
Constructing Intermediate Concepts byDecomposition of Real FunctionsJanez Dem�sar1, Bla�z Zupan2, Marko Bohanec2, Ivan Bratko1;21 Faculty of Computer and Information Sciences, 1000 Ljubljana, Sloveniafjanez.demsar, ivan.bratkog@fri.uni-lj.si2 Jozef Stefan Institute, 1000 Ljubljana, Sloveniafblaz.zupan, marko.bohanecg@ijs.siAbstract. In learning from examples it is often useful to expand an attribute-vectorrepresentation by intermediate concepts. The usual advantage of such structuring of thelearning problem is that it makes the learning easier and improves the comprehensibilityof induced descriptions. In this paper, we develop a technique for discovering usefulintermediate concepts when both the class and the attributes are real-valued. Thetechnique is based on a decomposition method originally developed for the design ofswitching circuits and recently extended to handle incompletely speci�ed multi-valuedfunctions. It was also applied to machine learning tasks. In this paper, we introducemodi�cations, needed to decompose real functions and to present them in symbolicform. The method is evaluated on a number of test functions. The results show that themethod correctly decomposes fairly complex functions. The decomposition hierarchydoes not depend on a given repertoir of basic functions (background knowledge).1 IntroductionA learning problem can often be formulated as the problem of reconstructing afunction f of a number of arguments x = x1; x2; : : : from a given set of examplepoints f(xj). In the usual machine learning terminology, x1; x2; : : : are calledattributes, and f is called the class. The usual induction algorithms reconstructf by considering all the attributes at the same time. However, often it is bene�cialto �nd useful \intermediate" concepts which would allow a decomposition of thelearning problem. Hopefully, f would be easier to express in terms of suitableintermediate concepts, and in turn, these would be easy to express in terms of theoriginal attributes or further intermediate concepts. It is generally believed thatsuch a structuring of the learning domain would also lead to more comprehensibledescription of the learned concepts.In this paper, we develop a technique for discovering useful intermediateconcepts when both the class and the attributes are real-valued. It is basedon function decomposition that results in a hierarchy of intermediate functionswhich can be illustrated by a kind of data
ow diagram (Fig. 1). The techniqueworks bottom-up by selecting a subset of the original attributes, say fx2; x3g, andconstructing a function �1 so that it would succesfully replace the two attributesx2; x3. As a result of this step, a new attribute �1 is constructed and the processrecursively combines the attribute set fx1; �1; x4; x5g.

mx1 mx2 mx3 mx4 mx5���3��� 6@@I QQQkf6
Original \
at" function mx2 mx3��� @@Imx1 m�1��� @@I mx4 mx5��� @@Im�2 m�3����* HHHHYm�46

Decomposed functionFig. 1. \Flat" and decomposed function
Functional decomposition is a method which, given a tabular representationof a function, discovers a hierarchy of appropriate subfunctions and variables.The output of the algorithm is a decomposition tree or, generally, a directedacyclic graph with input variables as leaves and subfunctions as internal nodes.A decomposition algorithm was originally developed in late 1940's and 1950's byAshenhurst [1] and Curtis [2] to be used for decomposition of boolean functionsin switching circuits design. However, the method was rarely used in practice,mostly because of its computational intractability. Much later, the interest inthe algorithm has been renewed. Perkowski et al. [5] improved the originalalgorithm to handle incompletely speci�ed functions, and Luba [4] proposed todecompose multi-valued functions by representing a multi-valued variable by aset of Boolean variables. Zupan and Bohanec [7] developed an algorithm thatinduces a hierarchy of multi-valued variables without the need to represent themas Boolean. Also, their work shows that the algorithm is applicable in fairlycomplex machine learning tasks.Not much work has been done to extend the algorithm to decompositionof real-valued functions. Ross [6] discusses the possible use of the method forfunctions with real valued outputs and inputs but he does not propose anyalgorithm for general use.In this paper, we extended the algorithm to handle continuous variables andfunctions. The proposed method not only discovers a suitable function hierarchybut enables symbolic representation of the discovered function, using a prede-�ned set of basic functions, like sin; cos; exp or ln :The paper is organized as follows. Section 2 introduces the real functiondecomposition method, which is experimentally evaluated in Section 3. Section4 concludes the paper and outlines possible directions of further work.

2 MethodThis section �rst introduces the basic algorithm for functional decomposition ofnominal functions. Then, it focuses on the changes of this algorithm that areneeded to perform the decomposition of real function.2.1 The Basic Decomposition AlgorithmThe input for algorithms that are based on Curtis' function decomposition al-gorithm [2] is a function f(X), \sampled" in a �nite number of points, whereX is an argument vector. The function is presented as a table of attribute-valuevectors, each consisting of values of input variables xk and a function valuezk = f(xk). In the usual machine learning terminology, each row of this tablecorresponds to an example. The basic step of the decomposition consists of twosubsteps:{ �nd a suitable partition of the set of input variables (X) into \free" (A) and\bound" (B) sets, A [B = X ,{ �nd appropriate functions F and � such that f(X) = F (A; �(B)).The basic step is then recursively repeated on functions F and �.The partition can be selected using heuristic methods [5]. Alternative ap-proach is to investigate all possible partitions and choose the one that inducesthe best functions � and F according to some criterion. Often, we speed up thepartition selection by examining only disjunctive splits, A \ B = ;, and/or de-compositions with only two bound variables, jBj = 2. However, there are caseswhen such restrictions prevent the algorithm from discovering an appropriatefunction hierarchy or even from discovering any hierarchy at all.Function � is not uniquely de�ned by the set of bound variables. The algo-rithm �rst determines which combinations of values of input variables from Bmust not yield the same value of �. It does so by �nding all pairs of examplesf(xj) = zj , f(xk) = zk with pairwise equal values of free variables, aj = ak, anddi�erent function value, zj 6= zk. The intermediate function � must have di�er-ent values for bj and bk, otherwise there would not exist any function F suchthat F (aj ; �(bj)) = zj and F (ak; �(bk)) = zk. This fact can be easily proved bycontradiction; if aj = ak and we set �(bj) = �(bk) then if F existed, it wouldobviously have the same value for both examples, F (aj ; �(bj)) = F (ak; �(bk)),which leads to zj = zk.Pairs (bj ;bk) that must not give the same value of � are called incompati-ble. The incompatibility relation is presented in the form of the incompatibilitygraph. By coloring the graph (or by �nding the maximum clique on its comple-ment, the compatibility graph), possible inputs for �, vectors bj, are divided intoM subsets; members of the same subset Mi yield the same value �(bj) = mi.The intermediate function � therefore maps each bj to the corresponding setMi. The value of induced variable mi is added to each rule to replace variablesfrom B nA.

For purposes of switching circuits design, the algorithm was �rst used onBoolean functions. An extension of this approach to handle nominal functionswith more than two di�erent output values is presented in [7].2.2 Algorithm for Real-Function DecompositionThe basis of our method is the decomposition algorithm described in the previoussection, limited to disjunctive splits, A \ B = ;, with two bound variables,jBj = 2. When adapting it for decomposition of real functions, several problemshave to be dealt with.First, since each variable generally has an in�nite domain, it is practicallyimpossible that the learning set contains any instances with pairwise equal valuesof free variables which are needed to show the incompatibilities of bound values.The next problem is the interpretation of intermediate function �: the originalalgorithm de�nes values of � to serve as indices to sets Mi. The function � isnominal rather than ordinal and since the algorithm was developed for the designof switching circuits where the interpretation is unnecessary, it does not intendto present the discovered function in the symbolic form, i.e. to recognize it as, forexample, an and function. Instead, functions � and F are left in tabular form.As shown in [7], the interpretation of a discrete function � can be done manuallyprovided that its input and output variables have only small number of possiblevalues. When using the algorithm to learn the function of real values, rule tablesthat are constructed by the original algorithm are normally very large, and thesearch for a symbolical form of the intermediate functions cannot be left to theexpert.Interpretation of an intermediate function is also important because it ensuresthat the learned function is not de�ned only on points that appear in the ruletable.Discretization of examples. One possible way to generate incompatible pairsis to discretize the examples. After the discretization, some pairs of examplesmight have pairwise equal values of all the arguments. A straightforward dis-cretization of function values may assign di�erent discrete function values tosuch pairs. This way, the function would become ambiguous. To avoid this, thefunction value is \granulized": all pairs of examples with the same discretizedvalues of variables x0j = x0k are examined and the maximal di�erence of theirfunction values g = maxj;k jf(xj)�f(xk)j is used for the size of the grain. Func-tion values zj1 and zj2 are considered di�erent if jzj1 � zj2 j > g. This approachworks optimally for functions f with a constant gradient over the whole de�-nition area. If this is not the case, the discretized learning examples accuratelydescribe the areas with larger gradient, but underrepresents all other areas. Theconsequences and solutions of the problem shall be discussed later.A crucial problem of discretization is determining the most suitable number ofintervals. Coarse discretization can signi�cantly lower the accuracy of constantsin derived functions or even cause an incorrect decomposition. On the other

hand, a �ner discretization results in a sparser coverage of the domain of thefunction. As a consequence, the incompatibility graph has low connectivity andbears almost no information on intermediate function � since there exist manydi�erent optimal colorings, yielding many di�erent functions.The interpretation of the intermediate function. The result of coloringthe incompatibility graph is a division of the bound variables' space into theareasMi with points which will yield the same value of �, i.e. Mi = f(xi;j ; yi;j) :�(xi;j ; yi;j) = cig. In other words, the coloring proposes contour lines { or,because of discretization, contour strips { of the real function �. Unfortunately,it provides neither the numerical values ci nor the di�erence between functionvalues on neighbouring contour strips (the gradient of �). The symbolic form of� has to be obtained from the shape of the strips.First, consider a linear function �. Its contour strips are straight lines. Ifwe plot a colored graph of a discretized linear function in a coordinate system,contour strips are visible as strips of the same color. The function � that we arelooking for is of the form �(x; y) = k1(ax+ y) + k2 (1)Coe�cients k1 and k2 cannot be determined at this stage since they do not haveany impact on the shape of the strips. They should be determined in furthersteps of decomposition and incorporated in the intermediate function at theparent node.The coe�cient a is derived from the slope of the strips. Ideally, all the points(xi;j ; yi;j) 2Mi would lie on the same line ax+ y = ci. Because of discretizationand, possibly, noise, the points are actually scattered around this line. As themeasure of �t we choose the sum of squared Euclidean distances from the line,Ei(a; ci) = niXj=1 �axi;j + yi;j � cipa2 + 1 �2 (2)with (xi;j ; yi;j) 2 Mi and ni = jMij. To obtain the optimal a, the total sum ofsquared distances is minimized using the partial derivative@E(a; c)@a = @PMi=1 Ei(a; ci)@a = 0 (3)Solution of this equation for a gives the optimal value of a. The quality of theapproximation can be measured by Pearson's correlation coe�cient r which, inits original form r = Pj(xj � x)(yj � y)qPj(xj � x)2qPj(yj � y)2 (4)

measures the linear correlation between variables xj and yj . Since we deal withmore than one group of points, the Pearson's coe�cient must be generalized torg = Pi;j(xi;j � xi)(yi;j � yi)qPi;j(xi;j � xi)2qPi;j(yi;j � yi)2 (5)where xi = 1ni Pnij=1 xi;j and yi = 1ni Pnij=1 yi;j . In this form, the coe�cient isstill normalized to be between -1 and 1, with jrg j = 1 meaning the maximumlinearity of the strips and jrg j = 0 no linearity.Other, non-linear functions are sought by transformation to a linear function.For example, contour strips of �(x; y) = xay are same as those of �(x; y) =a ln(x) + ln(y) or �(x; y) = aX + Y where X = ln(x) and Y = ln(y). Ouralgorithm searches for all the functions of the form �(x; y) = ag(x) + h(y) and�(x; y) = [g(x)]a h(y) by using transformations xi;j ! g(xi;j), yi;j ! h(yi;j) andxi;j ! a ln g(xi;j), yi;j ! lnh(yi;j), respectively. Functions g and h are from aprede�ned set of basic functions, for example fId; sin; exp; lng. All the possiblefunctions are evaluated and the one with the greatest jrg j is chosen.The root of the decomposition tree. The decomposition process stops whenthe free set of attributes is empty. The values of the decomposed function F arenot necessarily equal to the values of the original function f . However, for ananalyticaly expressible function f , if the algorithm �nds the correct decomposi-tion and there is no noise, the method guarantees that the value of f(x) can bereconstructed from F (x). Our program tries to �nd a function g and constantsa and n, such that f(x) = ag(F (x)) + n. The function g is from the same set ofbasic functions as mentioned above. For each function, a and n are found by theclassical least-squares method and the di�erence between f(x) and ag(F (x))+nis measured by corrected relative error [3]. The most accurate function is addedto the decomposition tree as the root's parent.Discarding invalid contour strips. Besides the noise in the data, the algo-rithm also encounters the noise caused by discretization of variables and gran-ulation of function value. The noise of variables is partially reduced by robuststatistic methods used for deriving �. A more serious problem occurs as a con-sequence of the granulation of function value which a�ects the graph coloring,especially when function's gradient strongly changes across the de�nition area.Areas with small gradient are covered with much wider contour strips than areaswith larger gradient; in some cases they also di�er in shape.A simple and e�ective method that can overcome this problem calculatesPearson's r for each strip and discards all the strips with jrj signi�cantly lowerthan the average jrj.The problem of similar functions. Another problem that the algorithm hasto cope with is the problem of distinguishing between similar functions. For ex-ample, when the width of discretization interval is 0.1 and jxj < 0:75, functions

x and sin(x) are indistinguishable. One of possible solutions of this problem isto use non-equidistant discretization, which is, however, di�cult to perform. Adi�erent solution is to introduce the cost for each function used. This way, theprogram is given background knowledge of which functions are expected andwhich are less likely to occur. The cost of the function is subtracted from theabsolute value of the correlation coe�cient when comparing di�erent candidatesfor function �. Even more complex background knowledge can be given by for-bidding or penalizing the function within certain contexts. For example, whenobserving some physical phenomena, we shall allow functions sin and ln butstrongly penalize combinations sin+ ln and sin � ln.The third and the safest way to deal with similar functions is to involve anexpert which intervenes when the algorithm has to decide between functionswith a similar correlation coe�cient.2.3 Complexity of the AlgorithmA single step of decomposition consists of discretizing the attribute (time com-plexity is O(N)), sorting the rule table (O(N logN)), deriving the incompatibil-ity graph (O(Nk)), coloring it (O(k2)) and interpreting the coloring (O(Ns2)),where N is the number of examples. k is the number of combinations of dis-cretized bound variables values, which is at most equal to the product of numberof discretization intervals. s is the number of basic functions. To select a parti-tion when decomposing a function of l variables, l(l � 1)=2 possible partitionsmust be considered, which gives the complexity ofO �l2(N +N logN +Nk + k2 +Ns2)�Since the decomposition algorithm induces a binary tree, the step above mustbe repeated l� 1 times, therefore the total complexity isO �Pi=li=2 i2(N +N logN +Nk +Ns2 + k2)�= O �l3(N +N logN +Nk +Nk2 +Ns2)�Empirical tests show that sorting is far slower than other operations even forrelatively small number of examples, so we can estimate the time complexity asO �l3N logN�.This result shows the main advantage of this method in comparison withsome existing methods of function discovery, such as GoldHorn [3], which per-forms an exhaustive search over the space of functions it can represent. We cannote that GoldHorn's complexity increases exponentially with the depth of func-tion and number of subfunctions but linearly in the number of examples, whileour algorithm's complexity is practically independent of the number of basicfunctions.

3 Experimental EvaluationThe algorithm was tested on several functions specially chosen to explore itsadvantages and drawbacks. All the functions were within the program's searchspace, i.e. their hierarchical decomposition did not require any basic functionsthat were unknown to the program.f(x; y) = x+ 2y + 3. This simple linear function is used to roughly measurethe number of examples that the algorithm needs to discover the correct form ofthe function and derive accurate coe�cients. The program was run 10 times foreach number of randomly chosen examples for the function (x; y 2 [0; 10]). Theresults are shown in Table 1.#examples correct � a �a20 2 2.041 0.16425 3 1.862 0.16030 6 1.980 0.13240 7 2.024 0.06450 10 2.032 0.044100 10 2.049 0.032500 10 2.053 0.0161000 10 2.000 0.014Table 1. Decomposing function f(x; y) = x+2y+ 3: Accuracy and correctness of theform of the discovered functionf(x; y; z) = 2:5xy + 0:5z. This function illustrates some di�culties due toequidistant discretization and granulation. The program is expected to decom-pose it as shown in Figure 2.
mx my%%% eee�1(x; y) = xy mzeee%%%�2(z; �1) = 0:2z + �1F (�2) = 2:5�2

Fig. 2. Function f(x; y; z) = 2:5xy + 0:5z: The decomposition tree

If x; y; z 2 [0; 10], the gradient of �1 = xy is greater for larger than forsmaller x and y. Since granulation is the same over the whole area, the areawith the low function's gradient is colored as a wide strip (the left-bottom stripon the Figure 3). Its shape clearly di�ers from other areas. It cannot be used todetermine the slope of the (linearized) functions so the program, after comparingits r with the average, chooses to ignore it.

0.0������� 10.0������
0.0�������

10.0������

x

y

Fig. 3. Function f(x; y; z) = 2:5xy + 0:5z: Contour strips of the �rst step of the de-composition when decomposing by B = fx; yg.On the other hand, other strips do not adequately represent the goal functionand the Table 2 shows that there are other functions with almost equal rg coe�-cient. The reason for high ranking of functions of type ln+Id and Id+ Id is thatthe most representative contour strips are merged in a single strip and ignored,while the rest of strips are already close to linear without any transformation.After the �rst step of the decomposition is made, �1 is introduced that di-rectly depends on x and y and has values between 0 and 100, so 2:5�1 2 [0; 250].The other remaining variable z is between 0 and 10, 0:5z 2 [0; 5], hence it is neg-ligible in comparison with �1. If both variables are discretized using the samenumber of intervals, the algorithm discovers functions like 0:001z + �1 and themeasure of quality rg is very low (< 0:07). If we (manually) increase the numberof intervals for z, the algorithm detects its role in the function and chooses thecorrect type of intermediate function (see Table 3).

function rgx1:00y 0.95055:09 ln(x) + y 0.93680:19x+ ln(y) 0.92761:00x+ y 0.8918ln(x)5:92ey 0.8348...Table 2. Function f(x; y; z) = 2:5xy + 0:5z: Candidates for intermediate function �1when decomposing by B = fx; yg function rg0:19z + �1 0.85130:54 ln(z) + �1 0.7254z0:54e�1 0.7254...Table 3. Function f(x; y; z) = 2:5xy + 0:5z: Candidates for intermediate function �2when decomposing by B = fxy; zgf(x; y) = xy. The ordinary product xy with x; y 2 [0; 1] is an example of afunction where discretization almost causes the wrong decomposition due to thesimilarity of functions, as shown in Table 4.function rgxy 0.9712sin1:08(x)y 0.9702x0:91 sin(y) 0.9701sin(x)0:99 sin(y) 0.9688...Table 4. Function f(x; y) = xy: Candidates for intermediate function �.The quantitative error of wrong decision would be small since sin(x) � x butan expert may be unable to interpret the resulting decomposition.

f(x; y;w; z) = x+ sin(y + ln(wz)). The program expresses the discoveredfunction in a variety of di�erent ways, which can presumably help an expert tointerpret the meaning of derived functions.Function f(x; y; w; z) = x+sin(y+ln(wz)) can be rewritten as f(x; y; w; z) =x + sin(y + lnw + ln z)). In the �rst step, some of the best ranking candidatesfor �1 are as shown in Table 5. Besides functions �1(w; z) = wz, �1(y; w) =y + ln(w) and �1(y; z) = y + ln(z), the program also proposes �1(y; z) = eyzand �1(y; w) = eyw. These can be used later in �2(y; w; z) = ln(�1(y; z)) +ln(w) or �2(y; w; z) = ln(�1(y; w)) + ln(z), respectively, or even in �2(y; w; z) =w�1(y; z) or �2(y; w; z) = z�1(y; w) to write the function as f(x; y; w; z) =x + sin(ln(wyey)). The last form is, however, not in algorithm's search space ifthe set of basic functions does not contain the composed function sin � ln.function rgw0:97z 0.7901(0:99y + ln(z)) 0.7630e0:99yz 0.76300:99y + ln(w) 0.6640e0:99yw 0.6640...Table 5. Function f(x; y; w; z) = x+ sin(y + ln(wz)): Candidates for an intermediatefunction � when decomposing by B = fx; yg.
f(x; y;w; z) = x+ln(y+ln(w+z)). This experiment shows the algorithm'sability to decompose complex nested functions. It also proves that the number ofgraph's colors and rg are not necessarily correlated and that the latter is muchmore accurate criterion for selecting the appropriate partition. Table 6 lists allpossible partitions, number of colors, the best intermediate functions, and theirrg for the �rst step of decomposition.Among three possible partitions for the next step, the algorithm again choosesthe right one, A = fxg; B = fy; �1g and �2 = y + ln(�1), as shown in Table 7.In the last step, the only possible partition is A = fg, B = fx; �2g and theprogram correctly interprets the colored graph as �3 = 0:98x+ln(�2). Thus, thediscovered function is 0:98x+ ln(1:09y + ln(1:02w + z)).f(x; y) = sin(x + y) . For x; y 2 [0; 7], this function is non-injective andthe program is unable to decompose it, as shown in Table 8. The reason is inrepeating colors of contour strips, as already explained and shown on Figure 4.

bound variables # colors function rgw; z 19 1:02w + z 0.8673y;w 14 2:27y + ln(w) 0.7924y; z 13 11:17y + z 0.7794x; z 19 32:09x+ z 0.7127x;w 11 28:63x+ w 0.6935x; y 6 1:13ex + sin(y) 0.5134Table 6. Function f(x; y; w; z) = x+ ln(y+ ln(w+ z)): Possible partitions, number ofcolors, the best intermediate function and its linearity for the �rst step of decomposi-tion. bound variables # colors function rgy; �1 26 1:09y + ln(�1) 0.9317x; �1 19 2:72x+ ln(�1) 0.9030x; y 17 2:22x + sin(y) 0.8898Table 7. Function f(x; y; w; z) = x+ln(y+ln(w+z)): The second step of decompositionwith �1 = w + z.4 ConclusionThe experiments presented in this paper indicate that the proposed method isable to correctly decompose relatively complex functions and can be successfullyused to discover a symbolic representation of a tabulated function. On the otherhand, the accuracy of constants appearing in the symbolic representation is lowdue to the discrete nature of the method. However, as described in [3], the accu-racy can be further improved by the simplex method. Since discretization andgranulation also cause other di�culties, like indistinguishable similar functionsand ignoring of variables with small impacts on the value of the function, futurefunction rg0:00ex + sin(y) 0.28690:26 ln(x) + cos(y) 0.2674�3:52 cos(x) + ln(y) 0.26562139:49 sin(x) + ey 0.24550:05x+ cos(y) 0.2389...Table 8. Function f(x; y) = sin(x+ y): Candidates for an intermediate function �.

0.0������� 7.0�������
0.0�������

7.0�������

x

y

Fig. 4. Function f(x; y; z) = f(x; y) = sin(x+ y): Contour strips.research should address the design of method that avoids the use of discretestructures.An interesting question is what happens if the algorithm misses the rightintermediate function, for example, if it chooses �(x; y) = x sin(y) or �(x; y) =x + y instead of �(x; y) = xy. If the wrong decision is made because of thesimilarity of functions in the de�nition area (like Id and sin), the mistake shouldnot a�ect the upper layers of decomposition tree. When the wrong decision is aconsequence of discarding some contour strips, our decomposition can go astraycompletely. The algorithm should therefore be improved not to rely on localdecisions but to perform a beam search, where several candidate intermediatefunctions are chosen and later discarded if they show to be unusable.Classical coloring algorithms are appropriate for graphs with vertices thatcorrespond to nominal values. If they are used on ordinal values, they obviouslyignore the information about the position of vertices in the space of bound at-tributes. In our case, ignoring the location of vertices may cause the discrepancybetween coloring and the next phase of the process, the interpretation of colors.Classical graph coloring heuristics that try to minimize the number of colorsused are suitable for the decomposition of nominal functions, where the numberof colors in
uences the cardinality of the intermediate function and the criterion,used to choose the partition, normally chooses the partition with less colors. Fordecomposition of ordinal and real functions, the functions and partitions areevaluated using quite a di�erent criterion, the rg coe�cient, which in some cases

even encourages non-optimal colorings. Hence, the standard coloring methodshould be replaced by an alternative method that tries to make the areas ofsame color continuous and linear, thus optimizing rg rather than the number ofcolors.Non-injective functions produce an incompatibility graph in which, after it islinearized, the strips of the same color are repeated in a pattern that depends onthe type of a function. The problem of decomposing such function is not solvedyet.Another unsolved problem is the decomposition of functions with more thanone occurrence of the same variable, for example f(x; y) = x + sin(x + y). Themethod presented in this paper fails to give any meaningful result. However,the methods to support such decompositions do exist for Boolean and multi-valued functions [5, 7]. We are working on extension of these methods to handlereal-valued functions as well.The most important problem that is yet to be solved is the problem of co-e�cients k1 and k2 in (1) when they are to appear in non-linear functions suchas sin(k1(ax+ y) + k2). We are currently investigating a promising method thatdecomposes such functions by using splits with one bound variable.In comparison with some existing methods for function discovery, for exampleGoldHorn [3], we can conclude that our method is able to reconstruct relativelycomplex functions but with low accuracy of coe�cients, while GoldHorn o�ershigh accuracy on functions of limited complexity. The time complexity of ourmethod is low, since all the slow phases (like graph coloring) can be replacedby faster, yet e�cient heuristic algorithms. GoldHorn performs an exhaustivesearch of all possible functions to a given depth. This grows exponentially withthe depth and the number of basic functions (background knowledge). On theother hand, our functional decomposition uses a \divide and conquer" approachwhich signi�cantly improves the e�ciency. Also it should be noted that thecomplexity in our case is relatively low. The time complexity of the algorithm iscubic in the number of attributes, at most O(N lnN) in the number of examples,and practicallly independent of the number of basic functions (size of backgroundknowledge).References1. R. L. Ashenhurst (1952): The Decomposition of Switching Functions, Technicalreport, Bell Laboratories BL-1(11), 541-6022. H. A. Curtis (1962): Design of Switching Circuits, D. Van Nostrand Company3. V. Kri�zman (1993): Noise handling in dynamic system modelling Master thesis (inSlovene), University Ljubljana, Faculty of Computer and Information Science4. T. Luba (1995): Decomposition of Multiple-valued Functions, 25th Intl. Symposiumon Multiple-valued Logic, 256-261, Bloomington, Indiana.5. M. A. Perkowski et al. (1996): Uni�ed Approach to Functional Decomposi-tion of Switching Functions, Unpublished technical report, Wright LaboratoryWL/AART-2, Ohio

6. T. D. Ross et al. (1994): On the Decomposition of Real-valued Functions, 3rdInternational Workshop of Post-Binary VLSI Systems7. B. Zupan, M. Bohanec (1996): Learning Concept Hierarchies from Exam-ples by Function Decomposition, Technical Report, J. Stefan Institute, URLftp://ftp-e8.ijs.si/pub/reports/IJSDP-7455.ps

This article was processed using the LATEX macro package with LLNCS style

