V)
grandmother(X,Y) +- mother(X,Z)

The new variables V and Z in the literals mother(X, V) and mother(X,Z) are not
introduced by determinate literals, so the literals father(V, Y) and mother(Z, Y)
from L have to be added to the first and second clause, respectively. The final
form of the logic program would then be:

grandmother(X, Y) +- father(V, Y),mother(X. V)
grandmother(X, Y) +- mother(Z, Y),mother(X,Z)

Expressed in logic, this program stands for:

"fX"<;jY:grandmother(X, Y) - [:JV:f(V,Y) 1\ m(X,V)] V [:JZ:m(Z. Y) 1\ m(X.Z)]

or more precisely for:

"fX"fY:grandmother(X, Y) - [:J!V:f(V,Y) 1\ m(X,v)] V [3!Z:m(Z,y) 1\ m(X,Z)]

as the value of each of the new variables is uniquely determined.

4.2. Learning recursive determinate clauses
To learn recursive determinate definitions, Algorithm 1 needs to be slightly
modified (Dzeroski et al. 1992b). Let us first distinguish between the case of
recursive literals which do not and recursive literals which do introduce new
variables. In the first case. membership queries are needed. and in the second.
both membership and existential queries about the target relation.

In the first case (when recursive literals do not introduce new variables), only
steps (2) and (3) of Algorithm 1 need to be modified. In step (2) which constructs
the list of literals F, we treat the target predicate p as any of the other background
knowledge predicates and form all possible literals with it and the variables
available, excluding the literal p(X"Xz, ... ,Xn) . However, in step (3) we cannot
evaluate features involving p by querying the background knowledge. In that
case we first check whether the ground query is among the training examples
for p, in which case we can determine its truth value (true, if the example is
positive, false if negative). If, however, the query cannot be found among the
examples, we have to resort to a membership query, that is, we must ask the
user whether the answer to the query involved is true or false.

To illustrate the above modification to Algorithm 1, consider the task of
learning the relation member(X, Y). where X is of type element and Y is of type
list. The background knowledge given includes the predicate components(X, Y,Z),
where X and Z are of type list and Y is of type element. This predicate is defined
as components([AIB],A,B) and decomposes a list [AlB] into its head A and tail
B. It is a flattened version of the cons function symbol. The equality predicate
which works on arguments of the same type is also given. In this case j has to
be at least 3. The maximum depth of variables is set to i = 1.

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

116 N. Lavrac and S. Dieroski

Table 8 gives four training examples and their transformation into the
propositional form. From the table we can see that the only determinate literal
is c(Y,A, B) (c and m stand for components and member, respectively), and
VI = {X, Y,A,B}, where X and A are of type element and Yand B are of type
list. Taking into account the types of arguments, the modified algorithm produces
the list of features in the table. The literals c(Y,X, Y), c(Y,A, Y), c(B,X,B),
c(B,A,B), c(B, X, Y) and c(B,A, Y) are also on the list of features, but have been
excluded for the sake of readability (they always have the value false). Consider
the propositional feature A. which corresponds to the recursive call member(X, B).
The value of this feature can be determined for the first example, since the
ground query is in this case member(I,[2]), which can be found as a negative
training example. However, for the other three examples, membership queries
have to be posed (the answers are marked with an asterisk "'). A similar
observation holds for features A 5 and A 6 •

A propositional learner might generate the following rules from the given
propositional examples:

Class = ffi if [Az = true]
Class = ffi if [A. = true]

The rules would be transformed to the following definition:

member(X,Y) ~ components(Y,A,B), = (X,A)
member(X, Y) ~ components(Y,A ,B), member(X, B)

which is the correct definition of the concept member(X, Y).
The second case occurs if recursive literals with new variables are allowed,

which are, for example, necessary for learning the quicksort program. In addition
to the changes outlined above, the first substep of step (1) of Algorithm 1 has
also to be changed. In this step, the target predicate p is treated exactly as the
other predicates. Determining the values of the new variables in literals involving
the target predicate requires in this case the use of existential queries about the
target concept.

The worst-case complexity of learning determinate database clauses can be
estimated as follows. Given I predicates in 0l, a target predicate of arity n, an
arity bound j and a constant bound i on variable depth, Algorithm 1 generates
O(l«jl + I)n)r ') features (Dzeroski et al. I992b). Assuming 0l is in some sense

Table 8. Propositional form of a recursive ILP problem

m(X, Y) Vars New vars Propositional features

X Y cry, A, B) c(Y,X, B) X=A Y=B m(X,B)m(A, Y)m(A,B)
Class X Y A B A, A z A 3 A. A 5 A 6

ffi 1 [1,2] 1 [2] true true false false true false
ffi 1 [2,1] 2 [1] false false false true' true' false'
ffi 2 [2] 2 I] true true false false' true false'
e 1 [2] 2 I] false false false false' true false'

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 117

efficient, the transformation process can be completed in polynomial time
(Dzeroski et al. 1992b). Using a suitable propositional learning algorithm and
the corresponding PAC-Iearnability results (Li and Vitanyi 1991), it was
proved that determinate function-free programs are PAC-learnable under simple
distributions (Dzeroski et al. 1992b). Simple distributions (Li and Vitanyi 1991)
assign higher probabilities to simpler examples; for instance, the example
member(I,[IJ) should be much more likely than member(3,[7,1,4,3,2,8J) under a
simple distribution.

The above upper bound of features (attributes) is fortunately not realistic for
computing the actual number of attributes to be used for learning. Due to type
restrictions, symmetry of predicates and determinacy, the actual number of
attributes is substantially smaller, as can be seen in the member example above.
However, one has to be aware of the drastical increase in complexity with the
arity bound j and the depth i in the language bias :£i.

S. Conclusions
The paper presents a method which allows for effective use of background
knowledge in inductive concept learning. An algorithm which implements this
method can incorporate state-of-the-art propositional learners. It is important to
emphasize that this allows for learning from real-valued and noisy data, both in
the propositional and the ILP framework. Compared to propositional attribute­
value learners, the advantage is the effective use of background knowledge and
learning in a more expressive logic programming framework. On the other hand,
compared to ILP learners, the advantage is the ability to handle real-valued and
noisy data.

An analysis of the declarative language bias imposed by the method is given.
For the constrained DHDB clause bias, the method has already been implemented
in the LINUS learning system. This bias can be weakened to learn concept
descriptions in the more expressive language of determinate (deductive) database
clauses. It is shown how to extend the LINUS algorithm to handle this case.

Compared to an another empirical ILP system FOIL, the proposed extension
to LINUS has the disadvantage that the transformation approach computes the
values of all possible features beforehand. On the other hand, FOIL computes
the values of features dynamically, i.e. during the heuristic evaluation process,
and is thus potentially more efficient. It can also use induce non-determinate
logic programs, while our approach is restricted to determinate programs.

As compared to GOLEM and FOIL, our approach has the following advantages.
The concept description language based on i-determinate clauses is more
expressive than the one used in GOLEM. Namely, negated literals may be used
in LINUS whereas only definite program clauses can be induced by GOLEM.
Furthermore, unlike in FOIL and GOLEM, non-ground background knowledge
may be used directly. In FOIL and GOLEM, non-ground background knowledge
may be used, but has to be converted to a ground model, i.e. a set of ground
unit clauses, by carrying out all h-easy derivations starting from the constant
symbols in the observations. Bratko et al. (1992) report serious problems resulting
from this requirement, due to the huge number of ground facts generated.

The presented methodology was also used to prove PAC-Iearnability results
for constrained and determinate logic programs (Dzeroski et al. 1992a,b). Despite
negative results by Haussler (1989), which indicate that non-determinate logic

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

118 N . Llzvrac' and S. Dieroski

programs are probably not PACI-learnable, it would be interesting to explore the
limits of this methodology, i.e. to investigate whether it would allow for efficient
learning of non-determinate logic programs.

Acknowledgements
This work is part of the ESPRIT I11 Basic Research Project No. 6020 Inductive
Logic Programming. It was also supported by the Slovenian Ministry of Science
and Technology and in part by the Belgian State-Science Policy Office grant,
enabling Nada LavraC her sir; months leave of absence at the Katholieke
Universiteit Leuven, and the Elritish Council grant enabling Sago Dieroski his
eight month leave of absence at The Turing Institute Limited, Glasgow. We are
grateful to Igor MozetiC and Marko Grobelnik for their contribution to the
development of LINUS. We would also like to thank Stephen Muggleton and
Stuart Russell for the co-operation in establishing the PAC-learnability results.
Thanks to Peter Flach and Irma SutliC for their comments on the paper. Special
thanks go to Luc De Raedt for his insightful and stimulating review.

References
AdC, H. and Bruynooghe, M. (1992) A, comparative study of declarative and dynamically adjustable

language bias in concept learning. In Proceedings of Workshop o n Biases in Inductive Learning,
Ninth International Conference o n Machine Learning, Aberdeen.

Bergadano, F., Giordana, A. and Ponsero, S. (1989) Deduction in top-down inductive learning. In
Proceedings of Sixth Internatioital Workshop o n Machine Learning (San Mateo: Morgan
Kaufmann) , 23-25.

Bratko, I. (1990) Prolog Programming for Artijicial Intelligence, 2nd edition (Wokingham: Addison-
Wesley).

Bratko, I., MozetiC, I. and LavraC, N. (1989) KARDIO: A Study in Deep and Qualitative Knowledge
for Expert Systems (Cambridge: MIT Press).

Bratko, I., Muggleton, S. and VarSek, A. (1992) Learning qualitative models of dynamic systems.
In S. Muggleton (ed.) Inductive Logic Programming (London: Academic Press), 437-452.

Cestnik, B., Kononenko, I. and Bratko, I. (1987) ASSISTANT 86: A knowledge elicitation tool for
sophisticated users. In I. Bratko and N. LavraC (eds) Progress in Machine Learning (Wilmslow:
Sigma Press), 31-45.

Clark, P. and Niblett, T. (1989) The CN2 induction algorithm, Machine Learning, 3(4): 261-283.
De Raedt, L. (1992) Interactive Theory Revision: A n Inductive Logic Programming Approach

(London: Academic Press).
De Raedt, L. and Bruynoogbe, M. (1990) Indirect relevance and bias in inductive concept-learning,

Knowledge Acquisition, 2(4): 365-390.
De Raedt, L. and Bruynooghe, M. (l992) Interactive concept learning and constructive induction

by analogy, Machine Learning, 8(2): 107-150.
Dieroski, S. (1991) Handling noise in inductive logic programming. Master's thesis Faculty of

Electrical Engineering and Com.puter Science, University of Ljubljana, Ljubljana, Slovenia.
Dieroski, S. and LavraE, FJ. (1991) Learning relations from noisy examples: An empirical comparison

of LINUS and FOIL. In Proceledings of Eight International Workshop o n Machine Learning
(San Mateo: Morgan ECaufmann~), 399-402.

Dieroski, S. and LavraC, 1V. (1992) Refinement graphs for FOIL and LINUS. In S. Muggleton (ed.)
Inductive Logic Programming (]London: Academic Press), 319-333.

Dieroski, S., Muggleton, S. and Russell, S. (1992a) PAC-learnability of constrained nonrecursive
logic programs. In Proceedings of Third International Workshop o n Computational Learning
Theory and Natural Learning Systems, Wisconsin.

Dieroski, S., Muggleton, S. and Russell, S. (1992b) PAC-learnability of determinate logic programs.
In Proceedings of Fifth. A C M Workshop o n Computational Learning Theory (Baltimore: ACM
Press), 128-135.

Fu, L. M. and Buchanan, B. G. (1985) Learning intermediate concepts in constructing a hierarchical
knowledge base. In Proceedings of Ninth International Joint Conference o n Artijicial Intelligence
(Los Altos: Morgan Kaufmann:) , 659-666.

Haussler, D . (1989) Learning conjunctive concepts in structural domains, Machine Learning, 4: 7-40.
Kietz, J. and Wrobel, S. (1992) Controlling the complexity of learning in logic through syntactic and

task-oriented models. In S. Muggleton (ed.) Inductive Logic Programming (London: Academic
Press), 335-359.

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

Weakening the language bias in LINUS 119

LavraC, N. and Dieroski, S. (1992) Inductive learning of relations from noisy examples. In S.
Muggleton (ed.) Inductive Logilc Programming (London: Academic Press), 495-514.

Lavrae, N., Dieroski, S. and Grobelnik, M. (1991a) Learning nonrecursive definitions of relations
with LINUS. In Proceedings of Fifth European Working Session o n Learning (Berlin: Springer),
265-28 1.

LavraE, N., Dieroski, S., Pirnat, V. and Kriiman, V. (1991b) Learning rules for early diagnosis of
rheumatic diseases. In Proceedings of Third Scandinavian Confernece on Artificial Intelligence
(Amsterdam: IOS Press), 138-149.

LavraE, N., Dieroski, S., Pirnat, V. a~nd Kriiman, V. (1993) The utility of background knowledge
in learning medical diagnostic rilles, Applied Artificial Intelligence, 7 : 273-293.

Li, M. and VitBnyi, P. (1991) Learning simple concepts under simple distributions, SIAM Journal
of Computing, 20(5) : 91 1-935.

Lloyd, J. (1987) Foundations of Logic Programming, 2nd edition (Berlin: Springer).
Michalski, R. (1980) Pattern recognition as rule-guided inductive inference, IEEE Transactions on

Pattern Analysis and Machine Irttelligence, 2(4): 349-361.
Michalski, R. (1983) A theory and rr~ethodology of inductive learning. In R. S. Michalski, J. C.

Carbonell and T. Mitchel (eds) Machine Learning: A n Artificial Intelligence Approach, volume
I (Palo Alto, CA: Tioga), 83-134.

Michalski, R., MozetiC, I., Hong, J. and LavraC, N. (1986) The multi-purpose incremental learning
system AQ15 and its testing application on three medical domains. In Proceedings of Fifth
National Conference on Artificial Intelligence (San Mateo: Morgan Kaufmann), 1041-1045.

MozetiC, I. (1987) Learning of qualitative models. In I. Bratko and N. LavraE (eds) Progress in
Machine Learning (Wilmslow: Sigma Press), 201-217.

Muggleton, S. (1987) DUCE: An oracle-based approach to constructive induction. In Proceedings
of Tenth International Joint Conference on Artificial Intelligence (San Mateo: Morgan Kaufmann),
287-292.

Muggleton, S. (1991) Inductive logic programming, New Generation Computing, 8(4): 295-318.
Muggleton, S. (ed.) (1992) Inductive Logic Programming (London: Academic Press).
Muggleton, S. and Buntine, W. (1988) Machine invention of first-order predicates by inverting

resolution. In Proceedings of F@h International Conference on Machine Learning (San Mateo:
Morgan Kaufmann) , 339-352.

Muggleton, S. and Feng, C. (1990) Efficient induction of logic programs. In Proceedings of First
Conference o n Algorithmic Leanzing Theory (Tokyo: Ohmsha), 368-381.

Nunez, M. (1991) The use of background knowledge in decision tree induction, Machine Learning,
6(3) : 23 1-250.

Plotkin, G. (1969) A note on inductive: generalization. In B. Meltzer and D. Michie (eds) Machine
Intelligence 5 (Edinburgh: Edinburgh University Press), 153-163.

Quinlan, J. (1986) Induction of decision trees, Machine Learning, l(1): 81-106.
Quinlan, J. (1990) Learning logical defimitions from relations, Machine Learning, 5(3): 239-266.
Quinlan, J. (1991) Knowledge acquisition from structured data-using determinate literals to assist

search, IEEE Expert, 6(6) : 32-3'7.
Russell, S. (1989) The Use of Know1ed;ge in Analogy and Induction (London: Pitman).
Sammut, C. and Banerji, R. (1986) Learning concepts by asking questions. In R. Michalski, J.

Carbonell and T. Mitchell (eds) Adachine Learning: A n Artificial Intelligence Approach, volume
11, (San Mateo, CA: Morgan Kaufmann), 167-191.

Shapiro, E. (1983) Algorithmic Progranr Debugging (Cambridge: MIT Press).
Ullman, J. (1988) Principles of Database and Knowledge Base Systems, volume I (Rockville: Computer

Science Press).
Utgoff, P. and Mitchell, T. M. (1982) P~cquisition of appropriate bias for inductive concept learning.

In Proceedings of National Conference on Artificial Intelligence (Los Altos: Morgan Kaufmann),
414-417.

Wnek, J., Sarma, J., Wahab, A . A. and Michalski, R. S. (1990) Comparing learning paradigms via
diagrammatic visualization: A case study in single concept learning using symbolic, neural net and
genetic algorithm methods. In Proceedings of Fifth International Symposium on Methodologies for
Intelligent Systems, Knoxville.

Wrobel, S. (1988) Automatic representation adjustment in an observational discovery system. In
Proceedings of Third European Working Session on Learning (London: Pitman), 253-262.

D
ow

nl
oa

de
d

by
 [

C
ol

um
bi

a
U

ni
ve

rs
ity

]
at

 0
1:

01
 1

0
D

ec
em

be
r

20
14

