

Marko Bohanec

Target Analysis in

Qualitative Multi-Criteria Decision Modeling Method DEX

IJS delovno poročilo
DP-15020
2025

ii

Abstract

We investigate target analysis algorithms in the context of multi-criteria decision modeling method

DEX (Decision EXpert). Given some decision alternative, target analysis is aimed at finding other

decision alternatives (in terms of value assignments to input attributes), that change the overall

evaluation of the original alternative in a positive or negative direction, and require the least changes

of input values. Target analysis is a combinatorial problem whose search space increases exponentially

with the number of input attributes. In this report, we investigate two algorithms, called BottomUp

and TopDown, which use information contained within DEX models to limit the search space: internal

structure of attributes, value scales of those attributes, and decision rules that govern the evaluation

of alternatives. The two algorithms differ in the direction of constructing candidate solutions.

BottomUp proceeds recursively from inputs toward the outputs, constructing solutions by combining

best solutions found on lower-levels of the model. TopDown begins with the target value to be

achieved at the top level, and then recursively investigates lower-level decision rules that lead to the

corresponding target values. In this study, the two algorithms were experimentally evaluated on 54

DEX models of various sizes and characteristics, and compared with the Exhaustive algorithm which

searches the whole decision space. Exhaustive was found, as expected, applicable to only small models

having about 15 to 20 attributes at most. Both BottomUp and TopDown demonstrated good

performance and were in most cases able to generate solutions in the range of seconds. BottomUp

turned out particularly efficient, but unsuitable for DEX models that use linked attributes. TopDown

seems to provide a good basis for practical implementation.

Keywords

Multi-criteria model, method DEX, target analysis, option generation, white-box algorithms, attribute

tree, attribute hierarchy, decision rules.

iii

Contents
1 Introduction ... 1

2 Preliminaries and Notation ... 2

2.1 Attributes ... 3

2.2 Model Structure .. 3

2.3 Attribute Scales ... 4

2.4 Decision Tables .. 5

2.5 Alternatives ... 5

3 Target Analysis: Aims and Goals .. 6

4 Target Analysis Algorithms .. 7

4.1 Algorithm: Exhaustive ... 7

4.2 Algorithm: BottomUp .. 8

4.3 Algorithm: TopDown ... 11

5 Experimental Evaluation.. 13

6 Implementation Considerations .. 14

7 Conclusion ... 15

8 References ... 17

Appendix 1: Example TopDown Operation ... 18

Inputs ... 18

Trace .. 18

Appendix 2: Experimental Evaluation: Models and Results .. 20

Appendix 3: Notation .. 22

1

1 Introduction

Mathematical and computational models are essential tools for representing, analyzing, and solving
complex real-world problems across various domains (Shiflet, Shiflet, 2014; Humi, 2017). A
computational model contains variables and other components that characterize the system being
studied. Simulations are carried out by adjusting the variables alone or in combination and observing
the outcomes1.

Multi-criteria models are common types of models used In Decision Making and Decision Analysis
(Buede, 2013). A multi-criteria model (Greco, et al., 2016) is a way of evaluating decision alternatives
when there are multiple factors to consider. Instead of looking at just one criterion (like cost or speed),
it takes several aspects into account, often balancing trade-offs between them. One of the key features
of multi-criteria models is that, in addition to evaluating alternatives, they are capable of performing
various types of analyses that support the decision maker in exploring the decision space in order to
better understand the situation, reduce uncertainties and justify the decision. Typical types of analyses
that are available to a decision maker and/or decision analyst are:

• Sensitivity Analysis: Assessing impacts of small changes. Typical approaches include one-factor-at-
a-time, multi-factor and gradient-based sensitivity analysis.

• Stability Analysis: Identifying thresholds for substantial changes of outcomes, such as changes of
alternatives’ ranking.

• Uncertainty Analysis: Assessing effects of imprecise or uncertain data.

• Comparative Analysis: Comparing decision alternatives, and identifying reasons for different
evaluations and/or different rankings.

In this report, we focus on a multi-criteria modelling method DEX (Decision EXpert) and a specific
sensitivity analysis method called Target Analysis. DEX (Bohanec, 2022) is a decision-modeling method
that combines multi-criteria models with some elements of expert systems. The essential
characteristics of DEX are:

• DEX is hierarchical: A DEX model consists of hierarchically structured variables, called attributes;

• DEX is qualitative: All attributes in a DEX model are symbolic, taking values that are generally
words, such as “bad”, “medium”, “excellent”, “low”;

• DEX is rule-based: Decision alternatives are evaluated according to decision rules, acquired from
the decision maker and represented in the form of decision tables.

Target Analysis is a kind of multi-factor analysis for DEX models. Given a DEX model and some
alternative 𝐴0 together with its evaluation (Figure 1), the task is to find one or more assignments of
input attributes 𝐴′ that change the evaluation value to some desired target value. Usually, we want to
change the final evaluation to something better than before, and achieve this with the least changes
of input values from 𝐴0 to 𝐴′.

Target Analysis has only been recently introduced in DEX modeling. The only related scientific
publications that address target analysis algorithms are by Gjoreski, et al. (2020; 2022). There, the
authors recognize the target analysis task as a hard combinatorial problem, which may require
substantial computational resources. The task is compared with counterfactual explanations (Guidotti,
2022), one of the key approaches of Explainable Artificial Intelligence (XAI) to make decisions more
transparent and understandable, helping users to see what factors influenced an outcome and how
they could alter it. The approach of Gjoreski, et al., which is in line with the majority of XAI approaches,

1 https://www.nibib.nih.gov/science-education/science-topics/computational-modeling

2

considers DEX models as “black boxes”: it considers only model’s inputs and outputs, and disregards
any information about its internal structure. The method proposed by Gjoreski, et al. (2022) is called
BAG-DSM (Bayesian Alternative Generator for Decision Support Models) and relies on Bayesian
Optimization in order to find solutions as quickly as possible. BAG-DSM was extensively evaluated on
42 different benchmark models and one real-life model, and was found “[…] suitable for the task, i.e.,
it generated at least one appropriate alternative in less than a minute, even for the most complex
decision models”. A difficult part of the process turned out to be finding the first solution, particularly
when solutions are scarce or may even not exist. Once some solution is found, it usually provides a
suitable basis for further combinatorial search. The BAG-DSM approach is fairly general and can be
used with qualitative model types other than DEX.

Figure 1: The task of Target Analysis.

In this study, we rather take the “white box” (also called “glass box”, “open box” or “transparent”)
approach. We propose two algorithms, called BotomUp and TopDown, that exploit the inner structure
of DEX models, in order to speed-up the search and assure finding all solutions 𝐴′. The disadvantage is
that the algorithms are DEX-specific and cannot be generalized to other model types.

In what follows, we first present DEX models and their components, and introduce the formal notation.
The target analysis is formally defined in section 3. In section 4, the algorithms BottomUp and TopDown
are presented together with the algorithm Exhaustive, which is essentially a “naïve brute-force black-
box” algorithm, used whenever possible for benchmarking and comparison. Results of extensive
testing of the algorithms on 54 models are presented in section 5. Section 6 discusses the current
implementations of target analysis and outlines additional requirements based on practical needs.
Section 7 concludes the report.

2 Preliminaries and Notation
Formally, a DEX model 𝑀 is defined as a four-tuple 𝑀 = (𝑋,𝐷, 𝑆, 𝐹), where 𝑋 is the set of attributes,

𝑆 is the descendant function that determines the hierarchical structure of attributes, 𝐷 is the set of

value scales of attributes in 𝑋, and 𝐹 is the set of aggregation functions (Bohanec, 2022).

Model

...

...

Alternative

Find

Evaluation

3

2.1 Attributes

Attributes 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} are variables that represent observable properties of decision

alternatives (inputs), and partial and overall results of evaluations (outputs). In DEX models, attributes

are usually given unique and meaningful names, such as Price, Productivity, etc. In such cases, the

notation 𝑥𝑖 is conveniently replaced by the corresponding attribute name.

To illustrate formal concepts, we shall use the DEX model called CAR (Figure 2). This is a simple model

for evaluating personal cars, used for educational purposes, referred to in many publications and

distributed with DEX software2. The model contains 𝑛 = 10 attributes (presented in the depth-first

order):

 𝑋 =
{CAR, PRICE, BUY.PRICE, MAINT.PRICE, TECH.CHAR., COMFORT, #PERS, #DOORS, LUGGAGE, SAFETY}.

Figure 2: The structure and components of CAR, a DEX model for evaluating personal cars.

2.2 Model Structure

Attributes in a DEX model are structured hierarchically. The structure is defined by the function 𝑆: 𝑋 →

2𝑥, which associates each 𝑥 ∈ 𝑋 with a set of its descendants 𝑆(𝑥) in the hierarchy. The function 𝑆 is

assumed to be defined so that it forms a hierarchy, i.e., a connected directed graph without cycles.

For CAR, 𝑆 is defined as follows:

• 𝑆(𝐶𝐴𝑅) = {𝑃𝑅𝐼𝐶𝐸, 𝑇𝐸𝐶𝐻. 𝐶𝐻𝐴𝑅. },

• 𝑆(𝑃𝑅𝐼𝐶𝐸) = {𝐵𝑈𝑌. 𝑃𝑅𝐼𝐶𝐸,𝑀𝐴𝐼𝑁𝑇. 𝑃𝑅𝐼𝐶𝐸},

• 𝑆(𝐶𝑂𝑀𝐹𝑂𝑅𝑇) = {#𝑃𝐸𝑅𝑆, #𝐷𝑂𝑂𝑅𝑆, 𝐿𝑈𝐺𝐺𝐴𝐺𝐸}, and

• 𝑆(𝑥) = ∅ for 𝑥 ∈ {𝐵𝑈𝑌. 𝑃𝑅𝐼𝐶𝐸,𝑀𝐴𝐼𝑁𝑇. 𝑃𝑅𝐼𝐶𝐸, #𝑃𝐸𝑅𝑆, #𝐷𝑂𝑂𝑅𝑆, 𝐿𝑈𝐺𝐺𝐴𝐺𝐸, 𝑆𝐴𝐹𝐸𝑇𝑌}.

2 https://dex.ijs.si/

CAR

PRICE TECH.CHAR.

LUGGAGE#PERS #DOORS

BUY.PRICE COMFORT SAFETYMAINT.PRICE

4

Given 𝑆, the set of parents of each 𝑥 ∈ 𝑋 is then defined as 𝑃(𝑥) = {𝑝 ∈ 𝑋: 𝑥 ∈ 𝑆(𝑝)}. Attributes

without parents are called roots and represent main outputs of the model. Attributes without

descendants, 𝑆(𝑥) = ∅, are called basic attributes and represent model inputs. Attributes with 𝑆(𝑥) ≠

∅ are referred to as aggregate attributes, and are also considered (partial) outputs of the model.

Normally, DEX models represent trees, where each attribute has one parent, except the root which

has none. In contrast, a (full) hierarchy may contain attributes with multiple parents. DEX allows using

hierarchies through the mechanism known as “attribute linking” (Bohanec, 2020; 2022; 2024). As we

shall see later in section 4, full hierarchies pose a challenge for target analysis algorithms.

For the purpose of this study, we extend the notation and partition 𝑋 in two distinct subsets:

• 𝑌 = {𝑥 ∈ 𝑋: 𝑆(𝑥) ≠ ∅}: the set of all aggregate (output) attributes.

• 𝑍 = {𝑥 ∈ 𝑋: 𝑆(𝑥) = ∅}: the set of all basic (input) attributes.

Let 𝑏 denote the number of basic attributes: 𝑏 = |𝑍|.

Furthermore, we shall assume that 𝑋, 𝑌 and 𝑍 are not just normal sets, but topologically sorted vectors

(Trdin, Bohanec, 2018). For each 𝑥𝑖 ∈ 𝑌 this means that all 𝑥 ∈ 𝑆(𝑥𝑖) must be positioned to the right

of 𝑥𝑖 in the vector. Since there are no cycles in the model, such order always exists. For 𝑍 we assume

the depth-first-search order of basic attributes, and 𝑋 is then just the concatenation of the two: 𝑋 =

𝑌 ∘ 𝑍. This representation assures that attributes can be evaluated in a linear order. For any vector of

values 𝒂 assigned to 𝑋 in this order, we can assume that the right-most 𝑏 values represent assignments

to basic attributes, and the left-most element represents the overall evaluation result.

For CAR, possible topological orders of 𝑌 and 𝑍 are:

𝑌 = [CAR, PRICE, TECH.CHAR., COMFORT],

𝑍 = [BUY.PRICE, MAINT.PRICE, #PERS, #DOORS, LUGGAGE, SAFETY].

2.3 Attribute Scales

Each attribute 𝑥 ∈ 𝑋 is associated with a value scale, denoted scale 𝑥 ∈ 𝐷, which is defined as an

ordered set of symbolic (qualitative) values:

scale 𝑥 = [𝑣𝑥,1, 𝑣𝑥,2, … , 𝑣𝑥,𝑚𝑥
] .

Here, 𝑚𝑥 ≥ 2 denotes the number of discrete values that can be assigned to 𝑥. Usually, value scales

are small and rarely consist of more than five values. Scale values are typically represented by words

rather than numbers, for instance “low”, “high”, “unacceptable”, “good”.

DEX scales can be either ordered in an ascending or descending order, or are unordered. Values of an

ascending scale are assumed to be preferentially ordered so that 𝑣𝑥,1 ≼ 𝑣𝑥,2 ≼ ⋯ ≼ 𝑣𝑥,𝑚𝑥
, where ‘≼’

denotes a weak preference relation. In descending scales, the relation ≽ applies instead. No

preferences can be assumed with unordered scales. We denote the order of scale 𝑥 as

order 𝑥 ∈ {unordered, ascending, descending}.

Traditionally, particularly bad and good scale values are printed in color, as shown in Figure 2. All scales

in the CAR model are ascending.

In this study, we are not interested in individual scale values. In order to simplify notation, we shall

represent all scale elements with the corresponding ordinal numbers. Therefore, we hereafter assume

that

5

scale 𝑥 = [1, 2, … ,𝑚𝑥] for each 𝑥 ∈ 𝑋.

Scales that correspond to some subset of attributes 𝐾 ⊆ 𝑋 form a decision space, denoted

space𝐾 = scale 𝑥1 × scale 𝑥2 ×…× scale 𝑥𝑘 for all 𝑥𝑖 ∈ 𝐾, 𝑖 = 1,2,… , 𝑘, 𝑘 = |𝐾|.

2.4 Decision Tables

In order to evaluate decision alternatives, DEX uses aggregation functions 𝐹 = {𝑓𝑥, 𝑥 ∈ 𝑌}. Formally,

each aggregate attribute 𝑥 ∈ 𝑌 is associated with a total function that maps:

 𝑓𝑥: space 𝑆(𝑥) → scale 𝑥.

In this context, all descendants of 𝑥 are called function arguments and are denoted args 𝑓𝑥.

Aggregation functions are represented by decision tables, see examples in Figure 2. A decision table

𝑇𝑥, associated with 𝑥 ∈ 𝑌, consists of 𝑟𝑥 elementary decision rules that correspond to all possible

combinations of values of function arguments. Thus, there are |space 𝑆(𝑥)| decision rules: the right-

most column of a decision table represents the outcome of each decision rule. While DEX in general

allows incompletely defined tables and different types of output values (intervals, value distributions)

(Bohanec, 2022), we shall hereafter assume that the tables are complete and that each decision rule

prescribes exactly one output value from scale 𝑥. Possible complications arising from not fulfilling

these assumptions are discussed later in section 6.

2.5 Alternatives

Alternatives (or decision alternatives) are objects, actions or other kinds of choices considered in the

decision-making process. From the decision modeling viewpoint, 𝒜 = {𝐴1, 𝐴2, … , 𝐴𝑞} are data vectors

processed by 𝑀. Each alternative 𝐴𝑖 , 𝑖 = 1,2, … , 𝑞, is represented by a vector of values:

𝐴𝑖 = [𝑎𝑥,𝑖 ∈ scale 𝑥 , ∀𝑥 ∈ 𝑋],

where each 𝑎𝑥,𝑖 represents the value of 𝐴𝑖 that is assigned to attribute 𝑥. The value vector can be

further partitioned in 𝑌(𝐴𝑖) and 𝑍(𝐴𝑖), i.e., value vectors corresponding to all aggregate and all basic

attributes, respectively.

Given some alternative 𝐴, represented by an assignment of values that correspond to input attributes

𝒛 = [𝑎1, 𝑎2, … , 𝑎𝑏] ∈ space𝑍,

we can evaluate that alternative using Algorithm 1. The algorithm iteratively computes output values,

yielding a full assignment 𝐴 = 𝒂. The first element of 𝒂 represents the overall evaluation of 𝐴, denoted

𝐸(𝐴) = 𝑎1.

Algorithm 1: Evaluate alternative.

Input: Alternative 𝐴, assignment 𝒛 = [𝑎1, 𝑎2, … , 𝑎𝑏] ∈ space𝑍.

𝒂 = [0]𝑛−𝑏 ∘ 𝒛
for 𝑖 ∈ [𝑛 − 𝑏, … ,1] do
 𝑎𝑖 ≔ 𝑓𝑥𝑖(𝒂[args𝑓𝑥𝑖])

Output: Assignment 𝐴 = 𝒂 ∈ space𝑋, which includes the overall evaluation 𝐸(𝐴) = 𝑎1.

6

3 Target Analysis: Aims and Goals
Now we can formally define the target analysis task:

Given: An alternative 𝐴0 ∈ space𝑋,

Find: A set of alternatives 𝒜′ = {𝐴1
′ , 𝐴2

′ , … } that satisfy some predefined requirements with the least

changes of input values from 𝐴0 to each 𝐴′.

The requirements and least changes can be defined in different ways. Most often, we want to find

alternatives 𝐴′ whose evaluations are better than those of 𝐴0: 𝐸(𝐴′) ≻ 𝐸(𝐴0). Or conversely, we

might want to explore changes that degrade the evaluation: 𝐸(𝐴′) ≺ 𝐸(𝐴0). Sometimes we look for a

particular target value: 𝐸(𝐴′) = 𝑣 ∈ scale 𝑥1. Notice that the former two conditions make sense only

when the value scale of the root attribute 𝑥1 is ordered.

To model the least changes, we introduce the function

diff𝐾(𝐴1, 𝐴2): space
2𝐾 → ℝ ∪ {undefined}; 𝐾 ⊆ 𝑋; 𝐴1, 𝐴2 ∈ space𝐾.

This is essentially a distance function, extended to consider subsets of attributes 𝐾 ⊆ 𝑋 and facilitate

an “undefined” comparison as indication of an undesired solution. Unlike distances, we accept

negative values of diff𝐾, but always aim to minimize the function. When comparing 𝐴0 and 𝐴′, we set

the arguments so that 𝐴1 = 𝐴′ and 𝐴2 = 𝐴0.

Again, several different formulations of diff𝐾(𝐴1, 𝐴2) are possible. Generally, diff𝐾 is defined as a sum

of differences corresponding to individual attributes 𝑥𝑖 ∈ 𝐾, 𝑖 = 1,2,… , |𝐾|:

diff𝐾(𝐴1, 𝐴2) =∑diff(𝑥𝑖 , 𝑎𝑖,1, 𝑎𝑖,2)

|𝐾|

𝑖=1

Here, 𝑎𝑖,𝑗 denotes the value of 𝐴𝑗 corresponding to 𝑥𝑖, i.e., the 𝑖-th element of 𝐴𝑗. Whenever any

diff(𝑥𝑖, 𝑎𝑖,2, 𝑎𝑖,1) term yields an undefined result, the whole sum is considered undefined, too.

Then, when we want to improve the overall evaluation of 𝐴0, we may allow changing input attributes

only in the “better” direction, and disallow all changes for the “worse”. For unordered attributes, we

just notify the difference. This leads to the formulation of Unidirectional difference “for the better”: as

follows:

diff(𝑥, 𝑎1, 𝑎2) ≡ unidiff
+(𝑥, 𝑎1, 𝑎2) =

{

𝑎2 − 𝑎1 ⇐ order 𝑥 = ascending ∧ 𝑎2 ≥ 𝑎1
undefined ⇐ order 𝑥 = ascending ∧ 𝑎2 < 𝑎1
𝑎1 − 𝑎2 ⇐ order 𝑥 = descending ∧ 𝑎1 ≥ 𝑎2
undefined ⇐ order 𝑥 = descending ∧ 𝑎1 < 𝑎2
0 ⇐ order 𝑥 = unordered ∧ 𝑎1 = 𝑎2
1 ⇐ order 𝑥 = unordered ∧ 𝑎1 ≠ 𝑎2

Conversely, when we are interested in changes that degrade the evaluation, we may use the

Unidirectional difference “for the worse”:

diff(𝑥, 𝑎1, 𝑎2) ≡ unidiff
−(𝑥, 𝑎1, 𝑎2) =

{

𝑎1 − 𝑎2 ⇐ order 𝑥 = ascending ∧ 𝑎2 ≤ 𝑎1
undefined ⇐ order 𝑥 = ascending ∧ 𝑎2 > 𝑎1
𝑎1 − 𝑎2 ⇐ order 𝑥 = descending ∧ 𝑎1 ≤ 𝑎2
undefined ⇐ order 𝑥 = descending ∧ 𝑎1 > 𝑎2
0 ⇐ order 𝑥 = unordered ∧ 𝑎1 = 𝑎2
1 ⇐ order 𝑥 = unordered ∧ 𝑎1 ≠ 𝑎2

7

As a third measure we define Bidirectional difference. This time, we consider changes in both

directions, “better” and “worse”. Changes in the “better” direction increase the difference, while

changes in the “worse” decrease it. This means that we are still looking for overall improvement of

alternatives, but accept – and even reward – input assignments that change for the worse.

Consequently:

diff(𝑥, 𝑎1, 𝑎2) ≡ bidiff(𝑥, 𝑎1, 𝑎2) = {

𝑎2 − 𝑎1 ⇐ order 𝑥 = ascending
𝑎1 − 𝑎2 ⇐ order 𝑥 = descending
0 ⇐ order 𝑥 = unordered ∧ 𝑎1 = 𝑎2
1 ⇐ order 𝑥 = unordered ∧ 𝑎1 ≠ 𝑎2

4 Target Analysis Algorithms
Before going to the target analysis algorithms themselves, let us make a few remarks. First, while target

analysis is relatively new to DEX, a similar analysis called “Plus-Minus-1” or “Plus-Minus” analysis has

been there for a long time (Bohanec, 2022). This is essentially a one-attribute-at-a-time analysis:

assessing the effects of changing one attribute while keeping the remaining ones constant. We

mention this analysis here because it is very simple and can be carried out efficiently: it requires only

∑ (𝑚𝑥𝑥∈𝑋 − 1) evaluations. Considering that 𝑚𝑥 are small and have a small upper bound, plus-minus

analysis is of linear time complexity 𝑂(|𝑋|) = 𝑂(𝑛).

Second, looking at small DEX models, such as CAR in Figure 2, one might think that target analysis is

simple, too. Indeed, the number of all possible CAR input assignments is |space𝑍| = ∏ 𝑚𝑥 =𝑥∈𝑍 3 ×

3 × 3 × 4 × 3 × 3 = 972. It is not difficult at all to make this number of evaluations.

However, the above formula for |space𝑍| indicates that the number of possible input assignments

increases exponentially in 𝑏 = |𝑍|. As shown in section 5, this number becomes too large even for

models of moderate size, i.e., having about 15 criteria. Therefore, there is a real need for a more

efficient algorithm. This is exemplified by the fact that target analysis is usually run interactively on

laptop or desktop computers, where results are expected within seconds, not in minutes or even hours.

4.1 Algorithm: Exhaustive

The first algorithm used in this study, called Exhaustive, is exactly the “inefficient” algorithm

mentioned above: it evaluates all possible input assignments to a given model 𝑀 and records solutions

𝐴′ that minimize diff𝑍(𝐴
′, 𝐴0) for each value of 𝑥1.

Algorithm 2: Exhaustive.

Input:
 Alternative 𝐴0, assignment 𝒛𝟎 = [𝑎1, 𝑎2, … , 𝑎𝑏] ∈ space𝑍.
 Difference measure diff (one from section 3)

initialize 𝑅
for all 𝒛′ ∈ space𝑍, 𝒛′ ≠ 𝒛0 do
 𝐴′ ≔ Evaluate(𝒛′)
 𝑅 ← Record(𝐸(𝐴′), 𝐴′, diff𝑍)

Output: Recorded solutions 𝑅 for each 𝐸(𝐴′) ∈ scale 𝑥1.

8

In Algorithm 2, Evaluate refers to Algorithm 1. 𝑅 denotes a data structure that keeps a record of best

assignments 𝐴′ for each 𝐸(𝐴′) ∈ scale 𝑥1. “Best” means all assignments that minimize the chosen

difference measure diff. Undefined evaluations are not recorded.

We use Exhaustive in this study only as a benchmark algorithm: to assess the time complexity of

evaluating all possible input assignments and to compare Exhaustive’s results with results of the other

two algorithms. Exhaustive is so simple that it is almost impossible to be in error, while this is not

necessarily true for BottomUp and TopDown.

4.2 Algorithm: BottomUp

As suggested by its name, the idea of the BottomUp algorithm is to traverse a DEX model in the bottom-

up direction, i.e., from basic attributes to the root, and record best solutions at a given attribute 𝑥 ∈ 𝑋

along the way. As we shall see shortly, solutions for a basic attribute 𝑥 ∈ 𝑍 are trivial. Solutions for an

aggregate attribute 𝑥 ∈ 𝑌 are then constructed by combining best solutions corresponding to its

descendants 𝑆(𝑥), considering decision rules in the associated decision table 𝑇𝑥.

Figure 3: A simple DEX model that implements 𝑌 = average(min(𝐴1, 𝐴2),max(𝐵1, 𝐵2)) .

Let us first sketch the algorithm using a simple model in Figure 3. Let us analyze alternative 𝐴0 =

[1,1,1,1] and use the difference measure unidiff+. Consider that scales of all attributes are [1,2,3].

For basic attributes 𝑥 ∈ 𝑍, best solutions are just one-element vectors of differences between each

value 𝑣 ∈ scale 𝑥 and the element of 𝐴0 that corresponds to 𝑥. Therefore, best solutions of attribute

A1 are:

• for A1 = 1: solution = [1], difference = 0

• for A1 = 2: solution = [2], difference = 1

• for A1 = 3: solution = [3], difference = 2

Since all values of 𝐴0 are equal, the same solutions are also the best for the remaining three basic

attributes.

Then, we move to aggregate attribute A. There we look at the associated decision table. There are five

rules that map to A=1 (rules 1, 2, 3, 4, and 7 in Figure 3). The table columns A1 and A2 indicate which

Y

BA

B2B1A2A1

9

lower-level solutions need to be combined and possibly recorded as best solutions for A=1. There are

five such combinations, as shown in Table 1. Among the five candidate solutions, only one, [1,1], has

a minimum difference of 0 and is thus recorded as the best solution for value 1 of attribute A.

Table 1: Candidate value vectors for finding best solutions for value 1 of attribute A.

Rule A1 A2 Candidate solution Difference with 𝐴0

1 1 1 [1,1] 0

2 1 2 [1,2] 1

3 1 3 [1,3] 2

4 2 1 [2,1] 1

7 3 1 [3,1] 2

Solutions for other values of A and for all values of B and Y are generated by the same token and are

shown in Table 2. Since BottomUp generates solutions for all values of Y, it can answer any target

analysis question formulated in section 3.

Table 2: BottomUp solutions for 𝐴0 = [1,1,1,1].

Attribute Attribute value Best solutions Difference with 𝐴0

A 1 [1,1] 0

 2 [2,2] 2

 3 [3,3] 4

B 1 [1,1] 0

 2 [1,2], [2,1] 1

 3 [1,3], [3,1] 2

Y 1 [1,1,1,2], [1,1,2,1] 1

 2 [1,1,1,3], [1,1,3,1] 2

 3 [3,3,1,3], [3,3,3,1] 6

Algorithm 3: BottomUp.

Input:
 Alternative 𝐴0, assignment 𝒛𝟎 = [𝑎1, 𝑎2, … , 𝑎𝑏] ∈ space𝑍.
 Difference measure diff (one from section 3).

for 𝑖 ∈ [𝑛,… ,1] do
 initialize 𝑅𝑥𝑖

 if 𝑥𝑖 ∈ 𝑍 then
 for each 𝑣 ∈ scale 𝑥 do
 𝑅𝑥𝑖 ← Record(𝑣, [𝑣], diffspace𝑥𝑖)
 else
 for each 𝒂 ∈ space 𝑆(𝑥) do
 𝑣 ≔ 𝑓𝑥𝑖(𝒂)

 for all 𝒔 ∈ 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠(𝑥, 𝒂) do
 𝑅𝑥𝑖 ← Record(𝑣, 𝒔, diffspace𝑆(𝑥))

Output: Recorded solutions 𝑅𝑥 for each attribute 𝑥 ∈ 𝑋 and each value 𝑣 ∈ scale 𝑥.

10

This example generalizes to Algorithm 3. The algorithm loops through all attributes in the backward

direction. For each visited attribute 𝑥𝑖, it records best solutions in the corresponding data structure

𝑅𝑥1. For basic attributes, the solutions consist only of single-value vectors [𝑣] and associated

differences for each attribute value 𝑣. For aggregate attributes, the algorithm considers all decision

rules and all combinations of lower-level solutions, arising from each rule, that map to some attribute

value 𝑣. Given 𝑥 and some assignment of function arguments 𝒂 ∈ space 𝑆(𝑥), candidate solutions are

defined as a Cartesian product:

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠(𝑥, 𝒂) = 𝑅𝑠1[𝑎1] × 𝑅𝑠2[𝑎2] × …× 𝑅𝑠𝑘[𝑎𝑘]

Here, 𝑠𝑖 represent immediate descendants of 𝑥 so that 𝑆(𝑥) = {𝑠1, 𝑠2, … , 𝑠𝑘}. The notation 𝑅𝑠[𝑎]

represents all solutions corresponding to attribute 𝑠 and its value 𝑎 ∈ scale 𝑠.

Figure 4: A simple DEX model that implements 𝑌 = average(min(𝐴1, 𝐶),max(𝐶, 𝐵1)) .

As shown later in section 5, BottomUp is very efficient and works well for models structured as ordinary

trees. However, it has a major flaw: it does not work well with general hierarchies. While it still finds

some solutions, it usually misses some others. The reason is that with general hierarchies, best

solutions associated with some aggregate attribute 𝑥 are not necessarily composed of best solutions

associated with its descendants 𝑆(𝑥). Let us illustrate this with an example, using the model in Figure

4. This is essentially the same model as in Figure 3, except that attributes A2 and B1 have been merged

to C, and B2 has been renamed to B1. Decision tables remained exactly the same.

Table 3: Exhaustive solutions for Y and 𝐴0 = [1,1,1,1]. The asterisk * marks solutions found by BottomUp.

Attribute Attribute value Best solutions Difference with 𝐴0

Y 1 [1,1,2]∗, [1,2,1], [2,1,1] 1

 2 [1,1,3]∗, [1,3,1], [2,2,1]∗ 2

 3 [3,3,1]∗ 4

Traversing the hierarchy using the same assignment 𝐴0 = [1,1,1,1] gives the same best solutions for

A and B. However, the best solutions for Y are different than before and consist of three rather than

four values assigned to basic attributes. All solutions found by Exhaustive are shown in Table 3.

BottomUp does find four of those solutions (marked with * in Table 3), but misses three others. For

Y

BA

B1CA1

11

instance, it misses the solution [1,3,1] for Y=2. The reason is that this solution would require

concatenating two lower-level solutions [1,3] and [3,1] (with C=3 the common element). However, in

Table 2, there is no element [1,3] associated with A that can be concatenated with [3,1] of B.

In general, when an aggregate attribute 𝑥 has subordinate attributes that form a hierarchy rather than

a tree, the best solutions associated with that attribute are not necessarily composed of best solutions

associated with its descendants 𝑆(𝑥). This is a serious limitation for using BottomUp with full

hierarchies, and a motivation for introducing another algorithm that properly handles such situations.

4.3 Algorithm: TopDown

The TopDown algorithm approaches target analysis in the opposite direction than BottomUp: given
some target value 𝑣1 of the root attribute 𝑥1, it traverses the associated decision table, looking for
decision rules that map to 𝑣1. Arguments of each decision rule provide target values for recursive
applications of the algorithm in subtrees below 𝑥1. When reaching a basic attribute, its target value is
assigned to the vector of input values, which is gradually built in the process. Once all inputs have been
assigned, they are recorded as a possible candidate solution. The algorithm proceeds until all aggregate
attributes have been visited and all decision rules that apply have been checked. All these steps are
presented with more details in Algorithm 4 – Algorithm 7.

Algorithm 4: TopDown, main part.

Input:
 Alternative 𝐴0, assignment 𝒛𝟎 = [𝑎1, 𝑎2, … , 𝑎𝑏] ∈ space𝑍.
 Target value 𝑣1 ∈ scale 𝑥1.
 Difference measure diff (one from section 3).

initialize 𝑅
𝒂 ≔ [𝑣1] ∘ [0]

𝑛−1 // initialize the vector of 𝑛 assignments; 0 denotes no assignment yet

VisitAttribute(1, 𝒂) // recursively search for solutions, starting with the first (root) attribute

Output: Recorded solutions 𝑅 for attribute 𝑥1 and value 𝑣1.

Algorithm 5: TopDown, method VisitAttribute.

method VisitAttribute(𝑖, 𝒂)
 Inputs:
 Attribute index 𝑖
 𝒂: Vector of 𝑛 assignments developed up to the (𝑖 − 1)-th aggregate attribute.

if 𝑖 > 𝑛 − 𝑏 then // visited all aggregate attributes, record the candidate solution

 𝑅 ← Record(𝑣1, 𝑍(𝒂), diff𝑍)
else if CanContinue(𝒂) then // check if it makes sense to continue

 for each rule 𝑟 ∈ 𝑇𝑥𝑖 that maps to target 𝑎𝑖 do

 r ≔ args 𝑟 // vector of function arguments, has |𝑆(𝑥𝑖)| elements

 if CanAssign(𝑖, 𝒓 to 𝒂) then
 VisitAttribute(𝑖 + 1, copy𝒂) // continue searching attribute 𝑖 + 1

Algorithm 4 displays the main skeleton of TopDown that consists of two initializations and a top-level

call of VisitAttribute. The latter (Algorithm 5) actually does all the hard work by visiting each aggregate

12

attribute whose index in 𝑋 is 𝑖. The method iterates over decision rules that map to the current target

value 𝑎𝑖, making candidate assignments considering the descendant attributes of 𝑖, and running

VisitAttribute recursively for the next attribute 𝑖 + 1. When all aggregate attributes have been visited

(condition 𝑖 > 𝑛 − 𝑏), the assignment 𝒂 is complete and ready for checking: it is recorded in 𝑅

whenever its difference with 𝒛0 is lower than or equal to the lowest difference recorded so far. Finding

a lower difference discards all previously recorded solutions. The assignment equal to 𝒛0 is not

recorded.

Algorithm 6: TopDown, method CanContinue.

method CanContinue(𝒂): returns Boolean
 Input: Current assignment 𝒂.

𝑑 ≔ mindifference recorded in 𝑅
return diff𝑍(𝑍(𝒂)) ≤ 𝑑 // here, diff𝑍 should disregard zero elements of 𝑍(𝒂)

There are two important methods called in

Algorithm 5: CanContinue and CanAssign. The former (Algorithm 6) checks if the difference of the

current assignment to basic attributes 𝑍(𝒂) (disregarding zero elements) with 𝒛0 is lower than or equal

to the minimal difference recorded so far in 𝑅. If not, it makes no sense to continue, and the remaining

part of the decision space can be skipped.

Algorithm 7: TopDown, method CanAssign.

method CanAssign(𝑖, 𝒓 to 𝒂): returns Boolean
 Inputs:
 Attribute index 𝑖.
 𝒓: Vector of 𝑘 values, 𝑘 = |𝑆(𝑥𝑖)|, to be assigned to consecutive descendants of attribute 𝑥𝑖.
 Current assignment 𝒂.

for each 𝑗 = 1,2,… , 𝑘 do
 𝑞 ≔ index of attribute 𝑥𝑗 in the topologically ordered 𝑋

 if 𝑎𝑞 > 0 and 𝑎𝑞 ≠ 𝑟𝑗 then // already been there and the value is different

 undo changes made to 𝒂

 return false
 else
 𝑎𝑞 ≔ 𝑟𝑗

 return true

Outputs:

• Returns true: Values of 𝒓 assigned to proper indices of 𝒂.

• Returns false: Unchanged 𝒂.

The role of CanAssign (Algorithm 7) is twofold. First, it checks if the value 𝑎𝑖 of the current attribute 𝑖

has been already set. This can happen with full hierarchies when attribute 𝑥𝑖 has been already reached

by traversing some other branch of the hierarchy. The search for solutions can continue only if the

previous and the current value of 𝑎𝑖 are equal, otherwise the solution does not exist. Notice that in

the case of equal values, the search has to continue, because different hierarchy branches may

generate different assignments to basic attributes and thus different overall solutions. In this way,

TopDown resolves the BottomUp’s issue with full hierarchies (section 4.2).

13

The second role of CanAssign is to actually assign to 𝒂 target values that correspond to the 𝑖-th

attribute’s descendants and thus prepare 𝒂 for the next VisitAttribute step.

An example of TopDown’s operation is presented in Appendix 1.

5 Experimental Evaluation
The three target analysis algorithms, Exhaustive, BottomUp and TopDown, were experimentally
evaluated using 54 DEX models of various sizes and characteristics (Table 4 in Appendix 2). Most of
them were artificially constructed in order to explore small vs. large models, trees vs. hierarchies, and
models that facilitate using Exhaustive and those that do not. Models whose names start with “bm_”
are exactly the same benchmark models as used in the study of Gjoreski, et al. (2022). Models Car
(Figure 2) and those named “Agri…” can be considered real-life; the latter are three different
modifications of a model used in the decision-support system PATHFINDER3, which is aimed at the
assessment and management of sustainability of legume agri-food value chains.

Experimental models are from 2 to 4 levels deep and contain from 7 to 65 attributes, from which there
are 2 to 39 basic attributes (Table 4). 25 models contain at least one linked attribute, i.e., they are
hierarchies rather than ordinary trees. The column “Alternatives” in Appendix 2 displays the number
of alternatives that were taken as 𝐴0 in the experiments. Whenever the associated decision space was
reasonably small enough to facilitate exhaustive experimentation, all possible assignments in that
space were considered. For larger models, we took a sample of 100 random or predefined (from
Gjoreski, et al., 2022) alternatives.

The experiments were run using all algorithms, all corresponding alternatives and all three difference
measures. Whenever running time exceeded a few minutes, these settings were considered
inappropriate for practice and some elements (algorithms, difference measures) were excluded. All
algorithms were implemented in the same compiled language (Oxygene) in the same environment
(Visual Studio 2019). All experiments were run on two different desktop computers. In Appendix 2,
Table 5, we show execution times achieved on a slower one (Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz,
running Windows 10).

Whenever more than one algorithm has been used on the same model and alternatives, results were
compared. In most cases, results of different algorithms were identical, which is a good indication of
the correctness of the algorithms and their implementations. The only differences occurred with
BottomUp and full hierarchies, where the algorithm failed to find all possible solutions, as already
indicated in section 4.2.

Looking at execution times (Table 5 and Figure 5), it is clear that Exhaustive’s time complexity is indeed
exponential. In the experiments, Exhaustive could have been reasonably used with models consisting
of about 15 attributes, where execution times per alternative were still in the range of seconds. In
practice, this might be increased by a few attributes at most, which would push the execution times in
the range of minutes and hours.

On the other side of the spectrum is BottomUp, which runs in just a few milliseconds even with the
largest models. Its only disadvantage is that it does not find all possible solutions with full hierarchies.

TopDown is somewhere between the other two. It turned out suitable for models having up to 40
attributes, where average execution time was in the range of one second. Actually, execution times
were much lower for the majority of models; the peak around 30 attributes (Figure 5) can be attributed

3 https://true-project.webarchive.hutton.ac.uk/publications-resources/decision-support-system-dss/index.htm

14

to two “AgriFood…” models, which contain large decision tables (each having 243 decision rules), and
model “bm_lvl_4_skewed_2_w_links”, which turned out particularly difficult when using the
bidirectional difference measure.

Figure 5: Average execution times per alternative, in milliseconds, depending on the number of all attributes.

6 Implementation Considerations

The three target analysis algorithms were implemented specifically for this study. This allowed for a
“clean” and efficient implementation, free from dealing with issues that inevitable emerge in practical
applications. Any realistic implementation must consider a number of additional requirements and
“complications”, which make it more complex and generally slower. These include:

1. Incomplete models. DEX models are generally developed interactively and in successive steps. At

any time, they may be incomplete, having undefined attribute scales or decision tables. Target
analysis algorithm cannot run on incomplete models; therefore, a preliminary completeness test
has to be performed.

2. Linked attributes. As already discussed, linked attributes turn attribute trees to hierarchies, which
require special consideration and make BottomUp inferior in relation with the other two
algorithms. Implementation-wise, we always convert a DEX attribute tree, which turned out to be
difficult to work with directly, especially when containing linked attributes, to a specially designed
hierarchy representation prior to applying the algorithms.

3. Decision rules mapping to value sets. In this study we assumed that each rule maps its arguments
to exactly one value of the output attribute. In reality, rules may map to value intervals or sets.
This is actually not a big hurdle for target analysis algorithms, as each such rule can be “virtually”
expanded to a set of rules, each mapping to a single output value from the set. This just
complicates the implementation.

4. Decision rules not mapping to all values of the output attribute. Theoretically, this is not a problem,
as it just restricts the number of solutions, possibly to no solutions at all. Implementation-wise,
this requires special care and may cause errors if not implemented correctly.

5. Considering model parts. In this study, we always considered the model root as the target variable,
and all basic attributes as inputs. In practice, it is often necessary to consider just a part of the

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70

Ex
ec

u
ti

o
n

 t
im

e
[m

s]

Number of attributes

Exhaustive BottomUp TopDown

15

model, taking some internal aggregate attribute as the root, and excluding some individual basic
attributes or even whole branches (known as model “pruning”).

6. Restricting attribute values. Apart from excluding some attributes from consideration, it is very
practical if the user can restrict values that can be assigned to individual input attributes, for
example to disregard changes that cannot occur at all, or just to reduce the search space. A useful
restriction is to allow changing an attribute only for a given number of steps in one or both
directions.

7. Runtime considerations. Despite that TopDown and BottomUp are fairly efficient, they may still
take too much time with very large models. Also, they might “explode” and generate an excessive
number of solutions. For this reason, a practical implementation must allow interrupting the
execution or specifying the time limit, and limiting the maximum number of solutions generated
or shown to the user.

Target analysis is currently implemented in DEX modelling software DEXi4 (Bohanec, 2020) and
DEXiWin5 (Bohanec, 2024). In DEXi, it is called “Option Generator”, named in the sense that the
algorithm generates new options (alternatives) from the current one. In both cases, the implemented
algorithm is of the TopDown kind, enhanced in order to accommodate the implementation issues
mentioned above. Figure 6 shows the settings used to parameterize the algorithms in DEXi and
DEXiWin.

Figure 6: Target Analysis settings in DEXi (left) and DEXiWin (right).

7 Conclusion
Target analysis is a task of finding assignments to input attributes that change the evaluation of some
alternative to some target value, either better or worse than before. We proposed three algorithms
for decision models of the DEX (Decision Expert) type. The first algorithm, Exhaustive, is used only for
benchmarking, as it searches the whole decision space and is of exponential time complexity. Also,
Exhaustive does not use any information about the inner structure of DEX models, and is thus of the

4 https://kt.ijs.si/MarkoBohanec/dexi.html
5 https://dex.ijs.si/dexisuite/dexiwin.html

16

“black-box” type. The remaining two algorithms, BottomUp and TopDown, are of the “white-box” type,
because they do consider inner elements of DEX models: hierarchical structure of attributes, value
scales of attributes, and decision tables and decision rules associated with aggregate attributes. The
two algorithms differ in the primary direction of their operation. BottomUp constructs solutions
recursively, starting from input attributes and lower-level subtrees towards the root of the model. On
the contrary, TopDown gradually builds solutions from the root towards the inputs, or, considering the
topological order of attributes, from left to right.

Experimental evaluation of the three algorithms was carried out using 54 DEX models of various sizes
and characteristics, and using three difference measures: two unidirectional (in positive and negative
direction) and bidirectional. The main findings are:

• Exhaustive is very simple to implement, but has exponential time complexity with respect to the
number of input attributes. This limits its application to small models that consist of at most 15 or
20 attributes.

• BottomUp is most efficient of all and performs in the range of milliseconds for even the largest
models considered in this study. Unfortunately, it is unsuitable when DEX models form full
hierarchies; in this case, it generally finds just a subset of possible solutions.

• TopDown is a kind of a trade-off between the other two. It is generally slower than BottomUp, but
can still run in the range of seconds for relatively large models (consisting of about 40 attributes).
TopDown has no issues with full hierarchies and always generates all solutions.

The main reason for BottomUp’s efficiency is its ability to construct solutions by considering only value
assignments that differ the least from the analyzed alternative. Since some solutions in hierarchies
cannot be constructed by combining the best lower-level solutions, they are missed by the algorithm.

The main reason for TopDown’s efficiency is its ability to:

• consider only decision rules that map to the target value of the root attribute, and target values
of lower-level attributes, which are determined dynamically in the process,

• quickly generate the first solution, which provides an anchor for comparing further candidate
solutions, and

• disregarding (potentially large) parts of the search space when current candidate solutions
become too distant from the best solution generated thus far.

Currently, target analysis is implemented in software DEXi and DEXiWin as an application-ready
variation of TopDown. Since it is applicable for general models, including hierarchies, and has
acceptable execution times, it seems a viable solution for practice. So far, we have used it in several
decision-support projects, and found it useful and “fit-for-the-purpose”.

For the future, given the excellent performance of BottomUp in this study, it might be a good idea to
consider using this algorithm in the software whenever there are no linked attributes in the model. As
any practical implementation has to consider requirements and limitations discussed in section 6, we
still have to determine how these can be fulfilled by BottomUp. Another interesting question is how to
make BottomUp applicable to hierarchies, too. So far, we were not able to find a “clean” solution. We
know it is possible to combine BottomUp with TopDown or some other combinatorial search algorithm
on internal attributes that contain linked subtrees, but this severely complicates the approach and
makes BottomUp less efficient.

17

8 References

Bohanec, M. (2020): DEXi: Program for Multi-Attribute Decision Making, User's Manual, Version 5.04.
IJS Report DP-13100, Jožef Stefan Institute, Ljubljana.
https://kt.ijs.si/MarkoBohanec/pub/DEXiManual504.pdf

Bohanec, M.: DEX (Decision EXpert) (2022): A qualitative hierarchical multi-criteria method. Multiple
Criteria Decision Making (ed. Kulkarni, A.J.), Studies in Systems, Decision and Control 407, Singapore:
Springer, 39–78. doi: 10.1007/978-981-16-7414-3.

Bohanec, M. (2024): DEXiWin: DEX Decision Modeling Software, User’s Manual, Version 1.2. Institut
Jožef Stefan, Delovno poročilo IJS DP-14747, 2024.
https://kt.ijs.si/MarkoBohanec/pub/2024_DP14747_DEXiWin.pdf

Buede, D.M. (2013): Decision Making and Decision Analysis. In: Gass, S.I., Fu, M.C. (eds) Encyclopedia
of Operations Research and Management Science. Boston: Springer. https://doi.org/10.1007/978-1-
4419-1153-7_217.

Guidotti, R. (2022): Counterfactual explanations and how to find them: literature review and
benchmarking. Data Mining and Knowledge Discovery 38(5):1–55. http://dx.doi.org/10.1007/s10618-
022-00831-6.

Gjoreski, M., Kuzmanovski, V., Bohanec, M. (2020): Generating alternatives for DEX models using
Bayesian optimization. Proceedings of the 23rd International Conference Information Society IS 2020,
Volume A: Slovenian Conference on Artificial Intelligence, Ljubljana: Institut Jožef Stefan, 23–26, 2020.
https://kt.ijs.si/MarkoBohanec/pub/2020_IS_OptGen.pdf.

Gjoreski, M., Kuzmanovski, V., Bohanec, M. (2022): BAG-DSM: A method for generating alternatives
for hierarchical multi-attribute decision models using Bayesian optimization. Algorithms 15(6) 197: 1–
22, 2022. https://doi.org/10.3390/a15060197.

Greco, S., Ehrgott, M., Figueira, J. (Eds.) (2016): Multi Criteria Decision Analysis: State of the art Surveys.
New York: Springer. http://dx.doi.org/10.1007/978-1-4939-3094-4.

Humi, M. (2017): Introduction to Mathematical Modeling. New York: Chapman and Hall/CRC. ISBN
9781315370309, https://doi.org/10.1201/9781315370309.

Shiflet, A.B., Shiflet, G.W. (2014): Mathematical Modeling: A Comprehensive Introduction. Second
Edition. Cambridge University Press. Princeton: Princeton University Press, ISBN 978-0691160719.

Trdin, N., Bohanec, M. (2018): Extending the multi-criteria decision making method DEX with numeric
attributes, value distributions and relational models. Central European Journal of Operations Research,
1–41, 2018. https://doi.org/10.1007/s10100-017-0468-9.

18

Appendix 1: Example TopDown Operation
In order to illustrate the TopDown algorithm (section 4.3, Algorithm 4), an annotated trace of its

operation is shown below.

Inputs

Model: AvrMinMax_Links (Figure 4):

• aggregate attributes: [Y, A, B]

• basic attributes: [A1, C, B1]

• topological order of attributes: [Y, A, B, A1, C, B1]

Alternative 𝐴0: assignment 𝒛𝟎 = [1,1,1].

Target value: Y = 1.

Difference measure: unidiff+

Trace

Attribute
index and name

Current assignment
[Y, A, B, A1, C, B1]

Operation/Result Solutions

1 Y [1,0,0,0,0,0] diff=0, can continue none

 checking rule [1,1]→1 of Y

 [1,1,1,0,0,0] setting succeeds

step in to 2 A [1,1,1,0,0,0] diff=0, can continue

 checking rule [1,1]→1 of A

 [1,1,1,1,1,0] setting succeeds

step in to 3 B [1,1,1,1,1,0] diff=0, can continue

 checking rule [1,1]→1 of B

 [1,1,1,1,1,1] setting succeeds

step in to 4 A1 [1,1,1,1,1,1] [1,1,1] is original assignment,
not recorded

step back to 2 A [1,1,1,0,0,0] checking rule [1,2]→1 of A

 [1,1,1,1,2,0] setting succeeds

step in to 3 B [1,1,1,1,2,0] diff=1, can continue

 checking rule [1,1]→1 of B

 setting fails (2 ≠ 1)

step back to 2 A [1,1,1,0,0,0] checking rule [1,3]→1 of A

 [1,1,1,1,3,0] setting succeeds

step in to 3 B [1,1,1,1,3,0] diff=2, can continue

 checking rule [1,1]→1 of B

 setting fails (3 ≠ 1)

step back to 2 A [1,1,1,0,0,0] checking rule [2,1]→1 of A

 [1,1,1,2,1,0] setting succeeds

step in to 3 B [1,1,1,2,1,0] diff=1, can continue

 checking rule [1,1]→1 of B

 [1,1,1,2,1,1] setting succeeds

step in to 4 A1 [1,1,1,2,1,1] [2,1,1] recorded diff=1: [2,1,1]

step back to 2 A [1,1,1,0,0,0] checking rule [3,1]→1 of A

 [1,1,1,3,1,0] setting succeeds

step in to 3 B [1,1,1,3,1,0] diff=2, cannot continue

step back to 1 Y checking rule [1,2]→2 of Y

 [1,1,2,0,0,0] setting succeeds

 [1,1,2,0,0,0]

step in to 2 A [1,1,2,0,0,0] diff=0, can continue

 checking rule [1,1]→1 of A

 [1,1,2,1,1,0] setting succeeds

step in to 3 B [1,1,2,1,1,0] diff=0, can continue

19

 checking rule [1,2]→1 of B

 [1,1,2,1,1,2] setting succeeds

step in to 4 A1 [1,1,2,1,1,2] [1,1,2] recorded diff=1: [1,1,2],[2,1,1]

step back to 3 B [1,1,2,1,1,0] checking rule [2,1]→2 of B

 setting fails (1 ≠ 2)

 checking rule [2,1]→2 of B

 setting fails (1 ≠ 2)

step back to 2 A [1,1,2,0,0,0] checking rule [1,2]→1 of A

 [1,1,2,1,2,0] setting succeeds

step in to 3 B [1,1,2,1,2,0] diff=1, can continue

 checking rule [1,2]→2 of B

 setting fails (2 ≠ 1)

 checking rule [2,1]→2 of B

 [1,1,2,1,2,1] setting succeeds

step in to 4 A1 [1,1,2,1,2,1] [1,2,1] recorded diff=1:
[1,1,2],[1,2,1],[2,1,1]

step back to 3 B [1,1,2,1,1,0] checking rule [2,2]→2 of B

 [1,1,2,1,2,2] setting succeeds

step in to 4 A1 [1,1,2,1,2,2] [1,2,2] not recorded, diff=2

step back to 2 A [1,1,2,0,0,0] checking rule [1,3]→1 of A

 [1,1,2,1,3,0] setting succeeds

step in to 3 B [1,1,2,1,3,0] diff=2, cannot continue

step back to 2 A [1,1,2,0,0,0] checking rule [2,1]→1 of A

 [1,1,2,2,1,0] setting succeeds

step in to 3 B [1,1,2,2,1,0] diff=1, can continue

 checking rule [1,2]→2 of B

 [1,1,2,2,1,2] setting succeeds

step in to 4 A1 [1,1,2,2,1,2] [2,1,2] not recorded, diff=2

 checking rule [2,1]→2 of B

 setting fails (1 ≠ 2)

 checking rule [2,2]→2 of B

 setting fails (1 ≠ 2)

step back to 2 A [1,1,2,0,0,0] checking rule [3,1]→1 of A

 [1,1,2,3,1,0] setting succeeds

step in to 3 B [1,1,2,3,1,0] diff=2, cannot continue

 [1,1,2,0,0,0]

step back to 2 A checking rule [3,1]→1 of A

 [1,1,2,3,1,0] setting succeeds

step in to 3 B [1,1,2,3,1,0] diff=2, cannot continue

step back to 1 Y [1,0,0,0,0,0] checking rule [2,1]→1 of Y

 [1,2,1,0,0,0] setting succeeds

step in to 2 A [1,2,1,0,0,0] diff=0, can continue

 checking rule [2,2]→2 of A

 [1,2,1,2,2,0] setting succeeds

step in to 3 B [1,2,1,2,2,0] diff=2, cannot continue

step back to 2 A [1,2,1,0,0,0] checking rule [2,3]→2 of A

 [1,2,1,2,3,0] setting succeeds

[1,2,1,2,3,0] [1,2,1,2,3,0] diff=3, cannot continue

step back to 2 A [1,2,1,0,0,0] checking rule [3,2]→2 of A

 [1,2,1,3,2,0] setting succeeds

 [1,2,1,3,2,0] diff=3, cannot continue

The algorithm finds the final solution composed of three assignments to [A1,C,B1]:

[1,1,2], [1,2,1], [2,1,1],

that differ by diff=1 from 𝒛0=[1,1,1].

20

Appendix 2: Experimental Evaluation: Models and Results

Table 4: Models used in the study and their characteristics.

Model name Levels
Number of Attributes

Alternatives

Basic Aggregate Linked All

Car (Figure 2) 3 6 4 0 10 all 972

AvrMinMax_NoLink (Figure 3) 2 4 3 0 7 all 81

AvrMinMax_Link (Figure 4) 2 3 3 1 7 all 27

LinkedAttributesTest 3 3 4 2 9 all 27

LinkedBoundsTest 2 2 3 2 7 all 9

LinkedBoundsTest3 2 2 4 4 10 all 9

Problem 2 4 3 0 7 all 81

Problem2 2 4 3 0 7 all 81

AgriPruned 2 11 3 0 14 random 100

AgriFood 2 15 4 0 19 random 100

AgriFoodChainIntegrated 2 15 9 15 39 random 100

bm_lvl_3_normal_0_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_normal_0_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_normal_0_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_normal_0_w_links 2 8 4 1 13 predefined 100

bm_lvl_3_normal_1_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_normal_1_w_links 2 8 4 1 13 predefined 100

bm_lvl_3_normal_2_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_normal_2_w_links 2 8 4 1 13 predefined 100

bm_lvl_3_skewed_0_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_skewed_0_w_links 2 8 4 1 13 predefined 100

bm_lvl_3_skewed_1_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_skewed_1_w_links 2 8 4 1 13 predefined 100

bm_lvl_3_skewed_2_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_skewed_2_w_links 2 8 4 1 13 predefined 100

bm_lvl_3_uniform_0_wo_links 2 9 4 0 13 predefined 100

bm_lvl_3_uniform_0_w_links 2 8 4 1 13 predefined 100

bm_lvl_4_normal_1_wo_links 3 20 11 0 31 predefined 100

bm_lvl_4_normal_1_w_links 3 19 11 1 31 predefined 100

bm_lvl_4_normal_2_wo_links 3 20 11 0 31 predefined 100

bm_lvl_4_normal_2_w_links 3 19 11 1 31 predefined 100

bm_lvl_4_skewed_0_wo_links 3 20 11 0 31 predefined 100

bm_lvl_4_skewed_0_w_links 3 19 11 1 31 predefined 100

bm_lvl_4_skewed_1_wo_links 3 20 11 0 31 predefined 100

bm_lvl_4_skewed_1_w_links 3 19 11 1 31 predefined 100

bm_lvl_4_skewed_2_wo_links 3 20 11 0 31 predefined 100

bm_lvl_4_skewed_2_w_links 3 19 11 1 31 predefined 100

bm_lvl_4_uniform_0_wo_links 3 20 11 0 31 predefined 100

bm_lvl_4_uniform_0_w_links 3 19 11 1 31 predefined 100

bm_lvl_5_normal_0_wo_links 4 39 26 0 65 predefined 100

bm_lvl_5_normal_0_wo_links 4 39 26 0 65 predefined 100

bm_lvl_5_normal_0_w_links 4 38 26 1 65 predefined 100

bm_lvl_5_normal_1_wo_links 4 39 26 0 65 predefined 100

bm_lvl_5_normal_1_w_links 4 38 26 1 65 predefined 100

bm_lvl_5_normal_2_wo_links 4 39 26 0 65 predefined 100

bm_lvl_5_normal_2_w_links 4 38 26 1 65 predefined 100

bm_lvl_5_skewed_0_wo_links 4 39 26 0 65 predefined 100

bm_lvl_5_skewed_0_w_links 4 38 26 1 65 predefined 100

bm_lvl_5_skewed_1_wo_links 4 39 26 0 65 predefined 100

bm_lvl_5_skewed_1_w_links 4 38 26 1 65 predefined 100

bm_lvl_5_skewed_2_wo_links 4 39 26 0 65 predefined 100

bm_lvl_5_skewed_2_w_links 4 38 26 1 65 predefined 100

bm_lvl_5_uniform_0_wo_links 4 39 26 0 65 predefined 100

bm_lvl_5_uniform_0_w_links 4 38 26 1 65 predefined 100

Total: 54

min 2 2 3 0 7

max 4 39 26 15 65

21

Table 5: Execution times in milliseconds per alternative. “NA” indicates “not attempted”. Cells containing “0” indicate
execution times so small that they were not even detected.

Model name
Algorithm

Exhaustive TopDown BottomUp

Car 2.27 0.13 0.03

AvrMinMax_NoLink 0 0 0

AvrMinMax_Link 0 0.59 0

LinkedAttributesTest 0 0 0

LinkedBoundsTest 0 0 0

LinkedBoundsTest3 0 0 0

Problem 0 0.20 0.20

Problem2 0 0 0.20

AgriPruned 462.04 14.54 3.12

AgriFood NA 885.66 91.66

AgriFoodChainIntegrated NA 833.22 78.66

bm_lvl_3_normal_0_wo_links 51.64 0.94 0.31

bm_lvl_3_normal_0_wo_links 50.75 0.94 0.16

bm_lvl_3_normal_0_wo_links 50.59 0.94 0.31

bm_lvl_3_normal_0_w_links 17.34 0.62 0.16

bm_lvl_3_normal_1_wo_links 51.79 0.8 0.16

bm_lvl_3_normal_1_w_links 16.87 0.47 0.16

bm_lvl_3_normal_2_wo_links 50.87 0.94 0.31

bm_lvl_3_normal_2_w_links 15.94 0.54 0

bm_lvl_3_skewed_0_wo_links 51.01 0.47 0.31

bm_lvl_3_skewed_0_w_links 16.87 0.31 0.2

bm_lvl_3_skewed_1_wo_links 51.35 0.62 0.16

bm_lvl_3_skewed_1_w_links 17.06 0.47 0

bm_lvl_3_skewed_2_wo_links 51.01 0.78 0.16

bm_lvl_3_skewed_2_w_links 16.87 0.31 0

bm_lvl_3_uniform_0_wo_links 52.57 0.94 0.31

bm_lvl_3_uniform_0_w_links 16.7 0.62 0.16

bm_lvl_4_normal_1_wo_links NA 208.87 0.47

bm_lvl_4_normal_1_w_links NA 176.85 0.31

bm_lvl_4_normal_2_wo_links NA 326.01 0.31

bm_lvl_4_normal_2_w_links NA 429.63 0.94

bm_lvl_4_skewed_0_wo_links NA 97.56 0.46

bm_lvl_4_skewed_0_w_links NA 64.93 0.31

bm_lvl_4_skewed_1_wo_links NA 101.42 0.16

bm_lvl_4_skewed_1_w_links NA 81.34 0

bm_lvl_4_skewed_2_wo_links NA 701.55 0.47

bm_lvl_4_skewed_2_w_links NA 7719.46 0.46

bm_lvl_4_uniform_0_wo_links NA 1824.95 2.67

bm_lvl_4_uniform_0_w_links NA 1478.37 2.03

bm_lvl_5_normal_0_wo_links NA NA 1.25

bm_lvl_5_normal_0_wo_links NA NA 1.41

bm_lvl_5_normal_0_w_links NA NA 1.09

bm_lvl_5_normal_1_wo_links NA NA 0.31

bm_lvl_5_normal_1_w_links NA NA 0.31

bm_lvl_5_normal_2_wo_links NA NA 1.95

bm_lvl_5_normal_2_w_links NA NA 0.79

bm_lvl_5_skewed_0_wo_links NA NA 0.47

bm_lvl_5_skewed_0_w_links NA NA 0.78

bm_lvl_5_skewed_1_wo_links NA NA 0.64

bm_lvl_5_skewed_1_w_links NA NA 0.62

bm_lvl_5_skewed_2_wo_links NA NA 0.31

bm_lvl_5_skewed_2_w_links NA NA 0.62

bm_lvl_5_uniform_0_wo_links NA NA 11.56

bm_lvl_5_uniform_0_w_links NA NA 7.50

22

Appendix 3: Notation

DEX Model 𝑀 = (𝑋,𝐷, 𝑆, 𝐹)

Attributes 𝑋 = {𝑥𝑖, 𝑖 = 1,… , 𝑛}

 Aggregate attributes (outputs) 𝑌 = {𝑥 ∈ 𝑋: 𝑆(𝑥) ≠ ∅}

 Basic attributes (inputs) 𝑍 = {𝑥 ∈ 𝑋: 𝑆(𝑥) = ∅}

 Concatenation of ordered sets 𝑋 = 𝑌 ∘ 𝑍

Scales 𝐷 = {scale 𝑥𝑖 |𝑥𝑖 ∈ 𝑋}

 Scale scale 𝑥 = [𝑣𝑥,1, 𝑣𝑥,2, … , 𝑣𝑥,𝑚𝑥
] = [1,2,… ,𝑚𝑥]

 Scale order order 𝑥 ∈ {unordered, ascending, descending}

 Decision space space𝐾 = scale 𝑥1 × scale 𝑥2 ×…× scale 𝑥𝑘, 𝑘 = |𝐾|

Descendant function 𝑆: 𝑋 → 2𝑥

 Parents of 𝑥 𝑃(𝑥) = {𝑝 ∈ 𝑋: 𝑥 ∈ 𝑆(𝑝)}

Aggregation functions 𝐹 = {𝑓𝑥, 𝑥 ∈ 𝑌}
 … associated with 𝑥 ∈ 𝑌 𝑓𝑥: space 𝑆(𝑥) → scale 𝑥

Decision table for 𝑥 ∈ 𝑌 𝑇𝑥 = {𝑟𝑖, 𝑖 = 1,2, … , |space 𝑆(𝑥)|}
 Decision rule 𝑟 ∈ 𝑇𝑥: a ∈ space 𝑆(𝑥) → 𝑣 ∈ scale 𝑥

Decision alternatives 𝒜 = {𝐴1, 𝐴2, … , 𝐴𝑞}

Alternative 𝐴𝑖 = [𝑎𝑥,𝑖 ∈ scale 𝑥 , ∀𝑥 ∈ 𝑋]

Input assignment 𝑍(𝐴𝑖) = [𝑎𝑥,𝑖 ∈ 𝐴𝑖, ∀𝑥 ∈ 𝑍]

Output assignment 𝑌(𝐴𝑖) = [𝑎𝑥,𝑖 ∈ 𝐴𝑖, ∀𝑥 ∈ 𝑌]

Overall evaluation of alternative 𝐴𝑖 𝐸(𝐴𝑖) = 𝑎1,𝑖

Given alternative 𝐴0

Initial assignment 𝒛0 ∈ space𝑍

𝑖-th element of vector (assignment) 𝒂 𝑎𝑖

Concatenation of two assignments 𝒂 and 𝒃 𝒂 ∘ 𝒃 = [𝑎1, 𝑎2, … , 𝑏1, 𝑏2, …]
Extracted 𝒃 elements from 𝒂 𝒂[𝒃] = [𝑎𝑏1 , 𝑎𝑏2 , …]

Difference function

diff𝐾(𝐴1, 𝐴2) =∑diff(𝑥𝑖 , 𝑎𝑖,1, 𝑎𝑖,2)

|𝐾|

𝑖=1

… associated with attribute 𝑥 diff(𝑥, 𝑎1, 𝑎2), 𝑥 ∈ 𝑋, 𝑎1,, 𝑎2 ∈ scale 𝑥

Recorded solutions in 𝑅𝑥 corresponding to 𝑎 𝑅𝑥[𝑎], 𝑥 ∈ 𝑋, 𝑎 ∈ scale 𝑥

