
DEXiTree:
A PROGRAM FOR PRETTY DRAWING OF TREES

Marko Bohanec

Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

Tel: +386 1 4773309; fax: +386 1 4773315
e-mail: marko.bohanec@ijs.si

ABSTRACT

This paper presents DEXiTree, a computer program for
drawing trees. In principle, DEXiTree is aimed at making
nice drawings of attribute trees made by DEXi, a computer
program for qualitative multi-attribute decision modelling.
Apart from that, DEXiTree is quite a general and powerful
tree-drawing program that implements four different tree-
drawing algorithms (called Distribute, Align, Walker, and
QP), draws trees in four different directions (top-down,
left-right, bottom-up and right-left) and provides an
extensive set of parameters for controlling the appearance
of trees and their components. DEXiTree’s functionality
includes loading a decision model from a DEXi file,
interactively designing the tree layout, saving and loading
the layout using an XML format, and rendering the drawing
in two graphic formats: vector and raster.

1 INTRODUCTION

Trees are a common and very important data structure used
in computer science. Trees are used to represent hierarchies
such as family trees, organization charts, search trees,
taxonomies and file hierarchies. Trees are also heavily used
in decision support and decision analysis to represent the
structure of models such as decision trees and multi-
attribute models.
One such a decision-support computer program is DEXi
(Bohanec, 2007). DEXi is aimed at the development of
qualitative multi-attribute decision models, which are used
in complex real-life decision problems to evaluate and
analyse decision alternatives. A multi-attribute model is a
hierarchical structure that represents the decomposition of
decision problem into subproblems, which are smaller, less
complex and possibly easier to solve than the complete
problem. In practice, it is essential that such trees are
properly visualised so that they could be reviewed by and
communicated between DEXi users, and ultimately
included in various reports, presentations and publications.
This paper presents DEXiTree, a computer program for
drawing DEXi trees. The development of DEXiTree has
been directly motivated by DEXi, in particular by its
current inability to make nice drawings of multi-attribute
models. However, the tree-drawing algorithms
implemented in DEXiTree are quite general and could be
used for drawing other than just DEXi trees. DEXiTree

provides a rich set of parameters for an interactive design
of the visual appearance of trees and their components:
nodes, arcs and text boxes. DEXiTree is implemented in
Borland Delphi and runs under Microsoft Windows. It is
publicly available and can be downloaded from
http://www-ai.ijs.si/MarkoBohanec/dexitree.html.
This paper is structured as follows. Section 2 describes the
four tree-drawing algorithms implemented in DEXiTree.
Section 3 presents the functionality of DEXiTree, and
section 4 concludes the paper.

2 TREE-DRAWING ALGORITHMS

Tree-drawing algorithms have been extensively studied in
the context of graph drawing (Di Battista, et al., 1994;
1999). Although trees have a much simpler structure than
general graphs, their drawing – and particularly, “nice”
drawing – is far from trivial. The tree layout problem is
formulated as follows (Kennedy, 1996): given a labelled
tree, assign to each node a position on the page to give an
aesthetically pleasing rendering of the tree. We assume that
nodes at the same depth are positioned on the same line on
the page, so the problem reduces to finding a position
horizontally for each node.
A common problem with this setup is that it usually
requires a lot of width on the page. The challenge is thus to
use the width as effectively as possible, that is, to make
trees as narrow as possible. However, this should be
combined with the requirement for an “aesthetically
pleasing” drawing, which is usually defined by a set of
aesthetic rules that constrain the node positions in a number
of ways:
1. Two nodes at the same level should be placed at least a

given distance apart.
2. A parent should be centred over its descendants (lower-

level nodes, either immediate descendants or terminal
nodes).

3. Drawings should be symmetrical with respect to
reflection.

4. Identical subtrees should be rendered identically—their
position in the larger tree should not affect their
appearance.

The most common approach to the layout problem is the
following (Kennedy, 1996). First, draw all the subtrees of a
node in such a way that none of the rules are broken. Fit

http://www-ai.ijs.si/MarkoBohanec/dexitree.html

these together without changing their shape (otherwise rule
4 is broken), and in such a way that rules 1 and 3 are
satisfied. Finally, centre their parent above them (rule 2).
Clearly, this is a recursive algorithm that gradually
positions nodes and subtrees in the bottom-up direction.
DEXiTree implements four tree-drawing algorithms, three
of which are based on the above schema. The fourth
algorithm takes a different approach based on constrained
optimisation.

2.1 Algorithm Distribute

We call Distribute the algorithm that is probably the
simplest “meaningful” algorithm that obeys all the aesthetic
rules. The algorithm positions all terminal nodes
horizontally in their left-to-right order, allocating to each
terminal node its natural width and separating adjacent
terminal nodes with the required separation distance. This
positioning does not take into account the actual level of
terminal nodes in the tree. After positioning the terminal
nodes, their parents are recursively centred on the levels
above.

ROOT

A

AA AB AC

B C

CA

CAA CAB CAC

CB

Figure 1: A tree drawn by the Distribute algorithm.

ROOT

A

AA AB AC B

C

CA

CAA CAB CAC CB
Figure 2: The same tree drawn by Align.

ROOT

A

AA

AB

AC

B

C

CA

CAA

CAB

CAC

CB

Figure 3: A left-to-right orientation drawn by Align.

Figure 1 reveals an obvious disadvantage of Distribute:
ineffective use of horizontal space. There are too large gaps
between the subtrees A and B, B and C, and CA and CB. All

these subtrees could have been brought together. This issue
is addressed by the algorithm Walker (section 2.3).
Nevertheless, Distribute provides a good basic positioning
for a useful variation of the algorithm, called Align.

2.2 Algorithm Align

The Align algorithm is essentially the same as Distribute,
except that all terminal nodes are brought to the same level
at the bottom of the tree (Figure 2). Although this rendition
violates rule 4, it has a practical value. Namely, in DEXi,
terminal nodes represent input attributes of a multi-attribute
model, so it makes sense that they are grouped together and
shown at a same level. Also, Align is great for drawing
trees that are oriented from left (root) to right (terminal
nodes), or vice versa. In this case, each terminal node
occupies one “line” in the drawing, producing a nice and
highly readable layout (Figure 3).

2.3 Algorithm Walker

The third algorithm has been originally proposed by
Walker (1990). Basically, it is similar to Distribute, but it
additionally takes into account two important issues:
• Better use of horizontal space, which is achieved by

moving subtrees closer together wherever possible (see
the subtrees CA and CB, and A and C in Figure 4).

• Handling “orphans”, that is, single nodes or small
subtrees surrounded by large subtrees and thus having a
lot of free space around them (B in Figure 4). These are
centred or distributed so as to satisfy rule 3.

 ROOT

A

AA AB AC

B C

CA

CAA CAB CAC

CB

Figure 4: Tree-adjustment operations of Walker.

ROOT

A

AA AB AC

B C

CA

CAA CAB CAC

CB

Figure 5: The tree drawn by Walker.

The result of these operations performed on our sample tree
is shown in Figure 5. Now, the tree is narrower and uses the
horizontal space very efficiently.
Walker is one of the best general-purpose tree-drawing
algorithms. Its drawings satisfy all the four aesthetic rules.
The algorithm is also very efficient: an improved version of

the algorithm, proposed by Buchheim, et al. (2002), runs in
linear time with respect to the number of nodes.

2.4 Algorithm QP

The fourth algorithm takes a different approach and draws
trees simulating a physical system composed of wires,
pearls and springs. Imagine that nodes are pearls (of
appropriate width), sliding on horizontal wires, which
represent tree levels. Suppose that pearls are equipped with
appropriate “bumpers” so that they always stay sufficiently
apart. Finally, let parents and their children be connected by
springs. The idea is to construct such a tool, release the
pearls ... and see what happens. Eventually, the system will
position itself into some, hopefully nice, tree structure.

ROOT

A

AA AB AC

B C

CA

CAA CAB CAC

CB

Figure 6: The tree drawn by the QP algorithm.

Recently, such approach has been studied for drawing
general graphs (Dwyer, et al., 2006). Here, we present our
own problem formulation for trees.
Let xa and ya denote horizontal and vertical coordinates,
respectively, of the centre of some node a. Let the node p
be a parent of c. Then, p and c are connected by a spring,
whose elastic potential energy Epc is proportional to the
squared distance between p and c:

222)()(cpcppcpc yyxxdE −+−=∝
The system will self-organise itself so that the total elastic
potential energy E of all springs will be minimal. We
assume that the distances between two adjacent tree levels
(yp–yc) are all equal and constant, so we may discard them
from the minimization. The goal is then to minimise the
total E = ΣEpc, which is proportional to

∑
∀

−
cpcp

cp xx
ofparent is:,

2)(

This minimization is subject to constraints: two adjacent
pearls placed on a single wire must be separated with at
least the node separation distance s. Thus, each pair of
adjacent nodes a and b, where a is positioned to the left of
b, should satisfy the condition

baab wswxx ½½ +++≥
where wa and wb denote the widths of the respective nodes.
Finally, to guarantee a unique solution, the x coordinate of
the root of tree should be set to some constant, typically 0.
In this way, the tree-positioning problem is formulated as a
constrained optimisation problem. More precisely, because
the objective function is quadratic, this is a quadratic
programming (QP) problem (hence the name of the

algorithm). In DEXiTree, we use a QP solver based on the
Goldfarb-Idnani method (Goldfarb, Idnani, 1983) and
adapted from a publicly available Fortran source code of
P. Spelluci.
Interestingly, the QP algorithm produces very nice and very
compact trees, which look “natural” and balanced, even
though they generally violate aesthetic rules 2 and 4 (Figure
6). Breaking these rules typically allows QP to use
horizontal space even better than Walker.

3 DEXiTree FUNCTIONALITY

DEXiTree is an interactive Windows program facilitating:
1. Loading a DEXi model from a DEXi (.dxi) file.
2. Interactive design of the drawing (Figure 7) by:

• choosing between the four algorithms,
• selecting the drawing direction (section 3.1),
• modifying drawing parameters (section 3.2).

3. Save the drawing to a file, or copy the drawing to
clipboard for transferring it to other programs.

Drawings are rendered in two graphic formats:
• Windows Enhanced Metafile (.emf), which is a vector

graphic format, and
• Windows Bitmap (.bmp), a raster graphic format.
In addition, DEXiTree uses its own XML-based “.dxt” file
format for storing the current tree structure and drawing
parameters. DEXiTree can both load and save these files.

3.1 Tree-Drawing Directions

DEXiTree can draw trees in four different directions: Top-
Down, Left-Right, Bottom-Up and Right-Left. The Top-
Down direction makes a usual placement so that the root of
the tree is shown at the top and subtrees branch
downwards. The other three directions respectively
correspond to 90-degree counter-clockwise rotations of the
tree structure. Displayed text, however, is never rotated.

3.2 Tree-Drawing Parameters

On the right-hand side of its main window (Figure 7),
DEXiTree offers an extensive set of parameters for
controlling the appearance of trees and their graphical
components. In most cases, DEXiTree immediately
responds to a parameter change and redisplays the current
tree. Parameters are conveniently grouped on two pages,
Tree and Node (Figure 7).
The Tree page contains parameters that affect the
placement of the tree as a whole:
• horizontal and vertical stretching of the drawing,
• picture borders,
• separation of two adjacent nodes, levels and node

boxes,
• parent alignment,
• tree mirroring, and
• background colour of the whole drawing.
The Node page controls the display of tree nodes. The user
can set drawing parameters individually for each node or

References collectively for a group of nodes: all nodes, terminal nodes,
or internal nodes in the tree.

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.:
Algorithms for Drawing Graphs: an Annotated
Bibliography. Computational Geometry: Theory and
Applications 4, 235–282, 1994.

Node has two subpages, Graphic and Text. The former
defines graphical properties for displaying tree nodes, such
as the minimum and maximum dimensions of the node, its
shape, colour, line and fill, vertical alignment of nodes, and
positioning of the incoming and outgoing arcs. The Text
page controls the display of text within nodes: internal text
borders, text wrapping, clipping and trimming, line spacing
for multi-line text, text positioning within a node, and
specifying text font.

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph
Drawing: Algorithms for the Visualization of Graphs,
Prentice-Hall, 1999.

Bohanec, M.: DEXi: Program for Multi-Attribute Decision
Making, User's Manual, Version 2.00. IJS Report DP-
9596, Jožef Stefan Institute, Ljubljana, 2007.
http://www-ai.ijs.si/MarkoBohanec/dexi.html

6 CONCLUSION Buchheim, C., Jünger, M., Leipert, S.: Improving Walker's
algorithm to run in linear time. Lecture Notes In
Computer Science 2528, Revised Papers from the 10
International Symposium on Graph Drawing, Springer-
Verlag, 344–353, 2002.

th

DEXiTree is a small, convenient and publicly available
software tool that provides four state-of-the-art tree-drawing
algorithms. Basically, it is aimed at drawing DEXi multi-
attribute trees, but can also be used to draw other types of
trees. DEXiTree is highly interactive and responds
immediately to parameter changes. Parameter defaults have
been designed so that it is easy to produce a useful drawing
without too much effort, but the extensive set of parameters
allows an advanced user to control almost any aspect of the
graphic output. We believe that DEXiTree has also an
educational value for the study of tree-drawing algorithms.

Dwyer, T., Koren, Y., Marriott, K.: Drawing directed graphs
using quadratic programming. IEEE Transactions on
Visualization and Computer Graphics 12(4), 2006.

Goldfarb, D., Idnani, A.: A numerically stable dual method
for solving strictly convex quadratic programs.
Mathematical Programming 27, 1–33, 1983.

Kennedy, A.J.: Drawing Trees. Journal of Functional
Programming 6(3), 527–534, 1996. Currently, DEXiTree does not offer any tree-editing

capabilities and leaves this task to DEXi. In the future, this
might be alleviated by an integration of DEXi and
DEXiTree. Also, it is likely that DEXiTree will be extended
with some other types of tree-drawing layouts, such as
radial, indented or cascade.

Walker, J.Q. II: A node-positioning algorithm for general
trees. Software—Practice and Experience 20(7), 685–
705, 1990.

Figure 7: DEXiTree user interface: tree display (left) and tree-drawing parameters (right).

	Marko Bohanec
	References

