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1 IntroductionA decision table provides a simple means for concept representation. It represents a datasetwith labeled instances, each relating a set of attribute values to a class (output concept).Decision table decomposition is a method based on the \divide and conquer" approach:given a decision table, it decomposes it to a hierarchy of decision tables. The method aimsto construct the hierarchy so that the new decision tables are less complex and easier tointerpret than the original decision table.The decision table decomposition method is based on function decomposition, an ap-proach originally developed for the design of digital circuits [2]. The method iterativelyapplies a single decomposition step, whose goal is to decompose a function y = F (X)into y = G(A;H(B)), where X is a set of input attributes x1; : : : ; xn, and y is the class.F , G and H are functions represented as decision tables, i.e., possibly incomplete sets ofattribute-value vectors with assigned classes. A and B are subsets of input attributes suchthat A [B = X. The functions G and H are developed in the decomposition process andare not prede�ned in any way. Such a decomposition also discovers a new intermediateconcept c = H(B). Since the decomposition can be applied recursively on H and G, theresult in general is a hierarchy of decision tables.Each single decomposition step aims to minimize the joint complexity of G and H andexecutes the decomposition only if this is lower than the complexity of F . Moreover, it isof crucial importance for the algorithm to �nd such partition of attributes X into sets Aand B that yields G and H of the lowest complexity. The criteria that guide the selectionof such partition are called partition selection criteria.Let us illustrate the decomposition by a simple example. Consider the decision ta-ble in Figure 1. It relates the input attributes x1, x2, and x3 to the class y, suchthat y = F (x1; x2; x3). There are three possible non-trivial partitions of attributes thatyield three di�erent decompositions y = G1(x1; H1(x2; x3)), y = G2(x2; H2(x1; x3)), y =G3(x3; H3(x1; x2)). The �rst two are given in Figure 2, and the comparison shows that:� decision tables in the decomposition y = G1(x1; H1(x2; x3)) are smaller than thosefor y = G2(x2; H2(x1; x3)),� the new concept c1 = H1(x2; x3) uses only three values, whereas that for H2(x1; x3)uses four,� we found it hard to interpret decision tables G2 and H2, whereas by inspecting H1and G1 it can be easy to see that c1 =MIN(x2; x3) and y =MAX(x1; c1). This canbe even more evident with the reassignment of c1's values: 1 to lo, 2 to med, and 3to hi.The above comparison indicates that the decomposition y = G2(x2; H2(x1; x3)) yieldsmore complex and less interpretable decision tables than the decomposition y = G1(x1; H1(x2; x3)).1



x1 x2 x3 ylo lo lo lolo lo hi lolo med lo lolo med hi medlo hi lo lolo hi hi himed lo lo medmed lo hi medmed med lo medmed med hi medmed hi lo medmed hi hi hihi lo lo hihi lo hi hihi med lo hihi med hi hihi hi lo hihi hi hi hiFigure 1: An example decision table y = F (x1; x2; x3).The questions of interest are thus:1. How do we measure the overall complexity of original decision table and of thedecomposed system?2. Which are the criteria that can guide the single decomposition step to chose amongpossible decompositions?3. How much information is contained within the hierarchical structure itself?4. How does interpretability relate to the overall complexity of decision tables in thedecomposed system? Is a less complex system also easier to interpret?Some of these questions were already addressed in the area of computer aided circuitdesign where decomposition is used to �nd a circuit of minimal complexity that implementsa speci�c tabulated Boolean function. There, the methods mostly rely on the complex-ity and partition selection criterion known as Decomposed Function Cardinality (DFC,see [18]), but its appropriateness has already been questioned [14]. Furthermore, a ques-tion is whether this criterion can be used for the decomposition of decision tables of interestto machine learning, where attributes and classes usually take more than two values. More-over, the main concern of Boolean function decomposition is the minimization of digital2
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Figure 2: Two di�erent decompositions of the decision table from Figure 1. Also givenare the overall complexities of the decision tables and the information content of thestructure (see Section 4 for de�nitions). Original decision table had DFC = 18 andDTIC = 28:53 bits.
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circuit, leaving aside the question of comprehensibility and interpretability of the resultinghierarchy.The paper is organized as follows. The next section reviews the related work on decisiontable decomposition with the emphasis on its use for machine learning. The decompositionalgorithm to be used throughout the paper is presented in section 3. Section 4 introducestwo new partition selection criteria that are based on information content of decision tables(DTIC) and on cardinality of newly discovered concepts (CM). That section also discusseshow DFC and DTIC may be used to estimate the overall complexity of derived decisiontables, and shows how DTIC may be used to assess information content of the discoveredhierarchical structure itself. Section 5 experimentally evaluates the di�erent criteria andcomplexity measures. Section 6 summarizes the results and concludes the paper.2 Related workThe decomposition approach to machine learning was used early by a pioneer of arti�cialintelligence, A. Samuel. He proposed a method based on a signature table system [19]and successfully used it as an evaluation mechanism for checkers playing programs. Thisapproach was later improved by Biermann et al. [3]. Their method, however, did notaddress the problem of deriving the structure of concepts and was mainly limited to caseswhere the training examples completely covered the attribute space.A similar approach had been de�ned even earlier within the area of switching circuitdesign. In 1956, Ashenhurst reported on a uni�ed theory of decomposition of switchingfunctions [2]. The decomposition method proposed by Ashenhurst was essentially thesame as that of Samuel and Biermann, except that it was used to decompose a truth tableof a speci�c Boolean function to be then realized with standard binary gates. Most ofother related work of those times is reported and reprinted in [7].Recently, the Ashenhurst-Curtis approach was substantially improved by research groupsof M. A. Perkowski, T. Luba, and T. D. Ross. In [15], Perkowski et al. report on the de-composition approach for incompletely speci�ed switching functions. Luba [9] proposesa method for the decomposition of multi-valued switching functions in which each multi-valued variable is encoded by a set of Boolean variables. The authors identify the potentialusefulness of function decomposition for machine learning, and Goldman [8] indicates thatthe decomposition approach to switching function design might be termed knowledge dis-covery, since a function not previously foreseen by the users might be discovered. Fromthe viewpoint of machine learning, however, the main drawbacks of existing methods arethat they are mostly limited to Boolean functions and incapable of dealing with noise.Feature discovery has been at large investigated by constructive induction [11]. Perhapsclosest to the function decomposition method are the constructive induction systems thatuse a set of existing attributes and a set of constructive operators to derive new attributes.4



Several such systems are presented in [10, 16, 17].Within machine learning, there are other approaches that are based on problem de-composition, but where the problem is decomposed by the expert and not induced by amachine. A well-known example is structured induction, developed by A. Shapiro [20].His approach is based on a manual decomposition of the problem. For every intermedi-ate concept either a special set of learning examples is used or an expert is consulted tobuild a corresponding decision tree. In comparison with standard decision tree inductiontechniques, Shapiro's approach exhibits about the same classi�cation accuracy with theincreased transparency and lower complexity of the developed models. Michie [12] empha-sizes the important role the structured induction will have in the future development ofmachine learning and lists several real problems that were solved in this way.The work presented here is based on our own decomposition algorithm [23] in which wetook the approach of Curtis [7] and Perkowski [15], and extended it to handle multi-valuedcategorical attributes and functions. Although the algorithm lacks the noise-handlingability and is thus not fully equipped yet for a general machine learning task, it wasdemonstrated to perform well [23] in fairly complex problem domains with up to 15 nominalattributes.3 Decision table decomposition algorithmLet F be a decision table consisting of attribute-value vectors that map the attributesX = fx1; : : : ; xng to the class y, so that y = F (X). A single decomposition step searchesthrough all the partitions of attributes X into a free set A and bound set B, such thatA \ B = ;, A [ B = X, and A and B contain at least one attribute. Let us denote sucha partition with AjB and assume that a partition selection criterion  (AjB) exists thatmeasures the appropriateness of this partition for decomposition (partitions with lower  are more appropriate). The partition with the lowest  is selected and F is decomposed toG and H, so that y = G(A; c) and c = H(B). Provided there exists a complexity measure� for F , G, and H, F is decomposed only if the complexity condition �(F ) > �(G) + �(H)is satis�ed. Several partition selection ( ) and complexity (�) measures are introduced inthe next section.An algorithm that implements the single decomposition step and decomposes a decisiontable F to G and H is in detail described in [23]. Here, we illustrate it informally usingthe decision table in Figure 1. For every partition of attributes, the algorithm constructsa partition matrix with attributes of bound set in columns and of free set in rows. Eachcolumn in the partition matrix denotes the behavior of F for a speci�c combination ofvalues of bound attributes. Same columns can then be represented with the same value ofc, and the number of di�erent columns is equal to the minimal number of values for c to beused for decomposition. In this way, every column is then assigned a value of c, and G and5



H are straightforwardly derived from such annotated partition matrix. For each of threepartitions for our sample decision table F , the partition matrices with the correspondingvalues of c are given in Figure 3.x2 lo lo med med hi hix1 x3 lo hi lo hi lo hilo lo lo lo med lo himed med med med med med hihi hi hi hi hi hi hic 1 1 1 2 1 3
x1 lo lo med med hi hix2 x3 lo hi lo hi lo hilo lo lo med med hi himed lo med med med hi hihi lo hi med hi hi hic 1 2 3 4 5 5x1 lo lo lo med med med hi hi hix3 x2 lo med hi lo med hi lo med hilo lo lo lo med med med hi hi hihi lo med hi med med hi hi hi hic 1 2 3 4 5 5 6 6 6Figure 3: Partition matrices for three di�erent partitions of attributes x1, x2, and x3 ofdecision table in Figure 1.The assignment of values of c for each column is trivial if decision table instancescompletely cover the attribute space. If this is not the case, Wan and Perkowski [21]proposed an approach that treats missing decision table entries as \don't cares". Eachpartition matrix can then have several assignments of values for c. The problem of �ndingthe assignment that uses the fewest values is then equivalent to optimal graph coloring.Graph coloring is an NP-hard problem and the computation time of an exhaustive searchalgorithm is prohibitive even for small graphs. Instead, Wan and Perkowski [21] suggesteda heuristic Color Inuence Method of polynomial complexity and showed that the methodperformed well compared to the optimal algorithm. Although the examples used in thispaper use decision tables that completely cover the attribute space, the complexity andpartition measures introduced apply with no di�erence to incompletely covered cases aswell.The decomposition algorithm examines all the decision tables in the evolving structureand then applies a single decomposition step to the decision table and its partition thatwas evaluated as the most appropriate by  and that satis�es the complexity condition�(F ) > �(G) + �(H). If several partitions are scored equal, the algorithm arbitrarilyselects one among those with the lowest number of elements in the bound set. The processis repeated until no decomposition is found that would satisfy the complexity condition.We illustrate this stepwise decomposition using the CAR domain that is described insection 5. Figure 4 shows a possible evolving hierarchical structure obtained by decom-position. Each consecutive structure is a result of a single decomposition step. Only the6



structure without decision tables is shown. Compared to the original hierarchical model,c2 corresponds to price, c4 to technical characteristics, and c1 to comfort. c3 was notused in the original model.
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Figure 4: Evolving hierarchy discovered by decomposition of the decision table in theCAR domain. Each consecutive structure results from a single-step decomposition of itspredecessor.The overall time complexity of decision table decomposition algorithm is polynomial inthe number of examples, number of attributes, and maximal number of columns in partitionmatrices [24]. As the latter grows exponentially with the number of bound attributes, it isadvantageous to limit the size of the bound set. In the experiments presented in Section 5,however, the problems were su�ciently small to examine all possible bound sets.The above decomposition algorithm was implemented in the C language as a part ofthe system called HINT (Hierarchy INduction Tool) that runs on several UNIX platforms,including HP/UX and SGI Iris [22].4 Partition selection criteria andcomplexity measuresThis section reviews one and introduces two new partition selection criteria  (AjB). Foreach, it also de�nes the complexity measure and corresponding complexity condition. Fur-7



thermore, two overall complexity measures for the hierarchy of decision tables are de�ned,and �nally, a measure for estimating the information content of the hierarchy itself ispresented.4.1 Partition selection criteria4.1.1 Decomposed function cardinality (DFC)This measure was originally proposed by Abu-Mostafa [1] as a general measure of com-plexity and used in decomposition of Boolean functions (see [18]). DFC is based on thecardinality of the function. Given a decision table F (X), DFC-based complexity is de�nedas: �DFC(F ) = jjXjj =Yi jxij; xi 2 X (1)where jxij represents the cardinality of attribute xi, i.e., the number of values it uses.The DFC partition selection criterion for decomposition F (X) = G(A; c) and c = H(B)is then:  DFC(AjB) = �DFC(G) + �DFC(H) = jcj jjAjj+ jjBjj (2)The complexity condition using the above de�nitions is �DFC(F ) > �DFC(G)+�DFC(H),or equivalently jjXjj > jcj jjAjj+ jjBjj.For the decision table in Figure 1 and partition matrices in Figure 3, the partitionselection criteria are:  DFC(x1jx2x3) = 9 + 6 = 15,  DFC(x2jx1x3) = 15 + 6 = 21, and DFC(x3jx1x2) = 12 + 9 = 21. �DFC(F ) is 18. The only partition that satis�es the DFCdecomposition criterion is x1jx2x3.Although its ability to guide the decomposition of Boolean functions has been illus-trated in several references including [18], DFC has been recently criticized by Perkowskiand Grygiel for de�ciencies in handling some classes of functions including multi-outputsymmetric functions [14]. Moreover, we are not aware of any study of the applicability ofDFC measures for decomposition of decision tables other than Boolean.4.1.2 Information content of decision tables (DTIC)This measure is based on the idea of Biermann et al. [3] who counted the number of di�erentfunctions that can be represented by a given signature table schema, i.e., a tree structureof concepts whose cardinality is prede�ned.A decision table y = F (X) can represent jyjjjXjj di�erent functions and this numbercorresponds to the cardinality of the function. The information such decision table containsis then equal to �DTIC(F ) = jjXjj log2 jyj bits (3)Note that for binary functions where jyj = 2, this is equal to �DFC(F ).8



When decomposing y = F (X) to y = G(A; c) and c = H(B), we assign a single valuefrom the set f1; 2; : : : ; jcjg to each of the columns of partition matrix AjB. But, each of thevalues have to be assigned to at least one instance. In other words, from jyjjjBjj di�erentfunctions we have to subtract all those that use less than jcj values. The number of di�erentfunctions with exactly jcj possible values is therefore N(jcj), where N is de�ned as:N(x) = xjjBjj � x�1Xi=1  xi!N(i)N(1) = 1 (4)Furthermore, since the actual label (value of c) of the column is unimportant, there arejcj! such equivalent assignments and therefore jcj! equivalent decision tables H. H thereforeuniquely represents N(jcj)=jcj! functions with exactly jcj values, and the correspondinginformation content is: �0DTIC(H) = log2N(jcj)� log2(jcj!) bits (5)The DTIC partition selection criterion prefers the decompositions with simple decisiontables G and H and therefore low information content, so that: DTIC(AjB) = �DTIC(G) + �0DTIC(H) (6)The DTIC-based complexity condition is:�DTIC(F ) > �DTIC(G) + �0DTIC(H) (7)For the decision table in Figure 1, DTIC criteria evaluate to:  DTIC(x1jx2x3) = 20:76 bits, DTIC(x2jx1x3) = 27:68 bits, and  DTIC(x3jx1x2) = 30:39 bits. �DTIC(F ) is 28:53 bits, and,in contrast to DFC, two partitions qualify for decomposition. Among these, as with DFC,x1jx2x3 has the lowest �DTIC.4.1.3 Column multiplicity (CM)This is the simplest complexity measure introduced in this paper and equals to the cardi-nality of c (jcj), also referred to by Ashenhurst and Curtis as column multiplicity numberof partition matrix [2, 7]. The idea for this measure came from practical experience withDEX decision support system [5]. There, the hierarchical system of decision tables is con-structed manually and it has been found that decision tables with small number of outputvalues are easier to construct and interpret. Formally, CM(AjB) = jcj (8)As a CM complexity condition a bound on jcj might be used, but such bound wouldhave to be domain dependent. Instead, we use DTIC complexity condition when usingCM.For our example and similarly to DFC and DTIC, CM also selects the partition x1jx2x3with  CM = 3. Other two partitions have  CM(x2jx1x3) = 5 and  CM(x3jx1x2) = 6.9



4.2 Complexity estimation for decision table hierarchyUsing DFC, the overall complexity of decision tables in the hierarchical discovered structureis the sum of �DFC for each decision table.For DTIC, the complexity estimation again uses the sum of DTIC complexities of eachof the decision tables, with the distinction that �DTIC is used for the decision table at theroot of the hierarchy and �0DTIC for all other decision tables.Note that the so-obtained DTIC complexity estimation is just an approximation of theexact complexity that would take into account the actual number of functions representableby a multi-level hierarchy. This is because DTIC is designed for a single table only and doesnot take into account the reducibility [3] that occurs in multi-level hierarchies and e�ectivelydecreases the number of representable functions. Therefore, the estimated overall DTIC isthe upper bound of the actual complexity.4.3 Structure information content (SIC)Using DTIC we can assess both the amount of information contained in the original decisiontable and contained in the resulting decision tables that were constructed by decomposition.The di�erence of the two is the information contained in the hierarchy itself. We call thismeasure structure information content (SIC). The more informative is the hierarchy, theoverall less complex are the resulting decision tables.5 Experimental evaluationTo evaluate the proposed partition selection and complexity measures, we used three ar-ti�cial and three real-world domains that were selected so that the hierarchical structurewas either known in advance or could have been easily anticipated. For each domain, thedecomposition aimed to discover this structure. For evaluation, we qualitatively assess thesimilarity of the two structures and quantitatively compare them by using the proposedcomplexity measures.Each of six domains is represented with the initial decision table with instances thatcompletely cover the attribute space. The experiments could as well be done with sparserdecision tables (see [23]), but in these experiments we wanted to concentrate on complexityissues rather than generalization. Namely, the proposed partition measures depend onlyon cardinalities of attributes and concepts, and not on the actual number of instances indecision tables. XXXXXXX The results of decompositions are shown as hierarchy graphs,where, unless otherwise noted, the labels of intermediate concepts indicate the order inwhich they were discovered by DTIC and DFC-guided decompositions.
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5.1 Boolean function y = (x1 OR x2) AND x3 AND (x4 XOR x5)For this case, the initial decision table has 25 = 32 instances, �DFC = 32 and �DTIC = 32bits. While decomposition with DTIC and CM discovered the anticipated structure, theDFC-guided decomposition terminated too soon because the complexity condition didnot allow to decompose the decision tables any further (see Figure 5). Note that overallDFC is the same for DTIC, CM, and DFC discovered decision tables, while the structureinformation content is higher for those of DTIC and CM. The decision tables (not shownin the �gure) where checked for interpretability and were found to represent the expectedfunctions.
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DFC = 16DTIC = 12.42 bitsSIC = 19.58 bits ............................................................................................................................................................ ......................................................... ......................................y/2c3/2c1/2 x4/2 x5/2c2/2x3/2x1/2Figure 5: Decomposition of decision table representing the function y = (x1 OR x2) ANDx3 AND (x4 XOR x5) guided by DTIC and CM (left), and DFC (right).5.2 Palindrome y = PAL(x1; x2; x3; x4; x5; x6)This function returns 1 if the string x1 : : : x6 is a palindrome and returns 0 otherwise,i.e., y = (x1 = x6) AND (x2 = x5) AND (x3 = x4). In the �rst experiment, the Booleanattributes x1 : : : x6 were used. The initial decision table has �DFC = 64 and �DTIC =64 bits. Again, the decomposition with DFC stops sooner and the domain favors thedecomposition using CM and DTIC. However, for both this and previous case a DFC-guided decomposition could discover the expected structure if the corresponding complexitycondition would be changed to �DFC(F ) � �DFC(G) + �DFC(H). Using this condition, thedecomposition can proceed even if the joint complexity of G and H is equal to the one ofF . The same experiment was repeated with three-valued attributes x1 : : : x6. This time,however, all three criteria lead to the same and anticipated hierarchical structure, whichis again the same as the left one in Figure 6.5.3 Function y = MIN(x1;AVG(x2;MAX(x3; x4); x5))The ordinal attributes x1 : : : x5 can take values 1,2, and 3. While MIN and MAX havestandard interpretation, AVG computes the average of its arguments and rounds it to the11
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Figure 6: Decomposition of decision table representing the palindrome function guided byDTIC and CM (left), and DFC (right).closest integer. The initial decision table has �DFC = 243 and �DTIC = 385:15 bits. Theanticipated and discovered structures are shown in Figure 7. Quite surprisingly, in all threecases the decomposition yields a structure with higher structure information content thanthat of expected structure by introducing an additional �ve-valued intermediate concept.If this is removed, the discovered structure and decision tables would be the same asanticipated.It is also interesting to note that the structure discovered using CM on one side and DFCor DTIC on the other are di�erent but of the same complexity. This example illustrates thatfor a speci�c domain there may exist several optimal structures with regard to complexity.......................................................... ...................................... ............................................................................... ......................................................... ....................................................................................................................................................................................................................................................................................... ......................................................... ......................................
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5.4 DEX models CAR, EMPLOY, and NURSERYAn area where concept hierarchies have been used extensively is decision support. There,the problem is to select an option from a set of given options so that it best satis�esthe aims or goals of the decision maker. DEX [5] is a multi-attribute decision supportsystem that has been extensively used to solve realistic decision making problems. DEXuses categorical attributes and expects the structure and the functions to be given bythe expert. The formalism used to describe the resulting model and its interpretation isessentially the same as those derived through the decomposition process described in thispaper. This makes models developed by DEX an ideal benchmark for the evaluation ofdecision table decomposition. In this paper, we use the following three DEX models:CAR: A model for evaluating cars based on their price and technical characteristics. Thissimple model was developed for educational purposes and is described in [4].EMPLOY: This is a simpli�ed version of the models that were developed with DEX fora common problem of personnel management: selecting the best candidate for aparticular job. While the realistic models that were practically used in several mid- tolarge-size companies in Ljubljana and Sarajevo consisted of more than 40 attributes,the simpli�ed version uses only 7 attributes and 3 intermediate concepts and waspresented in [6].NURSERY: This model was developed in 1985 [13] to rank applications for nursery schools.It was used during several years when there was excessive enrollment to these schoolsin Ljubljana, and the rejected applications frequently needed an objective explana-tion. The �nal decision depended on three subproblems: (1) occupation of parentsand child's nursery, (2) family structure and �nancial standing, and (3) social andhealth picture of the family.The goal of this experiment was to reconstruct these models from examples. Thelearning examples were derived from the original models, where for all combinations ofinput attributes the class was determined by a corresponding original model.The discovered hierarchies are given in Figures 8, 9, and 10. In all cases, DFC, DTIC,and CM-guided decomposition found the same hierarchical structures and correspondingdecision tables. Using DFC and DTIC, the order in which new intermediate concepts werefound was the same but di�erent to the one when CM was used. For example, in EMPLOY,DFC and DTIC-guided decomposition discovered c1 �rst, while, using CM, this conceptwas discovered as the last one.All the discovered hierarchies have higher information content than the original ones.Also, the overall complexity of decision tables is lower according to both DFC and DTIC.Most importantly, the discovered structures are very similar to the original ones. In fact,if c3 would be removed from CAR (making c4 directly dependent on lugboot, doors, and13



persons), the two structures would be the same. The same applies to EMPLOY andNURSERY if c1 and c2 are removed, respectively. In other words, the decompositionfound the same structures as the original ones but additionally decomposed the decisiontables for comfort (CAR), employ (EMPLOY), and struct+finan (NURSERY) and in thisway obtained less complex decision tables.The derived decision tables were compared to the original ones and found to be thesame but in the names used for instance labels (decomposition uses numbers while originaldecision tables use meaningful names). The exception are decision tables for tech andcomfort in the CAR domain, where the decomposition found redundant values of comfort.If these values were removed from the original model, the corresponding decision tableswould have been again the same.
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SIC = 3348.10 bits

safety/3lugboot/3 persons/3doors/4
car/4

safety/3c4/3c1/4c3/4lugboot/3 persons/3doors/4
c2/4buying/4buying/4 maint/4

DTIC = 126.75 bitsDFC = 77SIC = 3329.25 bits DTIC = 107.90 bitsDFC = 65Figure 8: The original concept hierarchy of CAR (left) and the decompositions based onCM, DFC and DTIC (right).
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employ/4per char/3 age/5educat/3.....................................................................................................................................
degree/5

DFC = 85
for lang/3 exper/5intel/4work app/3comm/4 manag/3 intel/4

employ/4
age/5exper/5

c3/3c4/3c1/4
degree/5for lang/3c5/3 c2/3manag/3comm/4

age exp/3 DTIC = 145 bitsSIC = 35855 bitsDFC = 91

SIC = 35872 bitsDTIC = 128 bitsFigure 9: The original concept hierarchy of EMPLOY (top) compared to the hierarchydiscovered by CM, DFC, and DTIC-guided decomposition (bottom).
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soc+health/3health/3social/3struct+finan/3finance/2 housing/3
nursery/5employ/4parents/3has nurs/5

DFC = 94SIC = 29922.99 bitsDTIC = 169.20 bits

health/3social/3c1/3has nurs/5form/4children/4 finance/2housing/3c2/3
nursery/5

parents/3 c3/3
c5/3

Figure 10: The original (left) and discovered concept hierarchy using CM, DFC and DTICcriteria (right) for NURSERY. 15



6 ConclusionThe paper investigates the appropriateness of three partition selection for decision tabledecomposition: decision table information content (DTIC) and column multiplicity (CM)introduced in this paper and decomposed function cardinality (DFC) that has already beenused primarily for the decomposition of Boolean functions.The experimental evaluation exposes the de�ciency of DFC when decomposing a de-cision table that expresses a Boolean function. This may be alleviated by relaxing theDFC complexity condition. Furthermore, in more complex domains with multi-valued at-tributes, the decomposition guided by any of the proposed criteria discovered equal orbetter hierarchical structures than expected with respect to the complexity of decisiontables and informativity of the hierarchical structure. The order under which the interme-diate concepts were discovered was the same for DFC and DTIC, but di�erent for CM. Aqualitative evaluation of derived structures reveals that in general the discovered decisiontables represent meaningful and interpretable concepts.Although less complex in de�nition and easier to compute, DFC and CM both standwell in comparison with more complex partition selection measure DTIC. Also comparableis the utility of DFC and DTIC to assess the complexity of the original and derived decisiontables, although we have shown that DFC-based measure performed worse on two Booleanfunctions. Overall, while DFC and DTIC have better theoretical foundations than anintuitive partition selection measure CM, the experimental evaluation does not indicatethat any of these is to be strictly preferred over the other.The decision table decomposition was primarily developed for switching circiut deasign.However, experiments in non-trivial domains like DEX's strongly encourage further re-search and development of this method for machine learning and knowledge discovery. Tobecome a general machine learning tool, the method will have to be extended so as tohandle continuous attributes and deal with noise in learning examples.
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