

Marko Bohanec

Ranking of Alternatives in

Qualitative Multi-Criteria Decision Modeling Method DEX

IJS delovno poročilo
DP-15041
2025

ii

Abstract

We investigate methods for ranking decision alternatives in the context of multi-criteria decision

modeling method DEX (Decision EXpert). DEX is a qualitative, hierarchical and rule-based method,

particularly suitable for sorting: assigning alternatives into predefined categories based on their

performance. Here, we study methods that extend DEX’s capability to ranking: ordering alternatives

from best to worst. This is achieved by introducing a dual evaluation of alternatives, which run in

parallel: qualitative evaluation, which assigns alternatives to qualitative classes, and quantitative

evaluation, which ranks alternatives within each class. The approach employs the principle of

dominance, which allows identifying “better-than-or-equal-to” preferential relations between decision

rules that map to the same qualitative class. The evaluation model is constructed automatically using

only information that is already contained in the qualitative DEX model; no further information from

the decision maker is requested. Other important aspects of the approach are:

1. Consistency of qualitative and quantitative evaluations: For each alternative, assigned to class 𝐶,

the corresponding numerical evaluation lies in the interval [𝑐 – 0.5, 𝑐 + 0.5], where 𝑐 is the

ordinal number of 𝐶. The values 𝑐 + 0.5 and 𝑐 – 0.5 are interpreted as “ideal” and “anti-ideal”

evaluations within 𝐶, respectively.

2. Compatibility of inputs and outputs: DEX models are hierarchical, therefore evaluations obtained

as outputs at model subtrees enter as inputs to the higher levels of the hierarchy. Thus, the

quantitative scales of input and output attributes must match and should obey the 𝑐 ± 0.5

principle.

3. Quantitative evaluations preserve the preferential dominance between alternatives.

The main contributions of this study are two novel ranking algorithms, called QQ2 and QL, which

improve over a previous Qualitative-Quantitative (QQ) method. Both algorithms employ optimization

models to assign numeric values to decision rules of some class in order to separate them as much as

possible. QL and QQ2 are formulated in terms of a linear and quadratic optimization problem,

respectively, with linear constraints. They do not require calculating attributes’ weights, which was a

weak point of QQ. They also better cover the class range and allow for proper handling of preferentially

unordered attributes. The three algorithms were experimentally evaluated and compared on 3322 DEX

real-life decision tables. Both QL and QQ2 significantly outperformed QQ in terms of within-class

separation of decision rules. QL and QQ2 themselves turned out very similar, with no clear winner.

Because of the small size and elegance of the quadratic model, and its time efficiency, QQ2 was

eventually chosen for implementation in DEXiWin modelling software.

Keywords

Multi-criteria model, method DEX, decision rules, decision alternatives, sorting, ranking, linear

optimization, quadratic optimization.

iii

Contents
1 Introduction ... 1

2 Related Work ... 2

3 DEX Concepts and Notation .. 3

3.1 Attributes ... 3

3.2 Model Structure .. 4

3.3 Attribute Scales ... 5

3.4 Decision Tables .. 5

3.5 Alternatives ... 6

4 Ranking of Alternatives: Aims, Goals and Requirements .. 6

4.1 Decision Tables: Concepts and Notation ... 7

4.2 Using Preferential Dominance for Ranking ... 8

4.3 Requirements for the Ranking Method ... 9

5 Ranking Algorithm QQ2 ... 12

6 Other Algorithms ... 14

6.1 Algorithm QQ... 14

6.2 Algorithm QL: Linear Optimization .. 15

7 Experimental Evaluation.. 16

8 Implementation ... 18

8.1 Implementation Considerations for Practice .. 18

8.2 Current Implementation ... 19

9 Conclusion ... 20

10 References ... 21

Appendix 1: Notation .. 23

1

1 Introduction

Multi-criteria decision modeling (MCDM) is an approach used to make decisions when there are
multiple, often conflicting, criteria or factors to consider (Greco, et al., 2016). By using MCDM, a
decision maker can break down complex decisions into smaller, manageable parts, making it easier to
compare options and choose the one that best meets their needs. Typically, MCDM proceeds (Belton,
Stewart, 2002) by defining a set of criteria that are relevant to the decision at hand. These criteria are
then incorporated into a structured model that reflects the decision maker’s preferences and priorities.
This model is used to systematically evaluate and compare different decision options, often referred
to as alternatives. The process may also include a detailed analysis of these alternatives, which helps
in exploring the decision space more thoroughly. Such analysis can reveal important insights into the
characteristics of each alternative and the relationships between them. Ultimately, the outcomes of
this process provide valuable information to support the decision maker in making a well-informed
final decision.

According to Roy (1996; 2016), there are three main types of decision problems:

1. Choosing (Selection Problematic): To select the best alternative (or a small subset of alternatives)

from a set of available ones. Example: Choosing the best car to buy based on criteria like price, fuel
consumption, and safety.

2. Ranking (Ordering Problematic): To rank all alternatives from best to worst based on their
performance across multiple criteria. Example: Ranking universities based on criteria like academic
reputation, cost, and student satisfaction.

3. Sorting (Classification Problematic): To assign alternatives into predefined categories or groups
based on their performance. Example: Sorting job applicants into categories like "highly qualified,"
"qualified," and "not qualified" based on their skills and experience.

In MCDM, predefined categories in sorting are assumed to be preferentially ordered, i.e., some
categories are assumed better or more preferred than others. Sorting is similar to classification, where
categories are not necessarily ordered. Example: Classify medical images into diagnostic categories,
such as “no findings”, “pneumonia”, “edema”, or “tumor”.

In this report, we focus on a multi-criteria modelling method DEX (Decision EXpert). DEX (Bohanec,
2022) is a decision-modeling method that combines multi-criteria models with some elements of
expert systems. The essential characteristics of DEX are:

• DEX is hierarchical: A DEX model consists of hierarchically structured variables, called attributes;

• DEX is qualitative: All attributes in a DEX model are symbolic, taking values that are generally
words, such as “bad”, “medium”, “excellent”, “low”;

• DEX is rule-based: Decision alternatives are evaluated according to decision rules, acquired from
the decision maker and represented in the form of decision tables.

DEX is primarily a sorting or classification MCDM method: the evaluation process assigns each
alternative to some distinct final evaluation class. This is because all components of a DEX model are
qualitative: attributes are qualitative and the evaluation process (aggregation of values) is determined
by qualitative decision rules (see examples in Figure 1). Furthermore, decision alternatives are
described by qualitative input values and all evaluation results are qualitative, too (Figure 2).

In practice, however, it is often necessary to simultaneously address other tasks than just sorting, i.e.,
choosing and/or ranking. For example, when there are several alternatives assigned to the same
evaluation category, we may still want to distinguish between them and choose the best one. Actually,

2

this can be done in DEX, but may require additional steps and additional effort by the decision maker,
for instance by exploring full evaluation results or using decision-analytic tools such as selective
explanation and deep comparison (Bohanec, 2024).

Nevertheless, it is still very tempting to think about a method that would rank alternatives using DEX
models and would require very little additional effort from the decision maker. In this report we show
that this is possible, provided that we accept some assumptions about preferential ordering of decision
rules and their numerical interpretation. We present two novel methods for ranking of alternatives
using DEX models, called QQ2 and QL, which were designed as an improvement over an older method
(Bohanec, et al., 1992), which eventually became known as QQ (Qualitative-Quantitative). We
experimentally evaluate QQ2 and QL on a large collection of DEX decision tables and compare it with
QQ.

In what follows, we first present related work about MCDM sorting in general and specifically related
to DEX. In section 3, we define the concepts and components of DEX models, and introduce formal
notation. The aims and goals of alternatives’ ranking are defined in section 4. There, we gradually
introduce requirements for such a DEX method, providing grounds for actually proposing QQ2 in
section 5. In section 6, we present QQ and QL. QQ is the predecessor of QQ2, and QL is similar to QQ2,
but uses a linear instead of quadratic optimization model. Results of extensive testing of QQ, QL and
QQ2 on 3322 DEX models are presented in section 7. Section 8 discusses some additional extensions
needed for a practical implementation of QQ2 (section 8.1), and presents an actual implementation of
QQ2 in software called DEXiWin (section 8.2). Section 9 concludes the report.

2 Related Work
Sorting is an important part of MCDM and there is a lot of related literature. However, one should
understand that the majority of MCDM methods are of numerical nature: they use numerical
attributes, accept numerical input data about alternatives and yield numerical evaluations.
Accordingly, they are in some “natural” way more suitable for choosing and ranking than qualitative
methods such as DEX. Therefore, it is not surprising that many well-known ranking MCDM methods
have their “sorting” variations, which specifically address the sorting problematic. In their textbook,
López, et al. (2023) identify and present a number of sorting methods, many as variations of their
ranking counterparts. They distinguish between four types of sorting methods:

1. Full aggregation approach: Methods where a score is evaluated for each criterion and then

synthesized into a global score. A multi-criteria model is explicitly developed to evaluate
alternatives. Examples: methods UTADIS (UTilités Additives DIScriminantes), UTADIS GMS,
AHPsort as a variation of AHP (Analytic Hierarchy Process).

2. Outranking approach: Methods where alternatives are compared between each other (for
instance, by pairwise comparison). Preferences and rankings are gradually determined without
developing an explicit model. Examples: method PROMSORT as a variation of PROMETHEE
(Preference Ranking Organization METHod for Enrichment Evaluations), ELECTREE III and ELECTRE
TRI as a variation of ELECTRE (ELimination and Choice TRanslating REality).

3. Goal, aspiration, or reference-level: Methods based on providing a reference level (goal) of each
criterion and identifying alternatives closest to the goal. Examples: DEA (Data Envelopment
Analysis), TOPSIS-SORT as a variation of TOPSIS (Technique for Order of Preference by Similarity to
Ideal Solution).

4. Nonclassical MCDM approaches: Methods employing decision rules. Example: DRSA (Dominance-
Based Rough Set Approach).

3

While DEX is not mentioned in López, et al. (2023), it belongs to both (1) the full aggregation approach,
because it uses an explicit hierarchical model to evaluate alternatives, and (2) non-classical approach,
because it uses decision rules and has some similar elements as DRSA.

In addition to an extensive scientific literature reviewed in López, et al. (2023), there are many other
recent publications on sorting MCDM methods, which typically address some specific method or
extension of an existing method. Kadziński, et al. (2014) propose using ROR (Robust Ordinal
Regression) in the context of DRSA. Ru, et al. (2023) investigate using ROR methods with uncertain
preferences. Liu, et al. (2020) present a preference learning framework for multiple criteria sorting,
based on alternatives being assigned to multiple classes. Sorting extensions of TOPSIS are proposed by
Ferreira de Lima Silva, et al. (2020) and Yatsalo, et al. (2024). Wang, et al. (2023) suggest a sorting
extension to the method TODIM (Portuguese acronym for Interactive Multi-Criteria Decision Making).

While the issue with the majority of MCDM methods is how to approach sorting from the ranking
starting point, the issue with DEX is just the opposite: how to rank alternatives based on qualitative
information, suitable for sorting. Also, DEX is somewhat specific and DEX models contain elements
different from those in general MCDM methods. Consequently, algorithms for ranking alternatives in
DEX are specific and related literature is scarce.

In a very early attempt, Bohanec, et al. (1992) proposed a “combined qualitative and quantitative
method”, which is nowadays known as QQ (Bohanec, 2022). The authors explored the idea of a
“parallel-but-consistent” evaluation of alternatives: in addition to a normal DEX qualitative evaluation,
alternatives are additionally evaluated numerically. The two evaluations are kept consistent so that
numeric evaluations do not breach the order established by qualitative evaluations. This is achieved
by representing alternatives’ values by a combination of a qualitative (symbolic) and a quantitative
(numeric) value, where the former indicates a class and the latter a numeric offset within the class (see
section 4.3 for further details). In QQ, aggregation functions are determined by a local linear
approximation of decision rules. Although QQ was successfully used in practical applications, it had
some weak points (discussed later in section 6.1). Also, QQ was only implemented in prototype
research software and never made it to the popular DEX software called DEXi (Bohanec, 2020); this
attributed to its lower exposure in the field. QQ is a direct predecessor of QQ2 and QL, the methods
presented in this report and developed with the aim to improve on QQ’s weaknesses.

Another attempt to DEX ranking was made by Mileva Boshkoska and Bohanec (2012). The basic
approach was similar to QQ, except that copulas were used instead of linear approximations so as to
get a better fit between individual decision rules and their numeric approximation. Another approach,
called QUANQUAL, has been suggested by Brelih, et al. (2018). There, the authors combine qualitative
evaluation of classes with numeric evaluation within classes; numerical evaluation is given in the form
of numeric intervals. QUANQUAL’s representation of evaluation values is considerably different from
QQ’s, and results are incomparable.

3 DEX Concepts and Notation
Formally, a DEX model 𝑀 is defined as a four-tuple 𝑀 = (𝑋, 𝐷, 𝑆, 𝐹), where 𝑋 is the set of attributes,

𝑆 is the descendant function that determines the hierarchical structure of attributes, 𝐷 is the set of

value scales of attributes, and 𝐹 is the set of aggregation functions (Bohanec, 2022). In what follows,

we formally define these components to the level necessary for the scope of this report.

3.1 Attributes

Attributes 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} are variables that represent observable properties of decision

alternatives (inputs), and partial and overall results of evaluations (outputs). In DEX models, attributes

4

are usually given unique and meaningful names, such as Price, Productivity, etc. In such cases, the

notation 𝑥𝑖 is conveniently replaced by the corresponding attribute name.

To illustrate formal concepts, we shall use the DEX model called CAR (Figure 1). This is a simple model

for evaluating personal cars, used for educational purposes, referred to in many publications and

distributed with DEX software1. The model contains 𝑛 = 10 attributes: 𝑋 = {𝐶𝐴𝑅, 𝑃𝑅𝐼𝐶𝐸, 𝐵𝑈𝑌. 𝑃𝑅𝐼𝐶𝐸,

𝑀𝐴𝐼𝑁𝑇. 𝑃𝑅𝐼𝐶𝐸, 𝑇𝐸𝐶𝐻. 𝐶𝐻𝐴𝑅. , 𝐶𝑂𝑀𝐹𝑂𝑅𝑇, #𝑃𝐸𝑅𝑆, #𝐷𝑂𝑂𝑅𝑆, 𝐿𝑈𝐺𝐺𝐴𝐺𝐸, 𝑆𝐴𝐹𝐸𝑇𝑌}.

Figure 1: The structure and components of CAR, a DEX model for evaluating personal cars.

3.2 Model Structure

Attributes in a DEX model are structured hierarchically. The structure is defined by the function 𝑆: 𝑋 →

2𝑥, which associates each 𝑥 ∈ 𝑋 with a set of its descendants 𝑆(𝑥) in the hierarchy. The function 𝑆 is

assumed to be defined so that it forms a hierarchy, i.e., a connected directed graph without cycles.

For CAR (Figure 1), 𝑆 is defined as follows: 𝑆(𝐶𝐴𝑅) = {PRICE, TECH.CHAR.}, 𝑆(𝑃𝑅𝐼𝐶𝐸) =

{BUY.PRICE,MAINT.PRICE}, 𝑆(𝐶𝑂𝑀𝐹𝑂𝑅𝑇) = {#PERS, #DOORS, LUGGAGE}, and 𝑆(𝑥) = ∅ for 𝑥 ∈

{BUY.PRICE, MAINT.PRICE, #PERS, #DOORS, LUGGAGE, SAFETY}.

Given 𝑆, the set of parents of each 𝑥 ∈ 𝑋 is then defined as 𝑃(𝑥) = {𝑝 ∈ 𝑋: 𝑥 ∈ 𝑆(𝑝)}. Attributes

without parents are called roots and represent main outputs of the model. Attributes without

descendants, 𝑆(𝑥) = ∅, are called basic attributes and represent model inputs. Attributes with 𝑆(𝑥) ≠

∅ are referred to as aggregate attributes, and are also considered (partial) outputs of the model.

Normally, DEX models represent trees, where each attribute has one parent, except the root which

has none. In contrast, a (full) hierarchy may contain attributes with multiple parents. DEX allows using

hierarchies through the mechanism known as “attribute linking” (Bohanec, 2020; 2022; 2024).

1 https://dex.ijs.si/

CAR

PRICE TECH.CHAR.

LUGGAGE#PERS #DOORS

BUY.PRICE COMFORT SAFETYMAINT.PRICE

5

Considering basic and aggregate attributes, 𝑋 can be partitioned in two distinct subsets:

• 𝑌 = {𝑥 ∈ 𝑋: 𝑆(𝑥) ≠ ∅}: the set of all aggregate (output) attributes.

• 𝑍 = {𝑥 ∈ 𝑋: 𝑆(𝑥) = ∅}: the set of all basic (input) attributes.

3.3 Attribute Scales

Each attribute 𝑥 ∈ 𝑋 is associated with a value scale, denoted scale 𝑥 ∈ 𝐷, which is defined as an

ordered set of symbolic (qualitative) values:

scale 𝑥 = [𝑣𝑥,1, 𝑣𝑥,2, … , 𝑣𝑥,𝑚𝑥
] .

Here, 𝑚𝑥 ≥ 2 denotes the number of discrete values that can be assigned to 𝑥. Usually, value scales

are small and rarely consist of more than five values. Scale values are typically represented by words,

for instance “low”, “high”, “unacceptable”, “good”.

DEX scales can be either ordered in an ascending or descending order, or unordered. Values of an

ascending scale are assumed to be preferentially ordered so that 𝑣𝑥,1 ≼ 𝑣𝑥,2 ≼ ⋯ ≼ 𝑣𝑥,𝑚𝑥
, where ‘≼’

denotes a weak “worse-or-equal” preference relation. In descending scales, the “better-or-equal”

relation ‘≽’ applies instead. No preference relations can be assumed with unordered scales. We denote

the order of scale 𝑥 as

order 𝑥 ∈ {unordered, ascending, descending}.

Conventionally, particularly bad and good scale values are printed in color, as shown in Figure 1. All

scales in the CAR model are ascending. Even though the scale #𝐷𝑂𝑂𝑅𝑆 = {2,3,4, 𝑚𝑜𝑟𝑒} contains

number-like values, these numbers are understood as symbols and have no intrinsic numerical value.

However, since scales are ordered sets, we can associate an ordinal number with each element of the

scale. For scale 𝑥 = [𝑣𝑥,1, 𝑣𝑥,2, … , 𝑣𝑥,𝑚𝑥
], the corresponding ordinal numbers are ord 𝑣𝑥,1 = 1,

ord 𝑣𝑥,2 = 2, …, ord 𝑣𝑥,𝑚𝑥
= 𝑚𝑥.

Scales that correspond to some subset of attributes 𝐾 ⊆ 𝑋 form a decision space, denoted

space 𝐾 = scale 𝑥1 × scale 𝑥2 × … × scale 𝑥𝑘 for all 𝑥𝑖 ∈ 𝐾, 𝑖 = 1,2, … , 𝑘, 𝑘 = |𝐾|.

3.4 Decision Tables

In order to evaluate decision alternatives, DEX uses aggregation functions 𝐹 = {𝑓𝑥, 𝑥 ∈ 𝑌}. Formally,

each aggregate attribute 𝑥 ∈ 𝑌 is associated with a total function that maps:

 𝑓𝑥: space 𝑆(𝑥) → scale 𝑥.

In this context, all descendants of 𝑥 are called function arguments and are denoted args 𝑓𝑥 = 𝑆(𝑥).

Aggregation functions are represented by decision tables, see examples in Figure 1. A decision table

𝑇𝑥, associated with 𝑥 ∈ 𝑌, consists of 𝑟𝑥 elementary decision rules that correspond to all possible

combinations of values of function arguments. Thus, there are |space 𝑆(𝑥)| decision rules: the right-

most column of a decision table represents the outcome of each decision rule (also called a class).

Further decision-table notation needed for the purpose of ranking is presented later in section 4.

While DEX in general allows different types of output values (intervals, value distributions) (Bohanec,

2022), we shall hereafter assume that each decision rule prescribes exactly one class. Solutions for

tables not fulfilling this assumption are discussed later in section 8.1.

6

3.5 Alternatives

Alternatives (or decision alternatives) are objects, actions or other kinds of choices considered in the

decision-making process. From the decision modeling viewpoint, 𝒜 = {𝐴1, 𝐴2, … , 𝐴𝑞} are data vectors

processed by 𝑀. Each alternative 𝐴𝑖 , 𝑖 = 1,2, … , 𝑞, is represented by a vector of values:

𝐴𝑖 = [𝑎𝑥,𝑖 ∈ scale 𝑥 , ∀𝑥 ∈ 𝑋],

where each 𝑎𝑥,𝑖 represents the value of 𝐴𝑖 that is assigned to attribute 𝑥. The value vector can be

partitioned to 𝑌(𝐴𝑖) and 𝑍(𝐴𝑖), i.e., value vectors corresponding to all aggregate and all basic

attributes, respectively.

Given some alternative 𝐴, represented by an assignment of values that correspond to input attributes

𝒛 = [𝑎1, 𝑎2, … , 𝑎𝑏] ∈ space 𝑍,

we can evaluate that alternative recursively for each attribute 𝑥 ∈ 𝑋, starting with the root attribute

𝑥1:

𝐸𝑥(𝐴) = {
𝑓𝑥(𝐸𝑥(1)

(𝐴), … , 𝐸𝑥(𝑘)
(𝐴)) ⇐ ∀𝑥(𝑖) ∈ 𝑆(𝑥), 𝑥 ∈ 𝑌

𝑧𝑥 ⇐ 𝑥 ∈ 𝑍
.

Figure 2 shows six personal cars (decision alternatives) represented in terms of (column) vectors of

qualitative input values (𝑍(𝒜), Figure 2, top), and full evaluation (𝑋(𝒜), Figure 2, bottom). The cars

are sorted in three categories corresponding to attribute CAR: Car3 and Car4 are “unacceptable”, Car2

is “good”, and Car1, Car5 and Car6 are “excellent”. Lower-level evaluations reveal the main reasons

for such results. For instance, both “unacceptable” cars seem too expensive for buying. Still, the

question remains: which of the three “excellent” is actually the best? Or, to put it differently: how are

Car1, Car5 and Car6 ranked within the “excellent” class?

Figure 2: Decision alternatives (personal cars): Input values (top) and evaluation results (bottom).

4 Ranking of Alternatives: Aims, Goals and Requirements
In this section, we gradually develop the concepts, notation and requirements for the new ranking

methods.

7

4.1 Decision Tables: Concepts and Notation

First, let us introduce some concepts and notation, using the decision table 𝑇𝐶𝐴𝑅 in Figure 3 as an

example. The table is associated with attribute CAR in Figure 1. Apart from the very first column on the

left that displays decision rule indices, 𝑇𝐶𝐴𝑅 is composed of three columns. The first two, PRICE and

TECH.CHAR., correspond to descendants of CAR in the model structure, which also serve the role of

function arguments in this context. It is important to notice that all the possible combinations of values

of PRICE and TECH.CHAR. are listed, giving 12 rows, each called an elementary decision rule. Each rule

determines the output (class) value of CAR for that specific arguments.

Figure 3: Decision table associated with the CAR attribute (from Figure 1).

In general terms, a decision table 𝑇𝑥 , 𝑥 ∈ 𝑌, represents the mapping

𝑇𝑥: space 𝑆(𝑥) → scale 𝑥.

𝑇𝑥 consists of elementary decision rules

rules 𝑇𝑥 = {𝑟𝒙, ∀𝒙 ∈ space 𝑆(𝑥)}

where each rule

𝑟𝒙: 𝒙 ∈ space 𝑆(𝑥) → 𝑐 ∈ scale 𝑥.

Notice that according to ∀𝒙 above, the table is complete.

For notational convenience, 𝑥(𝑟) ∈ space 𝑆(𝑥) shall denote the conditional part of rule 𝑟, and 𝑐(𝑟) ∈

scale 𝑥 the class assigned by that rule to 𝑥. The notation 𝑟𝑖, 𝑖 ∈ ℕ+, denotes the 𝑖-th rule in some given

decision table.

We also make the following assumptions:

• scale 𝑥 = {𝐶1, 𝐶2, … , 𝐶𝑚};

• all the involved scales (of 𝑥 and 𝑆(𝑥)) are preferentially ordered and ascending;

• the table is preferentially consistent, i.e., it obeys the principle of dominance:

∀𝑟, 𝑝 ∈ rules 𝑇: 𝑥(𝑟) ≼ 𝑥(𝑝) ⇒ 𝑐(𝑟) ≼ 𝑐(𝑝).

Here, the dominance relation 𝒙1 ≼ 𝒙2, where 𝒙1, 𝒙2 ∈ space 𝑆(𝑥) are conditional parts of two rules,

is defined by pairwise argument-by-argument comparison:

𝒙1 ≼ 𝒙2 ⟺ 𝑥1,𝑖 ≼ 𝑥2,𝑖, 𝑖 = 1,2, … , |𝑆𝑥|

When this relation holds, 𝒙2 is said to dominate 𝒙1, and 𝒙1 is dominated by 𝒙2.

For the purpose of ranking, we shall also add another column to 𝑇𝑥, consisting of a vector of numeric

values, individually denoted 𝑞(𝑟) ∈ ℝ. Figure 4 illustrates these notational conventions.

8

Figure 4: Notational conventions: A decision table with associated numeric values.

4.2 Using Preferential Dominance for Ranking

Now we can define the ranking task:

Given:

• A DEX model 𝑀,

• a set of alternatives 𝒜 = {𝐴1, 𝐴2, … , 𝐴𝑞},

• which are already fully evaluated by 𝑀 so that 𝐴𝑖 = [𝑎𝑥,𝑖 ∈ scale 𝑥 , ∀𝑥 ∈ 𝑋], 𝑖 = 1,2, … , 𝑞.

Let 𝒜𝑥(𝐶) ⊆ 𝒜 denote the subset of alternatives that were sorted to some class 𝐶 ∈ scale 𝑥:

𝒜𝑥(𝐶) = {𝐴 ∈ 𝒜: 𝐸𝑥(𝐴) = 𝐶}, 𝑥 ∈ 𝑌.

Accordingly, all alternatives in 𝒜𝑥(𝐶) are evaluated by the same qualitative value 𝐶 on 𝑥. When

scale 𝑥 = [𝐶1, 𝐶2, … , 𝐶𝑚], 𝒜 is partitioned to distinct 𝒜𝑥(𝐶𝑖), 𝑖 = 1,2, … , 𝑚.

Usually, 𝑥 is assumed to be the root of 𝑀, but the approach applies equally well to any other aggregate

attribute in the model.

Then, for some attribute 𝑥 ∈ 𝑌 and each of its values 𝐶 ∈ scale 𝑥:

Rank alternatives: Establish an order of alternatives in 𝒜𝑥(𝐶) with respect to relation ‘≼’.

In other words, the task is to rank alternatives within each evaluation class 𝐶. A total order is preferred,

but partial order is also acceptable. The inter-class ranking established according to preferentially

ordered qualitative values of 𝑥 should be preserved.

Exact requirements for such rankings are defined later in section 4.3. But first let us see how to rank,

at least partially, decision rules in a given decision table. Such ranking provides and important building

block for ranking of alternatives at a global model level.

Consider decision table CAR in Figure 3. There, decision rules map input arguments to qualitative

values (classes) of CAR: rules 1, 2, 3, 4, and 9 to “unacc”, rule 6 to “acc”, rules 7 and 10 to “good”, and

rules 8, 11, 12 to “exc”. Consider rules 11 and 12. Even though that they both map to the same “exc”

class, they still represent two preferentially different situations. Conditional parts of these rules are

𝑥(𝑟11) = [low, good], 𝑥(𝑟12) = [low, exc].

 q

0.70

0.90

1.10

1.30

1.00

2.00

3.00

3.83

1.20

3.00

3.83

4.17

9

A pairwise comparison of these vectors gives 𝑙𝑜𝑤 = 𝑙𝑜𝑤 and 𝑔𝑜𝑜𝑑 ≼ 𝑒𝑥𝑐, which can be, according to

the principle of dominance, generalized to 𝑥(𝑟11) ≼ 𝑥(𝑟12) and further to 𝑟11 ≼ 𝑟12. Notice that some

rules cannot be related in this way, for instance 𝑥(𝑟4) = [high, exc] and 𝑥(𝑟5) = [medium, bad],

where pairwise comparison gives the opposite relations: high ≼ medium and exc ≽ bad;

consequently, the relation ‘≼’ does not hold (in any direction) for 𝑟4 and 𝑟5. In general, decision rules

can be therefore only partially ranked according to the principle of dominance.

Following these principles, the decision rules in Figure 3 can be ranked as follows:

For 𝐶 = “unacc”: 𝑟1 ≼ 𝑟2 ≼ 𝑟3 ≼ 𝑟4 and 𝑟1 ≼ 𝑟5 ≼ 𝑟9.

For 𝐶 = “acc”: there is only 𝑟6.

For 𝐶 = “good”: there are only 𝑟7 and 𝑟10, unrelated.

For 𝐶 = “exc”: 𝑟8 ≼ 𝑟12 and 𝑟11 ≼ 𝑟12.

Why are these rankings important? When two alternatives 𝐴𝑎 and 𝐴𝑏 are evaluated to the same class

𝐶 by two different rules of some decision table, say 𝑟𝑎 and 𝑟𝑏, so that 𝑟𝑎 ≼ 𝑟𝑏, we can assume that

𝐴𝑎 ≼ 𝐴𝑏 in the context of that decision table. In other words: despite that the alternatives have been

assigned to the same qualitative class 𝐶, we may still be able to rank them within 𝐶.

Instead of using the relation ‘≼’ directly, we rather introduce the numeric evaluation of decision rules,

which assigns some numeric value 𝑞𝑟 ∈ ℝ to each rule 𝑟 ∈ 𝑇. Collectively, the vector of such

assignments is denoted 𝑞(𝑇) and added as a new column to 𝑇. The difference between using relation

‘≼’ directly on rules and relation ‘≤’ on 𝑞(𝑇) is that ‘≤’ defines a total rather than partial order. This

introduces an implicit assumption that decision rules that do not preferentially dominate one another

can still be compared. Notice that the 𝑞(𝑟) values in Figure 4 already reflect the partial rule orders

identified above.

4.3 Requirements for the Ranking Method

Following the observations from the previous section, let us gradually define requirements for the

ranking method and values 𝑞(𝑟) assigned to decision rules.

Requirement 1: Automatic construction 𝑞(𝑇) should be determined automatically from information

already available in 𝑇; no additional input is required from the decision maker.

In principle, it is possible to imagine an approach that would enable users to fully define 𝑞(𝑇) on their

own. In addition to formulating the column 𝑐(𝑟), this would require formulating another column 𝑞(𝑟).

Knowing that the first task is already quite demanding in DEX, it is unlikely that decision makers would

like to attempt the second one. Considering that decision tables already contain some preferential

ordering information, it seems more feasible to use that information “for free”, provided that we

accept some assumptions, as detailed below.

Requirement 2: Preserving dominance 𝑞(𝑇) should preserve the preferential order of rules

established according to the principle of dominance:

∀𝑟, 𝑝 ∈ rules 𝑇 : 𝑟 ≼ 𝑝 ⇒ 𝑞(𝑟) ≤ 𝑞(𝑝).

Requirement 3: Consistency of qualitative and numeric evaluations

∀𝑟 ∈ rules 𝑇 : 𝑐 = ord 𝑐(𝑟) ⇒ 𝑞(𝑟) ∈ [𝑐 − 0.5, 𝑐 + 0.5].

10

This requirement is based on the idea already proposed with QQ (Bohanec, et al, 1992): to present

evaluations in the form 𝐶 ± 𝜔, where 𝐶 represents the qualitative value, and 𝜔 ∈ [−0.5, +0.5] is a

numerical offset to that value. The offsets −0.5 and +0.5 are in the context of 𝐶 interpreted as

“particularly bad” and “particularly good”, respectively.

Several notational variations are possible:

• Keeping 𝐶 in its original qualitative form, i.e., using the notation 𝐶 ± 𝜔. Examples: CAR=”exc”−0.3

would have been considered excellent, but worse than CAR=”exc”+0.2.

• Using ordinal numbers in place of 𝐶, but explicitly displaying both components: the above

examples are transformed to 4 − 0.3 and 4 + 0.2, considering that ord exc = 4.

• Adding up the ordinal number and offset: 3.7 and 4.2. This gives a very compact notation which

indicates both the ordinal number and the [−0.5, +0.5] offset around it.

The only drawback of the latter notation arises when dealing with numbers that fall exactly midway

between two integers, such as 3.5. For those, we still need to explicitly indicate the class, or assure

that all the offsets stay in the range (−0.5, +0.5). Class information is not needed in decision tables

that display both columns 𝑐(𝑇) and 𝑞(𝑇) side by side, such as in Figure 14.

The rationale for using values with offsets is because 𝑐(𝑇) is considered a primary evaluation, acquired

from the decision maker while defining the table 𝑇. Then, 𝑞(𝑇) is secondary and should reflect 𝑐(𝑇).

Conversion between 𝑐(𝑇) and 𝑞(𝑇) is easy, except for rare cases indicated above. 𝑞(𝑇) formulated in

this way can be used for both ranking of rules or alternatives within some class and across different

classes. The interpretation of negative and positive 𝜔 values is simple and easy to understand.

Requirement 4: Compatibility of input and output evaluations in model hierarchy

So far, we have stayed in the context of a single decision table. However, a DEX model is structured

hierarchically and decision tables are stacked one above the other in the hierarchy. This puts very

strong requirements on the form and characteristics of 𝑞(𝑇). Consider the situation in Figure 5, which

shows the top two levels of the CAR model together with three corresponding decision tables.

According to the requirements formulated above, the top-level decision table is expected to yield

output values that can be assigned to the CAR attribute. Those outputs consist of qualitative values

𝑐(𝑇) ∈ scale 𝐶𝐴𝑅 and numeric values 𝑞(𝑇) ∈ [ord 𝑢𝑛𝑎𝑐 − 0.5, ord 𝑒𝑥𝑐 + 0.5] = [0.5,4.5]. However,

there are two decision tables below CAR, and they are also required to yield a pair of values, qualitative

and numeric, within boundaries determined by each table context. Therefore, any evaluation or

ranking algorithm on the CAR level should accept input values from lower levels in the form 𝑐 ± 𝜔. For

instance, 𝑞(𝑇𝐶𝐴𝑅) must be able to accept the inputs PRICE=high − 0.5 and TECH.CHAR.=bad − 0.5.

These values would trigger the CAR rule 𝑟1 = [high,bad] → unacc, but would also require the

evaluation of 𝑞(high − 0.5, 𝑏𝑎𝑑 − 0.5) = 𝑞(1 − 0.5,1 − 0.5) = 𝑞(0.5,0.5), which, according to

Requirement 3, has to stay in the interval [unacc − 0.5,unacc + 0.5].

This requirement effectively replaces our previous assumption that 𝑞 maps decision rules to ℝ. In fact,

we need a numeric evaluation function

𝑄𝑇: ℝ𝑘 → ℝ,

where 𝑘 is the number of arguments of 𝑇, and 𝑄𝑇 fulfils the requirements and boundaries identified

above.

An important side effect of this requirement is that values of alternatives that correspond to basic

attributes, can also be generalized to using the 𝑐 ± 𝜔 values. For instance, SAFETY is a basic attribute

11

in Figure 1. Instead of using just the qualitative values “small”, “medium” and “high”, as in regular DEX,

we can now modify them by offsets, such as SAFETY=“medium”+0.1. The function 𝑄TECH.CHAR. is able

to accept such input values.

Figure 5: Hierarchical composition of decision tables in the CAR model.

With the requirements formulated so far, there are still plenty of possibilities of how to define the

function 𝑄𝑇. The following requirement adds an assumption, which might not be (entirely) in line with

decision-maker’s preferences and expectations, but allows to formulate the construction of 𝑄𝑇 as an

optimization problem that generates unique solutions.

Requirement 5: Separate decision rules as much as possible for better discrimination between

alternatives

First, this means that the smallest and largest 𝑄𝑇𝑥
 value for each class 𝐶 ∈ scale 𝑥 should be in the

range [𝑐 − 0.5, 𝑐 + 0.5]. For instance, the smallest value of 𝑄 ≡ 𝑄𝑇CAR
 for CAR class “unacc” is

from rule 1: 𝑄(high − 0.5,bad − 0.5) = 𝑄(1 − 0.5,1 − 0.5) = 𝑄(0.5,0.5) = 0.5.

The largest value for class “exc” is then

from rule 12: 𝑄(low + 0.5,exc + 0.5) = 𝑄(3 + 0.5,4 + 0.5) = 𝑄(3.5,4.5) = 4.5.

CAR

PRICE TECH.CHAR.

BUY.PRICE COMFORT SAFETYMAINT.PRICE

12

Second, we need to introduce some distance measure 𝑑(𝑟, 𝑝) between all pairs of rules 𝑟, 𝑝 that map

to some 𝐶. And third, we need to maximize the cumulative distances between pairs of preferentially

related rules. The following section elaborates on these points.

5 Ranking Algorithm QQ2
Inputs:

• Decision table 𝑇𝑥 , 𝑥 ∈ 𝑌

• Class 𝐶 ∈ scale 𝑥

• Rule subset 𝑅𝐶 = {𝑟 ∈ rules 𝑇𝑥 : 𝑐(𝑟) = 𝐶}

Notation:

• Indices of rule in 𝑅𝐶 : 1,2, … , 𝑛

• Rule conditions from 𝑅𝐶 : {𝒙1, 𝒙2, … , 𝒙𝑛}

• 𝑞(𝑇𝑥) evaluations, corresponding to individual rules: 𝑞1, 𝑞2, … , 𝑞𝑛 ∈ ℝ

Output:

𝑞1, 𝑞2, … , 𝑞𝑛 determined according to Requirements 1–5.

Let us also define:

• Adjacent rule pairs: 𝐿 = {(𝑖, 𝑗): 𝒙𝑖 ≼ 𝒙𝑗, 𝑖, 𝑗 ∈ 1,2, … , 𝑛, 𝑗 > 𝑖, ∄𝒙𝑘: 𝒙𝑖 ≼ 𝒙𝑘 ≼ 𝒙𝑗};

• Neighbors of rule 𝑖: 𝑁𝑖 = {𝑗: (𝑖, 𝑗) ∈ 𝐿 ∨ (𝑗, 𝑖) ∈ 𝐿}.

Figure 6: Determining 𝑞(𝑇𝐶𝐴𝑅) for 𝑐 = “unacc”.

An example situation is shown in Figure 6: we want to determine 𝑞(𝑟) for all 𝑟 ∈ 𝑅𝑢𝑛𝑎𝑐𝑐 . The rules that

map to CAR=”unacc” are in Figure 6 indexed 1, 2, 3, 4, 5, and 9, but conveniently renumbered to 1–6

in this example, 𝑛 = 6. Considering the principle of dominance, the six rules form the lattice shown in

Figure 7. This is just a different representation of relations already identified in section 4.2. For this

example, 𝐿 = {(1,2), (2,3), (3,4), (1,5), (5,6))} and 𝑁2 = {1,3}.

In order to prepare the lattice for optimization, two elements are added, 𝑞𝐿 = 0 and 𝑞𝑈 = 𝑢, which

determine the lower and upper bounds, respectively, of 𝑞1, 𝑞2, … , 𝑞𝑛. The value 𝑢 depends on the

algorithm, but should be large enough to assure that we can constrain the separation between any

𝑞𝑖, 𝑞𝑗, (𝑖, 𝑗) ∈ 𝐿 to 𝑞𝑗 − 𝑞𝑖 ≥ 1. A good value for 𝑢 is the length of the longest path in the lattice.

DEXi 12.6.19 Page 1

Decision rules

 PRICE TECH.CHAR. CAR
 1 high bad unacc
2 high acc unacc
3 high good unacc
4 high exc unacc
5 medium bad unacc
6 medium acc acc
7 medium good good
8 medium exc exc
9 low bad unacc

10 low acc good
11 low good exc
12 low exc exc

 q

0.70

0.90

1.10

1.30

1.00

2.00

3.00

3.83

1.20

3.00

3.83

4.17

13

Having set the lattice (Figure 7), it is now clear what to do: place 𝑞1, … , 𝑞𝑛 evenly between 𝑞𝐿 and 𝑞𝑈,

considering all lattice branches.

Figure 7: Partial order of CAR decision rules that map to 𝐶 = “unacc”.

In the context of the lattice, we consider 𝑞𝐿 and 𝑞𝑈 regular elements and include them in 𝑁𝑖 if they are

located near element 𝑞𝑖. Therefore, 𝑁1 = {2, 5, 𝐿}, 𝑁4 = {3, 𝑈}, and 𝑁6 = {5, 𝑈}.

On this basis, we can formulate the task as a quadratic optimization problem with constraints:

minimize the sum of squares of distances between pairs of 𝑞’s in 𝐿:

Variables: 𝑞0 = 𝑞𝐿, 𝑞1, 𝑞2, … , 𝑞𝑛, 𝑞𝑛+1 = 𝑞𝑈

Minimize ∑ (𝑞𝑗 − 𝑞𝑖)2 = ∑ (|𝑁𝑖|𝑞𝑖
2 − 2 ∑ 𝑞𝑖𝑞𝑗

𝑛+1
𝑗=0)𝑛+1

𝑖=0(𝑖,𝑗)∈𝐿

with respect to constraints:

𝑞0 = 0

𝑞𝑗 − 𝑞𝑖 ≥ 1 for ∀(𝑖, 𝑗) ∈ 𝐿

The value of 𝑞𝑈 = 𝑞𝑛+1 is determined as part of the solution and need not be specified in advance.

After solutions 𝑞1, 𝑞2, … , 𝑞𝑛 , 𝑞𝑛+1 have been obtained, they have to be scaled so as to satisfy

Requirements 4 and 5. This is done by placing a ±0.5 rectangle around each rule point (Figure 8), and

assuring, for each class 𝐶 ∈ scale 𝑥, that the lowest and highest corner of the corresponding surfaces

are at 𝑐 − 0.5 and 𝑐 + 0.5, respectively. When the distances between adjacent rules are greater than

the minimum distance for that class, the corresponding rectangles can be additionally slanted to

increase separation between alternatives; such an example is located in Figure 8 around the point

PRICE=”medium” and TECH.CHAR.=”bad”.

For the CAR example, this algorithm, applied to all classes, gives results shown in the 𝑞(𝑟) column of

Figure 6. The function 𝑄𝑇 is defined as a collection of hyperplanes constructed around the ±0.5

neighborhood of each rule, as illustrated in Figure 8.

3: (high, good)

2: (high, acc)

1: (high, bad)

5: (medium, bad)

4: (high, exc) 6: (low, bad)

14

Figure 8: Algorithm QQ2: Graphical representation of 𝑄𝑇𝐶𝐴𝑅
.

Figure 9: Algorithm QQ: Graphical representation of 𝑄𝑇𝐶𝐴𝑅
.

6 Other Algorithms
In order to experimentally evaluate QQ2, we used two other algorithms for comparison: the original

QQ algorithm and a variation of QQ2 using a linear rather than a quadratic optimization model.

6.1 Algorithm QQ

Algorithm QQ has been proposed by Bohanec, et al. (1992) as the first DEX approach to ranking of

decision alternatives. QQ constructs similar hyperplanes as QQ2 (Figure 9), but in a different way. It

considers decision rules as points in a multi-dimensional space. First, it constructs a hyperplane that

best, in the least-square sense, approximates all points. The slope of this hyperplane determines

weights (importances, priorities) of arguments 𝑆(𝑥). Second, the hyperplane is partitioned for each

class 𝐶 ∈ scale 𝑥, so that the attribute weights are retained, while assuring the bounds 𝑐 − 0.5 and

𝑐 + 0.5 in the same way as in QQ2.

15

Consequently, all QQ hyperplane partitions are slanted in the same way; in Figure 9, the weight ratio

between PRICE and TECH.CHAR. is 60:40, which determines the slopes of all hyperplanes in each

direction.

QQ is very simple and convenient to implement, but has three drawbacks that eventually motivated

the development of QQ2:

• QQ relies on weights. Using weights assumes that decision tables, interpreted as points in a multi-

dimensional space, can be approximated well by linear functions. This may or may not hold for a

given decision table. The ranking of alternatives is expected to work for all kinds of decision tables,

and QQ is not suitable for cases other than linear or close-to-linear. In comparison, QQ2 makes no

assumptions about the linearity; it considers only preferential ordering of all involved attributes.

• QQ assumes equal weights for all hyperplane partitions. This leads to sub-optimal separation of

rules. In contrast, QQ2 adapts the orientation of hyperplanes to contexts determined by adjacent

rules.

• QQ does not distinguish between ordered and unordered attributes, and may thus give wrong

results for unordered attributes. In comparison, QQ2 correctly handles unordered attributes, as

shown later in section 8.1.

Figure 10 combines Figure 8 and Figure 9, comparing the results of QQ and QQ2. The differences seem

small, but are essential. For all classes it is clear that QQ2 covers the vertical dimension (which

corresponds to attribute CAR) better than QQ. This is well illustrated with the two hyperplanes that

correspond to CAR=”good”. There, QQ’s hyperplanes are narrower than QQ2’s in the vertical direction.

This is because QQ’s are constrained with the 60:40 weight ratio, while QQ2’s successfully adapts to

the absence of adjacent rules that may have constrained the position of rectangles. Ultimately, this

leads to a better separation of ranked alternatives.

Figure 10: Comparison of QQ (purple) and QQ2 (blue).

6.2 Algorithm QL: Linear Optimization

In section 5, we did not explain why we chose quadratic optimization instead of linear, which is in

principle simpler and may require less computation. The answer is that the quadratic model actually

turned out simpler and more stable, while run times were comparable. Anyway, we did develop the

16

linear optimization model QL and compare it with QQ2. The main issue with QL is that, in addition to

𝑞 variables, we need to introduce additional variables 𝑑1, 𝑑2, … , 𝑑𝑛, which represent average distances

between some 𝑞𝑖 and its neighbors 𝑁𝑖. This increases the size of the optimization problem, as the 𝑑

values need to be determined in the process, too.

QL is formulated as a minimization of the sum of 𝑑 values:

Variables: 𝑞𝐿 , 𝑞1, 𝑞2, … , 𝑞𝑛, 𝑞𝑈, 𝑑1, 𝑑2, … , 𝑑𝑛

Minimize ∑ 𝑑𝑖
𝑛
𝑖=1

with respect to constraints:

𝑞0 = 0

𝑞𝑢 = maxlength 𝐿 − 1

𝑞𝑗 − 𝑞𝑖 ≥ 1 for ∀(𝑖, 𝑗) ∈ 𝐿

𝑑𝑖 ≥ 𝐷𝑖 for 𝑖 = 1, … , 𝑛 where 𝐷𝑖 = |𝑞𝑖 −
1

|𝑁𝑖|
∑ 𝑞𝑗𝑗∈𝑁𝑖

|

There are two issues with this formulation. First, we need to explicitly specify the upper bound 𝑞𝑈 in

terms of the maximum path length in 𝐿. Otherwise, when the bound is too small, no solutions are

found, and solutions are unstable if the bound is too large. Second, the distance 𝐷𝑖 requires calculation

of an absolute value. This cannot be done directly in a linear program solver. Instead, we have to

calculate 𝐷𝑖 without using the absolute value and formulate two constraints instead of one for each 𝑖:

𝑑𝑖 ≥ 𝐷𝑖 and 𝑑𝑖 ≥ −𝐷𝑖.

7 Experimental Evaluation
We implemented the three algorithms QQ, QL, and QQ2 in R, using standard R optimization packages
lpSolve, lpSolveAPI, and quadprog. We experimentally evaluated them on a set of 3322 DEX decision
tables, which were extracted from the database of real-life DEX models (Bohanec, 2017). For each
decision table, we observed:

• Separation: average distance between dominated adjacent points, defined as
1

|𝐿|
∑ |𝑞𝑗 − 𝑞𝑖|(𝑖,𝑗)∈𝐿 ;

• Gaps: average height of the ±0.5 hyperplane rectangles, measured as a maximum vertical
difference between their corners;

• Time: average execution time per decision table.

Table 1: Results of experimental evaluation of QQ, QL, and QQ2.

Measure QQ QL QQ2 Significance

Separation 0.1737442 0.2121548 0.2122702 QQ2 > QL > QQ

Gaps 0.2116411 0.2945648 0.2943672 QL > QQ2 > QQ

Time [ms] 197.95 12.43 8.34

We run the algorithms in R Studio on a desktop computer Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz.
Results (Table 1) indicate that QQ has been outperformed by QL and QQ2 with respect to both
Separation and Gaps; the differences are statistically significant. Differences between QL and QQ2 are
small by absolute values, but are also statistically significant: QQ2 has better separation than QL, and
QL is better in terms of gaps. Considering execution times, QQ turned out more than ten times slower
than the other two algorithms. This can be explained by QQ being implemented entirely in the high-
level R language, while QL and QQ2 used highly optimized machine-level software packages. If QQ had

17

been implemented in the same way, it would likely run just as fast. Among QL and QQ2, the latter is
faster. Anyway, all the algorithms are fast and run in the range of milliseconds per decision table, which
is satisfactory for practical applications.

In addition to the en-masse evaluation, we also looked at individual 𝑄 mappings produced by the
algorithms. Typical results achieved on some larger decision tables are shown in Figure 11, where the
principle of dominance is obeyed throughout, and Figure 12, where some decision rules violate this
principle, resulting in hyperplanes being scattered among the classes.

Figure 11: Comparison of QQ, QL and QQ2 on an aggregation function with two arguments and three classes.

Figure 12: Comparison of QQ, QL and QQ2 on a aggregation function with two arguments and three classes.

The following can be observed from these figures:

• All QQ’s slopes are indeed drawn according to the constant weight(𝑋2):weight(𝑋1) ratio and form
connected per-class hyperplanes whenever possible.

• Consequently, this limits QQ to achieve the full vertical ranges available for each class. For
example, the highest point on the very left part of the “red” hyperplane in Figure 11, is much lower
with QQ than with QL and QQ2.

• Considering the coverage of the vertical space, QL and QQ2 perform much better than QQ, which
is in line with the results shown in Table 1.

Results of QL and QQ2 are very similar. On the one hand, large parts of the corresponding 𝑄’s are
equal. This happens when 𝑞𝑖 points lie on the longest path between 𝑞𝐿 and 𝑞𝑈. Consequently, there

18

are no degrees of freedom to move 𝑞𝑖 around the lattice, and the corresponding rectangles are fixed,
forming a nicely increasing slope, which is fully connected in Figure 11 and partly disconnected in
Figure 12. On the other hand, there are small differences between QL and QQ2, marked with blue ovals
in the two figures; they are due to using different (linear versus quadratic) optimization measures.

8 Implementation

8.1 Implementation Considerations for Practice

In section 4.1, we made three assumptions about DEX decision tables:

• they are complete,

• each decision rule maps to exactly one class, and

• all the involved attributes have ascending scales.

While DEX decision tables are always complete, the latter two assumptions are not generally true. Any
realistic implementation must address them properly. Here is how we can handle those cases.

Mapping to multiple classes. In general, a DEX decision rule is allowed to map to multiple classes
instead of just one:

𝑟𝒙: 𝒙 ∈ space 𝑆(𝑥) → {𝐶, 𝐶 ∈ scale 𝑥}

This does not pose a difficult problem, because all the considered algorithms work on a per-class basis.
When considering some class 𝐶, the algorithms traverse through all rules that map to that class. A rule
that maps to multiple classes is just considered several times, once per each class. Figure 13 shows an
example where the rule [BUY.PRICE=“low”, MAINT.PRICE=“medium”] maps to two classes: “medium”
and “low”. Separate hyperplanes are generated for each class, not disturbing each other.

Figure 13: Example of a decision rule mapping to multiple classes.

Evaluating alternatives on this basis globally in the model is more complicated, though. An alternative
evaluated to multiple classes receives multiple assignments, where each assignment is of the 𝑐 ± 𝜔
type. In the above example, some alternative may be evaluated as PRICE= {“medium”+0.17, “low”–
0.17}.

Considering descending attribute scales. Any descending attribute scale can be turned to an ascending
one by reversing the order of scale values. Although explicitly accounting for descending scales

19

complicates the mathematical treatment, it is merely a minor inconvenience that demands attention
in a practical implementation.

Considering unordered attribute scales. This is a more difficult issue. When the scale of the class
variable is unordered, then the whole concept of ranking becomes meaningless: we cannot really rank
alternatives into unordered classes. One might argue that values 𝑐 − 0.5 and 𝑐 + 0.5 can still be
interpreted as “bad” and “good”, respectively, in the context of 𝐶. But then, how can we compare the
numeric values 1.2 and 3.2 when the classes 1 and 3 are just labels, not numbers that can be
compared? Consequently, ranking should not be applied with unordered classes.

However, it is still possible to rank alternatives when decision table arguments involve a combination
of ordered and unordered attributes. In this case, we may partition the whole decision table into
smaller sub-tables that depend only on ordered attributes; we construct such a sub-table for each
combination of values that correspond to unordered attributes. For instance, if the original table has
three attributes, two ordered and one unordered with three values, then we construct three sub-
tables, one for each value of the unordered attribute. Then, we solve the ranking problem separately
for each sub-table.

Or alternatively, we may reformulate the principle of dominance (section 4.1) and redefine the relation
‘≼’ so that it disregards unordered arguments:

𝒙1 ≼ 𝒙2 ⟺ 𝑥1,𝑎 ≼ 𝑥2,𝑎, ∀𝑎 ∈ 𝑆(𝑥): order 𝑎 ≠ unordered.

When all arguments are unordered, then ranking is again impossible, and none of the considered
algorithms can handle this situation. Actually, QQ might generate some solution (provided that it can
calculate attribute weights from points scattered all over the unordered space), but the result would
likely be inappropriate and useless.

8.2 Current Implementation

While ranking has been largely left out from the mainstream DEX software for many years, it has been
recently implemented in the software DEXiWin2 (Bohanec, 2024). There are three functionalities
available to the user:

1. Calculating and presenting 𝑞-values for each decision table. Figure 14 shows an example where

the class column (CAR) is accompanied with QQ (called QQ1 in DEXiWin) and QQ2 offsets. The
column Linear shows the results of linear approximation in each rule point; these are used to
determine attribute weights in QQ, but are otherwise not relevant in the scope of this report.

2. Drawing charts of 𝑞-values for both QQ and QQ2. Examples of these are shown in Figures 8, 9, 10
and 13.

3. Evaluating alternatives using QQ2: Figure 15 shows the results of such evaluation of the six cars,
qualitatively evaluated in Figure 2. While qualitative evaluations are exactly the same as before,
the cars are additionally ranked within these classes. Among the excellent cars 1, 5, and 6, the
latter appears the best, evaluated with the offset +0.14. Among the two bad cars, numbered 3
and 4, Car4 appears better with the offset +0.32. Notice that QQ2 evaluations also appear at the
lower model levels (PRICE, TECH.CHAR. and COMFORT), providing additional information about
the rankings achieved at those levels.

2 https://dex.ijs.si/dexisuite/dexiwin.html

20

Figure 14: Elementary decision rules with the corresponding value offsets.

Figure 15: Six cars evaluated in DEXiWin using QQ2.

9 Conclusion
In this study, we investigated ways of extending the capabilities of DEX, which is basically a sorting
MCDM method, towards ranking. Specifically, we wanted to improve the old, but still state-of-the-art
algorithm QQ (Bohanec, 1992) by addressing its weaknesses: the need to calculate attributes’ weights,
assuming equal weight ratios for all classes, and inability to properly consider unordered attributes.

The proposed novel algorithms, QQ2 and QL, build on the same idea as QQ: they evaluate decision
alternatives in parallel using both a qualitative (class) evaluation and numeric evaluation, which is used
to rank alternatives within each class. The two evaluations are kept consistent with each other,
employing the 𝑐 ± 𝜔 representation of evaluation results, where C is the class, 𝑐 = ord 𝐶, and 𝜔 is a
numeric ±0.5 offset within the class.

In contrast with QQ, QQ2 and QL do not rely on the concept of attribute weights. Instead, they employ
optimization models to separate decision rules as far apart as possible: QQ2 uses a quadratic and QL a
linear optimization model. In this way, they achieve significantly better results in terms of separation
and gap size in comparison with QQ. Also, they can properly handle unordered attributes.

By any means, QQ2 and QL are very similar to each other: they run fast and yield very similar results.
They differ very little only in the “free” areas of the decision-rule space, i.e., decision rules that lie
outside the longest paths of rule lattices. Despite that QQ2 has a somewhat more complex formulation
of the optimization measure than QL, and employs quadratic rather than linear optimization algorithm,
we chose it for implementation in DEXiWin for other advantageous characteristics: simple constraints
and elegant formulation using squared distances, which are never negative, and require just a half of
optimization variables and constraints than QL. Furthermore, QQ2 does not require setting up the
upper bound 𝑞𝑈. In all experiments, it turned out very stable and non-problematic.

Overall, all the considered algorithms effectively bring the ranking functionality to DEX. Furthermore,
they require no additional actions on behalf of the user (decision maker), as all information needed for
ranking is extracted from existing decision tables and decision rules. However, this is a double-edged

21

sword. On one hand, it is given “for-free”, and this is really convenient in practice. On the other hand,
it makes assumptions about the user’s preferences; the main assumptions are that preferentially
related adjacent rules are separated by the same “preferential” distance all over the decision space,
and that this distance needs to be maximized in order to separate evaluated alternatives as much as
possible. This may or may not be true, and is not being verified with the user by any of the studied
algorithms. The only way to do that is to explicitly ask the user if she or he agrees with offsets assigned
to decision rules (such as the column QQ2 in Figure 14). In the case of disagreement, the user should
be allowed to change the offsets (possibly overviewed by the software to keep the values within
consistent boundaries). Although this might turn out a difficult task for the user, it is a relevant research
topic for the future.

10 References

Belton, V., Stewart, T. J. (2002). Multiple Criteria Decision Analysis: An Integrated Approach. Springer.
https://doi.org/10.1007/978-1-4615-1495-4.

Bohanec, M., Urh, B., Rajkovič (1992), V.: Evaluating options by combined qualitative and quantitative
methods. Acta Phychologhica 80, 67–89. https://kt.ijs.si/MarkoBohanec/pub/ActaPsych1992.pdf.

Bohanec, M. (2017): Multi-criteria DEX models: An overview and analysis. SOR-2017: 14th International
Symposium on Operational Research in Slovenia, Bled, Slovenia, September 27-29, 2017 (eds. Zadnik
Stirn, L., et al.), Ljubljana: Slovenian Society Informatika, Section for Operational Research, 155–160.
https://kt.ijs.si/MarkoBohanec/pub/2017_SOR_DEXmodels.pdf.

Bohanec, M.: DEX (Decision EXpert) (2022): A qualitative hierarchical multi-criteria method. In:
Multiple Criteria Decision Making (ed. Kulkarni, A.J.), Studies in Systems, Decision and Control 407,
Singapore: Springer, 39–78. https://doi.org/10.1007/978-981-16-7414-3.

Bohanec, M. (2024): DEXiWin: DEX Decision Modeling Software, User’s Manual, Version 1.2. Institut
Jožef Stefan, Delovno poročilo IJS DP-14747, 2024.
https://kt.ijs.si/MarkoBohanec/pub/2024_DP14747_DEXiWin.pdf.

Brelih, M., Rajkovič, U., Ružič, T., Rodič, B., Kozelj, D. (2019): Modelling decision knowledge for the
evaluation of water management investment projects. Central European Journal of Operations
Research 27, 759–781. https://link.springer.com/article/10.1007/s10100-018-0600-5.

Ferreira de Lima Silva, D., Ferreira, L., Teixeira de Almeida-Filho, A. (2020): A new preference
disaggregation TOPSIS approach applied to sort corporate bonds based on financial statements and
expert's assessment, Expert Systems with Applications, 152, 2020.
https://doi.org/10.1016/j.eswa.2020.113369.

Greco, S., Ehrgott, M., Figueira, J. (Eds.) (2016): Multi Criteria Decision Analysis: State of the art Surveys.
New York: Springer. http://dx.doi.org/10.1007/978-1-4939-3094-4.

Kadziński, M., Greco, S., Słowiński, R. (2014): Robust Ordinal Regression for Dominance-based Rough
Set Approach to multiple criteria sorting, Information Sciences, 283, 2014.
https://doi.org/10.1016/j.ins.2014.06.038.

Liu, J., Kadziński, M., Liao, X., Mao, X., Wang, Y. (2020): A preference learning framework for multiple
criteria sorting with diverse additive value models and valued assignment examples, European Journal
of Operational Research, 286(3), 2020. https://doi.org/10.1016/j.ejor.2020.04.013.

https://doi.org/10.1007/978-1-4615-1495-4
https://kt.ijs.si/MarkoBohanec/pub/ActaPsych1992.pdf
https://kt.ijs.si/MarkoBohanec/pub/2017_SOR_DEXmodels.pdf
https://doi.org/10.1007/978-981-16-7414-3
https://kt.ijs.si/MarkoBohanec/pub/2024_DP14747_DEXiWin.pdf
https://link.springer.com/article/10.1007/s10100-018-0600-5
https://doi.org/10.1016/j.eswa.2020.113369
http://dx.doi.org/10.1007/978-1-4939-3094-4
https://doi.org/10.1016/j.ins.2014.06.038
https://doi.org/10.1016/j.ejor.2020.04.013

22

López, L.M., Ishizaka, A., Qin, J., Carrillo, P.A.Á. (2023): Multi-Criteria Decision-Making Sorting Methods.
London: Academic Press. ISBN: 978-0-323-85231-9.

Mileva Boshkoska, B., Bohanec, M. (2012): A method for ranking non-linear qualitative decision
preferences using copulas. International Journal in Decision Support System Technology 4(2), 42–58
(2012) http://dx.doi.org/10.4018/jdsst.2012040103.

Roy, B. (1996). Multicriteria Methodology for Decision Aiding. Springer. https://doi.org/10.1007/978-
1-4757-2500-1.

Roy, B. (2016): Paradigms and challenges. In: Greco, S., Ehrgott, M., Figueira, J. (eds.) Multi Criteria
Decision Analysis: State of the Art Surveys. Springer, New York. http://dx.doi.org/10.1007/978-1-4939-
3094-4.

Ru, Z., Liu, J., Kadziński, M., Liao, X. (2023): Probabilistic ordinal regression methods for multiple criteria
sorting admitting certain and uncertain preferences, European Journal of Operational Research,
311(2), 2023. https://doi.org/10.1016/j.ejor.2023.05.007.

Yatsalo, B., Radaev, A., Haktanir, E., Skulimowski, A.M.J., Kahraman, C. (2024): A family of fuzzy multi-
criteria sorting models FTOPSIS-Sort: Features, case study analysis, and the statistics of distinctions,
Expert Systems with Applications, 237(B), 2024. https://doi.org/10.1016/j.eswa.2023.121486.

Wang, L., Zhang, Z.-X., Ishizaka, A., Wang, Y.-M., Martínez, L. (2023): TODIMSort: A TODIM based
method for sorting problems, Omega, 115, 2023. https://doi.org/10.1016/j.omega.2022.102771.

http://dx.doi.org/10.4018/jdsst.2012040103
https://doi.org/10.1007/978-1-4757-2500-1
https://doi.org/10.1007/978-1-4757-2500-1
http://dx.doi.org/10.1007/978-1-4939-3094-4
http://dx.doi.org/10.1007/978-1-4939-3094-4
https://doi.org/10.1016/j.ejor.2023.05.007
https://doi.org/10.1016/j.eswa.2023.121486
https://doi.org/10.1016/j.omega.2022.102771

23

Appendix 1: Notation

DEX Model 𝑀 = (𝑋, 𝐷, 𝑆, 𝐹)

Attributes 𝑋 = {𝑥𝑖, 𝑖 = 1, … , 𝑛}

 Aggregate attributes (outputs) 𝑌 = {𝑥 ∈ 𝑋: 𝑆(𝑥) ≠ ∅}

 Basic attributes (inputs) 𝑍 = {𝑥 ∈ 𝑋: 𝑆(𝑥) = ∅}

Scales 𝐷 = {scale 𝑥𝑖 |𝑥𝑖 ∈ 𝑋}
 Scale scale 𝑥 = [𝑣𝑥,1, 𝑣𝑥,2, … , 𝑣𝑥,𝑚𝑥

]

 Scale order order 𝑥 ∈ {unordered, ascending, descending}
 Decision space space 𝐾 = scale 𝑥1 × scale 𝑥2 × … × scale 𝑥𝑘, 𝑘 = |𝐾|

 Ordinal value ord 𝑣𝑥,𝑖 = 𝑖, 𝑖 = 1,2, … , 𝑚𝑥

Descendant function 𝑆: 𝑋 → 2𝑥

 Parents of 𝑥 𝑃(𝑥) = {𝑝 ∈ 𝑋: 𝑥 ∈ 𝑆(𝑝)}

Aggregation functions 𝐹 = {𝑓𝑥, 𝑥 ∈ 𝑌}
 … associated with 𝑥 ∈ 𝑌 𝑓𝑥: space 𝑆(𝑥) → scale 𝑥

 Function arguments args 𝑓𝑥 = 𝑆(𝑥)

Decision table for 𝑥 ∈ 𝑌 𝑇𝑥: space 𝑆(𝑥) → scale 𝑥
𝑇𝑥 = {𝑟𝑖, 𝑖 = 1,2, … , |space 𝑆(𝑥)|}

 Decision rule 𝑟 ∈ 𝑇𝑥: 𝒙 ∈ space 𝑆(𝑥) → 𝐶 ∈ scale 𝑥

 All elementary rules of 𝑇𝑥 rules 𝑇𝑥 = {𝑟𝒙, ∀𝒙 ∈ space 𝑆(𝑥)}

 Condition of rule 𝑟 𝑥(𝑟) ∈ space 𝑥

 Class assigned by rule 𝑟 𝑐(𝑟) ∈ scale 𝑥

 Class scale in the 𝑇𝑥 context scale 𝑥 = {𝐶1, 𝐶2, … , 𝐶𝑚}

 Numeric value of rule 𝑟 𝑞(𝑟) ∈ ℝ

 Values assigned to rules 𝑞(𝑇) = [𝑞1, 𝑞2, … , 𝑞𝑛] ∈ ℝ𝑛, 𝑛 = |rules 𝑇|

 Numeric evaluation function 𝑄𝑇𝑥
: ℝ𝑘 → ℝ, 𝑘 = |𝑆(𝑥)|

Decision alternatives 𝒜 = {𝐴1, 𝐴2, … , 𝐴𝑞}

Alternative 𝐴𝑖 = [𝑎𝑥,𝑖 ∈ scale 𝑥 , ∀𝑥 ∈ 𝑋]

Input assignment 𝑍(𝐴𝑖) = [𝑎𝑥,𝑖 ∈ 𝐴𝑖, ∀𝑥 ∈ 𝑍]

Output assignment 𝑌(𝐴𝑖) = [𝑎𝑥,𝑖 ∈ 𝐴𝑖, ∀𝑥 ∈ 𝑌]

Evaluation of alternative 𝐴 on 𝑥 𝐸𝑥(𝐴)

Alternatives sorted to some class 𝐶 𝒜𝑥(𝐶) = {𝐴 ∈ 𝒜: 𝐸𝑥(𝐴) = 𝐶}, 𝑥 ∈ 𝑌

Principle of dominance ∀𝑟, 𝑝 ∈ rules 𝑇: 𝑥(𝑟) ≼ 𝑥(𝑝) ⇒ 𝑐(𝑟) ≼ 𝑐(𝑝)

Dominance of rules w.r.t. ‘≼’ 𝒙1 ≼ 𝒙2 ⟺ 𝑥1,𝑖 ≼ 𝑥2,𝑖,

 for 𝑖 = 1, … , |𝑆𝑥|, 𝒙1, 𝒙2 ∈ space 𝑆(𝑥)

Combined qualitative-quantitative value 𝑐 ± 𝜔, where 𝐶 is class, 𝑐 = ord 𝐶 , 𝜔 ∈ [−0.5, +0.5]

Adjacent rule pairs 𝐿 = {(𝑖, 𝑗):
 𝒙𝑖 ≼ 𝒙𝑗, 𝑖, 𝑗 ∈ 1, … , 𝑛, 𝑗 > 𝑖, ∄𝒙𝑘: 𝒙𝑖 ≼ 𝒙𝑘 ≼ 𝒙𝑗}

Neighbors of rule 𝑟𝑖 𝑁𝑖 = {𝑗: (𝑖, 𝑗) ∈ 𝐿 ∨ (𝑗, 𝑖) ∈ 𝐿}

Lower and upper 𝑞 bounds for optimization 𝑞𝐿 , 𝑞𝑈 ∈ ℝ, 𝑞𝐿 < 𝑞𝑈

Adjacent rules separation measure 1

|𝐿|
∑ |𝑞𝑗 − 𝑞𝑖|

(𝑖,𝑗)∈𝐿

