

Marko Bohanec

Transformations of Decision Tables in

Qualitative Multi-Criteria Decision Modeling Method DEX

IJS delovno poročilo
DP-14761
2024

ii

Abstract

We investigate transformations that change the contents of decision tables in multi-criteria decision

modeling method DEX (Decision EXpert). A DEX model typically contains a multitude of decision tables

whose dimensions (columns and rows) are bound to the context defined by multiple input variables

(attributes) and a single output attribute, each of them associated with some discrete (qualitative)

value scale. Whenever any of these elements changes while editing a DEX model, the dimensions of

the corresponding decision table change, too. Furthermore, the decision table contents, represented

in terms of elementary decision rules, might also be affected. The main purpose of the transformations

studied here is to preserve the information content of decision tables as much as possible. There are

three main categories of transformations related to the three main contextual elements: the set of

input attributes, the scales of input attributes and the scale of an output attribute. For each category,

typical transformations include adding, deleting, duplicating, copying and moving some element, and

exchanging and merging two elements.

Keywords

Multi-criteria model, method DEX, decision table, decision rule, decision table transformation.

iii

Contents
1 Introduction ... 1

2 Decision tables in DEX ... 2

3 Creation of DEX decision tables... 6

4 Transformations of DEX decision tables .. 9

4.1 Transformations due to changes of input attributes .. 10

4.1.1 Add/Insert input .. 10

4.1.2 Duplicate input .. 11

4.1.3 Delete input ... 12

4.1.4 Exchange and move inputs .. 13

4.2 Transformations due to changes of an input attribute scale .. 14

4.2.1 Add/Insert input value... 14

4.2.2 Duplicate input value... 14

4.2.3 Delete input value ... 15

4.2.4 Merge input values .. 15

4.2.5 Copy input value .. 16

4.2.6 Move input value ... 16

4.2.7 Exchange input values ... 17

4.3 Transformations due to changes of output attribute scale .. 17

4.3.1 Add/Insert output value .. 18

4.3.2 Delete output value ... 18

4.3.3 Duplicate output value .. 18

4.3.4 Copy output value ... 19

4.3.5 Move output value .. 19

4.3.6 Exchange output values... 20

4.3.7 Merge output values ... 20

4.4 Other changes ... 21

5 Conclusion ... 21

6 References ... 23

Appendix 1: Notation .. 24

1

1 Introduction

A decision table is a concise tabular representation for specifying outcomes (such as actions, decisions,
evaluation results, etc.) depending on given conditions. Decision tables are often used to describe and
analyze the logic of a complex decision by specifying different conditions and the corresponding
decisions or actions to be taken. They are particularly useful in software engineering, business rule
management, and other fields where clear and logical decision-making is critical. Decision tables
consisting of binary (Boolean) variables are ubiquitous in computer science to represent logical
relations in terms of truth tables.

Generally, a decision table consists of (see an example in Figure 1):

1. Conditions: Various conditions that can occur in the considered context. Each condition is typically

represented by values assigned to one or more independent variables (inputs).
2. Outcomes or actions: These are the possible states or values that each condition can take. They

are represented by values assigned to one or more dependent variables (outputs).

Figure 1: Example: Play Golf decision table
(Source: https://en.wikipedia.org/wiki/Decision_table#/media/File:Golf_dataset.png)

Each row represents a decision rule that assigns the designated output(s) to the situations that fulfil
the corresponding conditions. Collectively, a decision table represents a (possibly partial) mapping
from inputs to outputs:

𝐷𝑇: 𝐶1 × 𝐶2 × ⋯ × 𝐶𝑛 → 𝐷1 × 𝐷2 × ⋯ × 𝐷𝑑

where 𝐶1 × 𝐶2 × ⋯ × 𝐶𝑛 and 𝐷1 × 𝐷2 × ⋯ × 𝐷𝑑 are value sets of input (condition) and output
(decision) variables, respectively.

In this report we consider a particular type of decision tables that are used in the context of DEX
(Decision EXpert). DEX is a qualitative rule based multi criteria decision modelling method (Bohanec,
2022; 2024), aimed at supporting decision makers in complex decision-making tasks. Essentially, the
approach consists of developing a hierarchically-structured multi-criteria decision model and using this
model to evaluate and analyze decision alternatives. On this basis, the decision maker can assess the
decision situation and ultimately rank the alternatives and/or choose the best one. The evaluation
(aggregation) of values in a DEX model is governed by user-defined decision tables.

https://en.wikipedia.org/wiki/Decision_table#/media/File:Golf_dataset.png

2

While developing a DEX model, its decision tables are “alive” and subject to various operations that
affect their contents. While the creation of DEX decision tables from the scratch has been covered
extensively and with many examples in the literature (see, for instance, Bohanec (2020; 2022; 2024)),
nothing has been published yet about the transformations of decision tables that occur due to internal
changes of decision model structure: adding, deleting and transforming model variables and modifying
value scales of input and output variables. These operations occur frequently while editing the model
and may severely damage existing decision tables if not handled correctly. The “correct”
implementation should be as helpful and as smooth for the user. At the very least, it should adhere to
the following principle as closely as possible:

When transforming a decision table, preserve as much information already contained in the table.

In what follows, the concept of DEX decision tables is defined in more detail in section 2. The process
of decision table creation is briefly addressed in section 3, mainly to introduce and illustrate concepts
relevant for decision table transformations. Section 4 is the central part of the report, describing
transformation methods due to change of the set of input variables (subsection 4.1), change of input
variables’ value scales (4.2) and change of the output variable value scale (4.3).

2 Decision tables in DEX

A DEX model (Bohanec, 2022) is composed of variables, called attributes, and decision tables.
Attributes are structured into a hierarchy, that is, a tree or directed acyclic graph. Attributes are
“qualitative”: each attribute is associated with a discrete value scale, which is typically composed of
words, such as ‘low’, ‘medium’, ‘unacceptable’ or ‘good’.

Figure 2 shows a simple example of a DEX model structure aimed at evaluating cars. The involved
attributes are called CAR, PRICE, TECH.CHAR., BUY.PRICE, MAINT.PRICE, COMFORT and SAFETY. The
structure reflects the decomposition of the problem into sub-problems, for instance, the assessment
of CAR to the assessments of PRICE and TECH.CHAR. The evaluation of decision alternatives (cars) is
then carried out recursively in the bottom-up direction from terminal attributes (BUY.PRICE,
BUY.PRICE, MAINT.PRICE, COMFORT) through internal attributes (PRICE and TECH.CHAR) towards the
overall result (CAR).

Figure 2: A simple DEX model structure for evaluating cars (Source: https://dex.ijs.si/)

In the remaining part of this report we shall focus only on individual decision tables and ignore other
aspects of DEX modelling: defining attributes and their scales, structuring models, and representing,
evaluating and analyzing decision alternatives – see Bohanec (2020; 2022; 2024) for more information
on these topics.

An individual DEX decision table is defined in the context, called decision space, which is defined by a
single output attribute and one or more input attributes. The output attribute can be any internal node

https://dex.ijs.si/

3

in the DEX model structure (i.e., CAR, PRICE and TECH.CHAR in Figure 2). For some output attribute
(say, CAR) the corresponding input attributes are then its immediate descendants in the model
structure (i.e., PRICE and TECH.CHAR.). Thus, the decision space for individual decision table CAR
(Figure 3) is defined by the output attribute CAR and input attributes PRICE and TECH.CHAR together
with the corresponding value scales.

Figure 3: Decision space for the CAR decision table, consisting of an output attribute (CAR), input attributes (PRICE and
TECH.CHAR.) and associated value scales.

Figure 3 also shows value scales associated with the three attributes:

value scale of CAR = {unacc, acc, good, exc}
value scale of PRICE = {high, med, low}
value scale of TECH.CHAR. = {bad, acc, good, exc}

As we can see, all scales consist of a small number of discrete values, generally represented by words.
Scales can be preferentially ordered or not. All the above scales are ordered in an ascending
(increasing) order, so that consecutive values from left to right denote more and more preferred
values. By convention in DEX, particularly bad and good values are printed in bold-red and bold-italic-
green, respectively.

Having defined the example decision space in full, the stage is now set for showing a first example of
a DEX decision table. Table 1 displays a decision table defined in the context of decision space from
Figure 1. The table consists of four columns and 12 rows. The columns PRICE and TECH.CHAR.
correspond to the two input (independent) variables, and the column CAR corresponds to the single
output (dependent) variable. Rows in the table are composed of a conditional part (corresponding to
input attributes) and an outcome (corresponding to the output attribute).

Table 1: Decision table CAR, defined in the context of decision space from Figure 3.

 PRICE TECH.CHAR. CAR

1 high bad unacc
2 high acc unacc
3 high good unacc
4 high exc unacc
5 medium bad unacc
6 medium acc acc
7 medium good good
8 medium exc exc
9 low bad unacc

10 low acc good
11 low good exc
12 low exc exc

In comparison with general decision tables, DEX decision tables are always bound to the given decision
space. This means that:

unacc, acc, good, exc

high, med, low bad, acc, good, exc

4

• The conditional part of the table contains all possible combinations of the values of input
attributes. In the above example, since PRICE and TECH.CHAR. can take 3 and 4 values,
respectively, there are 3 × 4 = 12 rows in the table.

• Consequently, there are no missing conditions in a DEX decision table and all conditions are
distinct.

• There is only one outcome column that can hold values from the scale of the output attribute.

While values in the conditional part of the table are always single qualitative values, this is not
necessarily so with the outcome values. Normally, as shown in Table 1, they can be single qualitative
values, but there are other possibilities: an unknown value, an interval or set of values, or a value
distribution. These cases are defined in the next section.

Let us take the example in Table 1 to introduce some more terms and concepts associated with DEX
decision tables:

• A single table row is often referred to as an (elementary) decision rule. Indeed, each row can be
read in terms of a simple “if <condition> then <outcome>” rule. For instance, rule 6 in Table 1 can
be interpreted as:

if PRICE = medium and TECH.CHAR. = acc then CAR = acc.

• In the Introduction above we mentioned that a decision table represents a mapping from input to
output variables. In DEX, this mapping is actually a function that maps input attributes to the
output one. Furthermore, it resembles many properties of aggregation functions (Grabisch, et al.,
2009) and utility functions as used in the area of Multi-Criteria Decision Analysis (Greco, et al.,
2016). Consequently, input attributes are often referred to as function arguments.

• Taking the functional interpretation, decision rules then represent discrete points in the decision
space, as shown in Figure 4. Notice that the function is discrete and defined only in the points
shown. Lines drawn between those points serve only as visual aids.

Figure 4: A three-dimensional graphic representation of the CAR decision table. Dots represent individual decision rules.

After getting reasonably familiar with DEX decision tables, let us introduce some formal notation that
we shall use hereafter:

• 𝑿 = {𝑥𝑖, 𝑖 = 1, … , 𝑛} denotes the set of input attributes of a given decision space. There are 𝑛
input attributes.

• 𝑦 denotes the single output attribute.

5

• A value scale associated with each input attribute 𝑥𝑖 is denoted 𝑆𝑖 and composed of 𝑘𝑖 > 0

discrete values: 𝑆𝑖 = {𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝑘𝑖
}.

• Similarly, the value scale associated with 𝑦 is 𝑆𝑦 = {𝑣𝑦,1, 𝑣𝑦,2, … , 𝑣𝑦,𝑘𝑦
} , 𝑘𝑦 > 0.

• The size of some scale 𝑆 is denoted |𝑆|. Consequently, |𝑆𝑖| = 𝑘𝑖, 𝑖 = 1, … , 𝑛; |𝑆𝑦| = 𝑘𝑦.

A DEX scale can be preferentially ordered or not. We use the notation ordered(𝑆) to indicate whether
scale 𝑆 is ordered (ordered(𝑆) = 𝑡𝑟𝑢𝑒) or not (ordered(𝑆) = 𝑓𝑎𝑙𝑠𝑒). Actually, the situation in DEX is,
due to practical reasons, somewhat more complicated: DEX distinguishes among unordered,
increasing (ascending) and decreasing (descending) scales (the latter two interpreted in the left-to-
right order). As the consideration of all three possibilities substantially complicates the notation and
underlying algorithms, we can take advantage of the fact that the polarity of an ordered scale can be
easily changed by reversing the order of scale values. Consequently, we shall restrict further
consideration to only two cases, unordered and ascending scales, without loss of generality.

If a scale 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑘} is ordered, then there is a preference relation ‘≽’ (meaning “better than
or equally preferred” or “at least as good”) defined between consecutive pairs of values: ∀𝑣𝑖, 𝑣𝑗 ∈

𝑆, 𝑗 > 𝑖: 𝑣𝑗 ≽ 𝑣𝑖. No such relation can be assumed with unordered scales; values defined over an

unordered scale can only be checked for equality (using the relation ‘=’).

A decision space 𝐷𝑆, which defines the context of a decision table, is a quadruple, composed of input
attributes, an output attribute and associated scales: 𝐷𝑆 = 〈𝑿, 𝑦, 𝑺, 𝑆𝑦〉, where 𝑺 = 𝑆1 × 𝑆2 × ⋯ × 𝑆𝑛.

Moving to decision tables, we use the following notation:

• The input space (or domain of the function) is 𝑺.

• Consequently, input space size is |𝑺| = 𝑘1𝑘2 … 𝑘𝑛.

• For the moment, let us denote the value space over 𝑦 as 𝑉(𝑆𝑦). This value space determines what

types of values are admissible as outcomes. There are several possibilities for 𝑉(𝑆𝑦), which are

further discussed in section 3.

Considering these definitions, a decision table represents the function 𝐹: 𝑺 → 𝑉(𝑆𝑦). The

representation consists of elementary decision rules of the form 𝑟𝒗 = 𝒗 → 𝑐, 𝒗 ∈ 𝑺, 𝑐 ∈ 𝑉(𝑆𝑦). A DEX

decision table 𝑅 is then composed of rules that correspond to all possible conditions from 𝑺:

𝑅 = {𝑟𝒗|∀𝒗 ∈ 𝑺}.

The notation 𝒗(𝑟) and 𝑦(𝑟) is used to denote the constituent parts of some rule 𝑟 = 𝒗 → 𝑐, so that
𝒗(𝑟) = 𝒗 ∈ 𝑺 and 𝑦(𝑟) = 𝑐 ∈ 𝑉(𝑆𝑦).

An additional bit of information is associated with each decision rule 𝑟, denoted entered(𝑟), which
can be either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒. This is because values assigned by the decision maker to outcome cells of
a decision table are considered “untouchable” in DEX: they must not be changed by any method or
algorithm, even if they are evidently wrong (issuing warnings in such cases is admissible, though). On
the other hand, rules whose outcomes have not been assigned by the user, are considered “free” and
can be modified by DEX, usually according to some general instructions formulated by the user, as
discussed in section 3. In displays, such as the example in Table 1, entered rules are denoted by bold
rule numbers displayed in the leftmost column. Normal typeface is used for rules that have not been
entered by the decision maker.

6

The following notation is used to denote parts of conditional vector space and subset of rules,
respectively, that satisfy some Boolean condition cond(𝒗), 𝒗 ∈ 𝑺 or cond(𝑟𝒗), 𝑟𝒗 ∈ 𝑅 :

𝑇cond = {𝒗 ∈ 𝑺|cond(𝒗)}
𝑅cond = {𝑟𝒗 ∈ 𝑅|cond(𝑟𝒗)}

Specifically, we use 𝐸(𝑅) (or shortly 𝐸 when evident from the context) to denote all entered rules in
𝑅:

𝐸(𝑅) = 𝑅entered(𝑟)

Finally, in relation with value scales, we often refer to ordinal numbers of scale values rather than
(textual) words themselves. Given some scale 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑘} and considering that ord(𝑣𝑖) = 𝑖, 𝑖 =
1,2, … , 𝑘, we represent the scale as 𝑍 = {ord(𝑣1),ord(𝑣2), … , ord(𝑣𝑘)} = {1, 2, … , 𝑘}. Such ordinal
numbers are interpreted only as labels and are not involved in any numerical computation. With
ordered scales we may assume that 𝑗 ≽ 𝑖 for all ordinal values 𝑗 > 𝑖. For unordered scales, any
comparison of ordinal values other than equality is not admissible.

3 Creation of DEX decision tables

Once some decision space 𝐷𝑆 within a DEX model has been fully defined, it is possible to create a
corresponding decision table 𝑅. In DEX, this is typically done by the supporting software that generates
all possible combinations of input attributes’ values and makes a table consisting of |𝑆| “empty” rules.
The decision-maker is then expected to assign output values to “empty” cells positioned in the
rightmost column of the table. Usually this is done by assigning a single value 𝑣 ∈ 𝑆𝑦 to each cell.

Applying this principle to the whole table would mean that the value space over 𝑦, 𝑉(𝑆𝑦), would be

identical to 𝑆𝑦: 𝑉(𝑆𝑦) ≡ 𝑆𝑦 However, this is not practical for three reasons: it restricts the handling of

not-yet-entered decision rules, it restricts the set of possible outcomes in each cell to a single value
and is unsuitable for expressing imprecise and uncertain preferences. Therefore, DEX extends the
notion of 𝑉(𝑆𝑦) to other data types, as presented below.

First, let us ask what is an “empty” decision rule? In principle, this is a rule that has not been defined
by the user and whose outcome is unknown. It would be inappropriate to assign any value from 𝑆𝑦 to

such a rule. Therefore, when creating an initial “empty” table, there are two possibilities (Table 2): to
mark all yet undefined entries as undefined, or to assume that each rule can take any value from 𝑆𝑦.

In DEX, “any value” is traditionally denoted by the asterisk ‘*’, meaning either the full interval or full
set of values from 𝑆𝑦. The ‘*’ can be interpreted as unknown.

Table 2: Two possibilities for initial creation of an “empty” table: using <undefined> (left) or the set of all values '*' (right).

 PRICE TECH.CHAR. CAR

1 high bad <undefined>
2 high acc <undefined>
3 high good <undefined>
4 high exc <undefined>
5 medium bad <undefined>
6 medium acc <undefined>
7 medium good <undefined>
8 medium exc <undefined>
9 low bad <undefined>

10 low acc <undefined>
11 low good <undefined>
12 low exc <undefined>

 PRICE TECH.CHAR. CAR

1 high bad *
2 high acc *
3 high good *
4 high exc *
5 medium bad *
6 medium acc *
7 medium good *
8 medium exc *
9 low bad *

10 low acc *
11 low good *
12 low exc *

7

The above example already indicates three possible candidates for the extension of 𝑉(𝑆𝑦): to value

scales that include undefined, to intervals over 𝑆𝑦 and to value sets over 𝑆𝑦. Further extensions to value

distributions over 𝑆𝑦 are motivated by the need to represent imprecise and/or uncertain preferences.

Therefore in DEX, the value space 𝑉(𝑆) over some scale 𝑆 can be one of the following (normally, 𝑆 =
𝑆𝑦, but we drop the subscript 𝑦 to simplify notation):

• Single value: 𝑉(𝑆) ≡ 𝑆: Only of theoretical importance, unsuitable and too limiting for practice.

• Value interval: 𝑉(𝑆) ≡ 𝐼(𝑆) = [𝑣low, 𝑣high], 𝑣low, 𝑣high ∈ 𝑆, 𝑣low ≼ 𝑣high: Represents all values

between and including 𝑣low and 𝑣high. Meaningful only with ordered scales.

• Value set: 𝑉(𝑆) ≡ 2𝑆 = {𝑣|𝑣 ∈ 𝑆}: Represents some subset of values from 𝑆. Meaningful for all
discrete scales.

• Value distribution: 𝑉(𝑆) ≡ 𝐷(𝑆) = (
𝑣1 𝑣2

𝑝1 𝑝2
…

𝑣𝑘

𝑝𝑘
) , 𝑝𝑖 ∈ ℝ+, 𝑖 = 1,2, … , 𝑘: Associating each value

from 𝑆 with a number 𝑝 ∈ ℝ+.

• Probability distribution: 𝑉(𝑆) ≡ 𝑃(𝑆) = 𝐷(𝑆) where ∑ 𝑝𝑖 = 1𝑘
𝑖=1 : A special case of value

distribution where the numbers 𝑝𝑖 are interpreted as probabilities.

• Fuzzy distribution: 𝑉(𝑆) ≡ 𝐹(𝑆) = 𝐷(𝑆) where 𝑝𝑖 ∈ [0, 1], 𝑖 = 1,2, … , 𝑘: A special case of value
distribution where the numbers 𝑝𝑖 are interpreted as fuzzy memberships (possibilities). A

normalized fuzzy distribution additionally restricts 𝑝𝑖’s to max𝑖=1
𝑘 𝑝𝑖 = 1.

• Value space extended with undefined: 𝑉(𝑆) ≡ 𝑋𝑊(𝑆) = 𝑊(𝑆) ∪ {undefined}, where 𝑊 denotes
one of the above representations.

The support for these representations varies between versions of DEX software (https://dex.ijs.si/). All
versions support value intervals. All versions of recent software called DEXi Suite
(https://dex.ijs.si/dexisuite/dexisuite.html) support undefined. DEXi Suite software also supports value
sets and value distributions, however not in decision tables, but only while evaluating decision
alternatives. Full support for value sets and value distributions is foreseen in future implementations.
In the remaining part of this report, we shall consider all the mentioned representations and point out
the differences between them whenever relevant.

Let us also mention that explicitly considering undefined substantially complicates the formal notation.
Therefore, we shall exclude undefined from further consideration. This can be done without loss of
generality considering these simple principles:

• The single outcome undefined can be assigned to any decision rule.

• Undefined is a special value that cannot be a member of any value interval, set or distribution.

• Whenever a sequence of values is combined (aggregated) together (for instance, with join in
section 4.1.3), and at least one of them is undefined, the final result is undefined, too.

After some “empty” decision table 𝑅 has been created, it is usually populated by assigning (entering)
values to decision rules. This is typically done by one or more decision makers that interactively use
the DEX software so as to best represent their knowledge and preferences in the given context. The
assignments can be done in any order. While doing this, DEX software monitors the decision table for
(Bohanec, 2022):

• Consistency: Do entered rules violate the principle of dominance? Informally, the principle of
dominance requires that any rule whose conditions are better than or equal to those of some other
rule, should specify an outcome that is better or at least equal to that of the latter rule.

https://dex.ijs.si/
https://dex.ijs.si/dexisuite/dexisuite.html

8

• Decision table definition/completeness: To which extent have been the decision table contents
defined? Normally, the goal is to enter all rules in the table and, if possible, assign to each of them
only a single value from 𝑆𝑦.

DEX software may also modify, in the background, output values of rules that have not been entered
yet, according to instructions given by the decision maker. There are two types of instructions (or rule
definition “strategies”, as referred to in DEX software documentation):

• Use scale orders: Enforcing the principle of dominance on non-entered rules.

• Use weights: Determining values of non-entered rules using user-specified weights of attributes
and employing a linear approximation function.

Figure 5: A partially defined decision table with algorithmically assigned values using scale orders (left) and weights (right).

Figure 5 illustrates the two strategies in action. The decision table is only partially defined: the user has
defined the outcomes of rules 1, 4, 5, 7, 9, 11 and 12. Employing the principle of dominance (Figure 5,
left) generally assigns value intervals to non-entered rules. For example, the interval “<=good”
(equivalent to [unacc:good]) has been assigned to rule 6 due to two other entered rules: rule 5 whose
conditions are worse than 6’s and its outcome is unacc, and rule 7 whose conditions are better and
the outcome is good. On this basis, we can restrict the value of rule 6 into the [unacc:good] interval.
Notice that sometimes such intervals are reduced to a single value (rules 2 and 3), while in some other
cases (rule 10) the interval cannot be narrowed down to less than ‘*’.

Analogously, Figure 5 (right) shows the results of linear approximation based on weights. In this case,
the user specified the weights 40% and 60% for PRICE and TECH.CHAR., respectively, and directed DEX
to calculate the non-entered values proportionally to 40 × ord(PRICE) + 60 × ord(TECH.CHAR). In
this way, single values from 𝑆𝑦 were assigned to rules 2, 3, 6, 8 and 10.

The principles of decision table creation and decision rules acquisition are covered in more detail in
other DEX literature, particularly Bohanec (2020, 2022; 2024). We mentioned them here to explain
that the assignment of values to non-entered decision rules happens in DEX in the background while
editing the decision table, considering rules actually entered by the user. Furthermore, the values of
non-entered rules depend on the used strategy. Therefore, in decision table transformations,
presented in the next section, it is important to consider only rules explicitly defined by the decision
maker. This is the essential information that has to be preserved in the transformations. Once some
table has been transformed, it may be subjected post-festum to the same value-defining strategies as
illustrated above.

 PRICE TECH.CHAR. CAR

1 high bad unacc
2 high acc unacc
3 high good unacc
4 high exc unacc
5 medium bad unacc
6 medium acc <=good
7 medium good good
8 medium exc >=good
9 low bad unacc

10 low acc *
11 low good exc
12 low exc exc

 PRICE TECH.CHAR. CAR

1 high bad unacc
2 high acc unacc
3 high good unacc
4 high exc unacc
5 medium bad unacc
6 medium acc acc
7 medium good good
8 medium exc good
9 low bad unacc

10 low acc acc
11 low good exc
12 low exc exc

9

4 Transformations of DEX decision tables

DEX decision tables are typically created, as discussed in the previous section, interactively by using

DEX software: the decision maker observes the contents of the table, enters rule values and observes

effects of any changes. Furthermore, DEX software monitors the progress and issues

messages/warnings interactively whenever necessary. In contrast, the transformations discussed in

this section occur in the background while the user is making changes to a DEX model, without looking

at any table. There are three types of changes that affect components of some decision space 𝐷𝑆 =

〈𝑿, 𝑦, 𝑺, 𝑆𝑦〉 and require transforming one or more underlying decision tables:

1. Changing the set of input attributes 𝑿: deleting an attribute from 𝑿 (or whole subtree in the

model), adding a new attribute to 𝑿, changing the order of input attributes.

2. Changing some input attribute’s scale 𝑆 ∈ 𝑺: adding or deleting some value to/from the scale,

duplicating or copying a value, merging two values into one, changing the order of values.

3. Changing the output attribute’s scale 𝑆𝑦: the same operations as above, but considered separately

as they cause different effects.

To recap, the main requirement for these transformations is that they preserve as much existing

information defined in the table in terms of already entered decision rules.

In what follows, we shall use the prime symbol to denote some component after transformation. For

instance, 𝑿 and 𝑿′ denote the set of input attributes before and after the transformation, respectively.

Additionally, we assume that 𝐸 ≠ ∅. Namely, an empty set of entered rules would indicate that the

table does not contain any useful information to preserve. With 𝐸 = ∅ we can simply create a new

“empty” decision table in the changed decision space.

Table 3: A fully defined decision table with three input attributes used to illustrate decision table transformations.

 A B C Y

1 low low low bad
2 low low med bad
3 low low high bad
4 low med low bad
5 low med med acc
6 low med high acc
7 low high low bad
8 low high med acc
9 low high high acc

10 med low low bad
11 med low med acc
12 med low high acc
13 med med low acc
14 med med med acc
15 med med high acc
16 med high low acc
17 med high med acc
18 med high high good
19 high low low bad
20 high low med acc
21 high low high acc
22 high med low acc
23 high med med acc
24 high med high good
25 high high low acc
26 high high med good
27 high high high good

To illustrate the transformations, we shall use an example decision table shown in Table 3. The table
is defined upon a decision space consisting of three input attributes A, B and C, and output attribute

10

Y. All the three inputs have the same value scale {low, med, high}, and the output can take the values
{bad, acc, good}. All value scales are ordered and all decision rules in the table have been entered.

4.1 Transformations due to changes of input attributes

These changes are triggered by changing the set of input attributes 𝑿, which effectively change the

decision space “dimensions” and affect the conditional columns of the decision table. Notice that any

change of 𝑿 is associated with a change of 𝑺. The decision space changes to 𝐷𝑆′ = 〈𝑿′, 𝑦, 𝑺′, 𝑆𝑦〉.

4.1.1 Add/Insert input

Given 𝐷𝑆 = 〈𝑿, 𝑦, 𝑺, 𝑆𝑦〉, this change introduces a new attribute 𝑥𝑛+1, associated with scale 𝑆𝑛+1.

Since the order of attributes and scales matter (at least when displaying decision tables) we distinguish

between inserting a new attribute to some position 𝑞 ∈ [1, 𝑛] or adding it to the end (i.e., effectively

an insertion to 𝑞 = 𝑛 + 1). In the following, we shall only consider adding due to simpler notation.

Thus, the decision space changes to 𝐷𝑆′ = 〈𝑿′, 𝑦, 𝑺′, 𝑆𝑦〉, where

𝑿′ = {𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1}

𝑺′ = 𝑆1 × 𝑆2 × ⋯ × 𝑆𝑛 × 𝑆𝑛+1

This means that the table size is multiplied by |𝑆𝑛+1|. Each rule 𝑟𝒗 ∈ 𝑅 is now reproduced 𝑘𝑛+1 times,

one time for each value from 𝑆𝑛+1. Each condition 𝒗 ∈ 𝑺 turns into 𝑘𝑛+1 conditions of the form 𝒗′ =

𝒗° ∘ 𝑣𝑛+1,𝑖 ∈ 𝑺′, for 𝑖 = 1, … , 𝑘𝑛+1 . Here, ‘∘’ represents the concatenation of a vector and a scale

value.

Now, the key question is how to determine the outcomes in the new decision table? In order to

preserve the contents of previously entered rules 𝑟𝒗: 𝒗 → 𝑐, ∀𝒗 ∈ 𝑺, entered(𝑟𝒗) , the new rules should

map to 𝑐 in all cases that correspond to conditions 𝒗. Thus, for each 𝒗 ∈ 𝑺 and each 𝑣′ ∈ 𝑆𝑛+1, which

make the new conditions denoted 𝒗′ = 𝒗 ∘ 𝑣′, the new set of entered rules is constructed so that:

𝑅′ = {𝑟′𝒗′: 𝒗′ → 𝑐|𝑟𝒗 ∈ 𝐸(𝑅), 𝑐(𝑟𝒗) = 𝑐, ∀𝑣′ ∈ 𝑆𝑛+1, 𝒗′ = 𝒗 ∘ 𝑣′}

Table 4: An example of adding a new attribute D to decision table from Table 3.

 A B C D AddInput

1 low low low bad bad
2 low low low acc bad
3 low low low good bad
4 low low med bad bad
5 low low med acc bad
6 low low med good bad
7 low low high bad bad
8 low low high acc bad
9 low low high good bad

 ======================
73 high high low bad acc
74 high high low acc acc
75 high high low good acc
76 high high med bad good
77 high high med acc good
78 high high med good good
79 high high high bad good
80 high high high acc good
81 high high high good good

Table 4 shows the results of adding a new three-valued attribute D to Table 3 (central rows are

removed for brevity). It is easy to observe that each original rule (such as rule 1: <low, low, low> → bad)

is reproduced three times, once for each value of D, keeping the same output value.

11

While this transformation is quite obvious, it is somewhat limited in practice. It effectively adds a new

attribute, which completes the table, but has no effect whatsoever on the outcomes. To make it

effective, rules must be reviewed and changed explicitly by the user.

4.1.2 Duplicate input

Considering the disadvantages of the above insert/add transformation, there is another way to extend

decision tables by one input attribute: duplicating an input attribute. This means taking some attribute

𝑥𝑠 ∈ 𝑿, 𝑠 ∈ [1, 𝑛], making its copy 𝑥′ = 𝑥𝑠 (with 𝑆′ = 𝑆𝑠) and inserting it at some position 𝑞 ∈

[1, 𝑛 + 1], 𝑞 ≠ 𝑠 into 𝑿. We shall again assume that 𝑞 = 𝑛 + 1 without loss of generality. In this way,

we get the new decision space 𝐷𝑆′ = 〈𝑿′, 𝑦, 𝑺′, 𝑆𝑦〉, where

𝑿′ = {𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥′}

𝑺′ = 𝑆1 × 𝑆2 × ⋯ × 𝑆𝑛 × 𝑆′

The only difference in comparison with adding/inserting a new attribute is that 𝑆′ is now

predetermined and equal to 𝑆𝑠; this allows for making different assumptions about the new decision

rules.

Again, the table size is multiplied by |𝑆′|. Each rule 𝑟𝒗 ∈ 𝑅 is now reproduced 𝑘′ = |𝑆′| times, one time

for each value from 𝑆′. Each condition 𝒗 ∈ 𝑺 turns into 𝑘′ conditions of the form 𝒗′ = 𝒗 ∘ 𝑣′ ∈ 𝑺′, for

each 𝑣′ ∈ 𝑆′ .

Let us consider some condition 𝒗 ∈ 𝑺 and assume it has an entered associated rule 𝑟𝒗: 𝒗 → 𝑐. Also

assume that the 𝑠-th element of 𝒗 is 𝒗𝑠 = 𝑤 ∈ 𝑆𝑠. In order to preserve this information in the new

decision table, we require that the new rule 𝑟′𝒗′ is assigned the same outcome 𝑐 whenever the new

input conditions at positions 𝑠 and 𝑞 are equal to 𝑤. When they are not, we cannot make any

assumptions and leave the corresponding rules non-entered. Formally, the transformed set of entered

rules is:

𝑅′ = {𝑟′𝒗′: 𝒗′ → 𝑐|𝑟𝒗 ∈ 𝐸(𝑅), 𝑐(𝑟𝒗) = 𝑐, 𝑤 = 𝒗𝑠, 𝒗′ = 𝒗 ∘ 𝑤}

Table 5: An example of duplicating attribute C.

 A B C C’ DuplicateInput

1 low low low low bad
2 low low low med *
3 low low low high *
4 low low med low *
5 low low med med bad
6 low low med high *
7 low low high low *
8 low low high med *
9 low low high high bad

 ======================
73 high high low low acc
74 high high low med *
75 high high low high *
76 high high med low *
77 high high med med good
78 high high med high *
79 high high high low *
80 high high high med *
81 high high high high good

Table 5 shows results of duplicating attribute C in Table 3. These results clearly differ from Table 4:

only rules that have equal values of C and C’ are now entered and assigned the same outcome as rules

with the same input value in the original table. Combinations of different values of C and C’ are not

12

entered in the new table, clearly signaling the user which rules need further attention. This is the main

reason why duplicating input attributes is generally preferred to adding/insertion transformations in

practice.

4.1.3 Delete input

Deleting and input attribute means removing some attribute 𝑥𝑞 ∈ 𝑿, 𝑞 ∈ [1, 𝑛] from 𝑿. Consequently,

the new decision space becomes 𝐷𝑆′ = 〈𝑿′, 𝑦, 𝑺′, 𝑆𝑦〉, where

𝑿′ = {𝑥1, … , 𝑥𝑞−1, 𝑥𝑞+1 … , 𝑥𝑛}

𝑺′ = 𝑆1 × ⋯ × 𝑆𝑞−1 × 𝑆𝑞+1 × 𝑆𝑛

In other words, the decision table collapses so that |𝑺′| = |𝑺|/𝑘𝑞. In general, multiple rules from the

original table, which were possibly entered and have assigned outcomes, are now represented by

single rules in the new table. Specifically, all conditional vectors 𝒗 ∈ 𝑺 turn to 𝒗 ∖ 𝑞 ∈ 𝑺′, where ‘∖ 𝑞’

denotes removal of the 𝑞-th vector element. In general, multiple 𝒗’s map to a single 𝒗 ∖ 𝑞.

In order to preserve tabular information, we need to consider all 𝒗 ∖ 𝑞 ∈ 𝑺′ and find out to which

outcomes the corresponding 𝒗’s map in the original table. In general, these outcomes are multiple and

different, and for each 𝒗 consist of a set of outcomes

𝐶(𝒗, 𝑞) = {𝑐(𝑟𝒗)|𝑟𝒗 ∈ 𝐸, 𝑣𝑞 ∈ 𝑆𝑞}

Here, 𝑣𝑞 denotes the 𝑞-th element of 𝒗.

In order to assign an outcome to a new rule 𝑟′𝒗∖𝑞, the outcomes from 𝐶(𝒗, 𝑞) need to be combined

together, giving a new outcome 𝑐′ ∈ 𝑉(𝑆𝑦). Hereafter, we call this operation 𝑗𝑜𝑖𝑛: given a set of

outcomes found in the original table, make a single outcome for the new table:

𝑗𝑜𝑖𝑛: {𝑐 ∈ 𝑉(𝑆𝑦)} → 𝑉(𝑆𝑦)

Now, it becomes necessary to consider the actual representation of the value space 𝑉(𝑆𝑦); join

generally depends on it and is different for different representations. Hereafter, we shall consider two

cases: using value sets 𝑉(𝑆𝑦) ≡ 2𝑆𝑦 and value distributions 𝑉(𝑆𝑦) ≡ 𝐷(𝑆𝑦). Value-sets results can be

approximately converted to value intervals (by taking the worst and best value from 2𝑆𝑦). Probability

and fuzzy distributions are easily derived from a general distribution by normalization of membership

numbers 𝒑 to the sum of 1 (probability) or maximum of 1 (normalized fuzzy), or just mapping them

proportionally to the [0, 1] interval (fuzzy).

When 𝑉(𝑆𝑦) represents a set of values from 𝑆𝑦, then join makes a union of original assignments, which

are also represented by sets in general. For each 𝒗 ∈ 𝑺 and given 𝑞:

𝑗𝑜𝑖𝑛(𝐶(𝒗, 𝑞)) = ⋃ 𝑐

𝑐∈𝐶(𝒗,𝑞)

Notice that whenever the argument of join is an empty set, the result is also an empty set. In this case,

no assignments are made to the new table and the corresponding rules remain non-entered.

Table 6 shows the results of deleting attribute C from Table 3, considering outcomes as sets. Actually,
both set and interval notations are shown in Table 6. Since all three rules in the original table where
A=low and B=low (rules 1–3) map to Y=bad, the outcome assigned to rule 1 in the new table is {bad}.
The next sequence of three original rules 4–6 contain one bad and two acc assignments; consequently,
the outcome of new rule 2 is {bad, acc}. The remaining sets are determined in a similar way.

13

Table 6: Example of deleting attribute C and considering outcomes as sets. Interval notation is shown in parentheses.

 A B DeleteInput

1 low low bad
2 low med bad,acc (<=acc)
3 low high bad,acc (<=acc)
4 med low bad,acc (<=acc)
5 med med acc
6 med high acc,good (>=acc)
7 high low acc,good (>=acc)
8 high med acc,good (>=acc)
9 high high acc.good (>=acc)

The second case, where 𝑉(𝑆𝑦) is represents a distribution of values over 𝑆𝑦, differs from the previous

one in that it counts the number of times some scale value appears in 𝐶(𝒗, 𝑞). More precisely, it

considers real numbers 𝑝𝑖 associated with each value 𝑣𝑖 ∈ 𝑆𝑖 in the distribution. For single values and

each member of a set, we assume 𝑝𝑖 = 1. Then:

𝑗𝑜𝑖𝑛(𝐶(𝒗, 𝑞)) = (
𝑣𝑦,1 𝑣𝑦,2

𝑝1 𝑝2
…

𝑣𝑦,𝑘

𝑝𝑘
)

so that each 𝑝𝑖 , 𝑖 = 1,2, … 𝑘 is a sum of 𝑝𝑖-s that are in each element of 𝐶(𝒗, 𝑞) associated with value

𝑣𝑦,𝑖.

The example in Table 7 illustrates the principle. Again, all three original rules 1–3 map to bad, so the

resulting distribution for the new rule 1 is:

(
bad acc

3 0

good
0

)

This is shortened to bad:3 in Table 7. The next three original rules 4–7 map once to bad and twice to

acc, yielding bad:1,acc:2. The remaining outcomes are obtained in a similar way. Each such value

distribution (e.g., bad:1,acc:2) can be converted to a probability distribution by normalizing the sum

of associated numbers to 1 (bad:1/3,acc:2/3) or a normalized fuzzy distribution by changing the

numbers proportionally so that their maximum equals 1 (bad:1/2,acc:1).

Table 7: Example of deleting attribute C and considering outcomes as value distributions.

 A B DeleteInput

1 low low bad:3
2 low med bad:1,acc:2
3 low high bad:1,acc:2
4 med low bad:1,acc:2
5 med med acc:3
6 med high acc:2,good:1
7 high low bad:1,acc:2
8 high med acc:2,good:1
9 high high acc:1,good:2

4.1.4 Exchange and move inputs

The remaining two transformations of inputs are primarily of practical importance. Actually, they do

not change any decision rules, but just reshuffle the order of input attributes, affecting the order of

columns and rules in the table. Exchanging means exchanging positions of two attributes in 𝑿, and

moving means repositioning some attribute 𝑥𝑠 ∈ 𝑿 to a new position 𝑞 ∈ [1, 𝑛], 𝑞 ≠ 𝑠 in 𝑿, shifting

positions of other attributes if necessary.

14

4.2 Transformations due to changes of an input attribute scale

The next set of transformations refers to changing some value scale 𝑆𝑠 ∈ 𝑺, 𝑠 ∈ [1, 𝑛]. This includes:

• adding some value to or deleting some value from 𝑆𝑠,

• changing the order of values (copy, move, exchange values), and

• other operations that are similar to adding (duplicating) and deleting (merging), but have different

semantics and generally yield different results.

In all cases, the original set of attributes 𝑿 stays intact. However, the associated scale 𝑆𝑖 changes, which

means that the structure and contents of the new decision table have to adapt to these changes. The

new decision space is 𝐷𝑆′ = 〈𝑿, 𝑦, 𝑺′, 𝑆𝑦〉, where

𝑺′ = 𝑆1 × 𝑆2 × ⋯ × 𝑆′𝑠 × ⋯ × 𝑆𝑛

4.2.1 Add/Insert input value

In this case, an additional value, say 𝑣𝑠,𝑘𝑠+1 is added or inserted at some position in 𝑆𝑠. This gives the

new scale 𝑆′𝑠 of size 𝑘𝑠 = |𝑆𝑠| + 1. Considering the underlying decision table, new entries with the

condition 𝑥𝑠 = 𝑣𝑠,𝑘𝑠+1 have to be added for all existing combinations of other attributes’ values.

Effectively, this extends the table size from |𝑺| to |𝑺|
|𝑆𝑠|+1

|𝑆𝑠|
. All the old decision rules are preserved,

and the new rules involving the new value of 𝑆𝑠 are left non-entered (Table 8).

Table 8: Example of inserting a new value mh as the third element of the scale of C.

 A B C InsertInpValue

1 low low low bad
2 low low med bad
3 low low mh *
4 low low high bad
5 low med low bad
6 low med med acc
7 low med mh *
8 low med high acc

 =================
29 high med low acc
30 high med med acc
31 high med mh *
32 high med high good
33 high high low acc
34 high high med good
35 high high mh *
36 high high high good

4.2.2 Duplicate input value

Duplicating an input value, say 𝑣, in some scale 𝑆𝑠, is similar to adding a new value, but leads to

different transformation rules. Namely, by intending to duplicate some value we effectively require

that the resulting decision rules stay the same for both the original input value 𝑣 and its duplicate 𝑣′.

Again, the table size is extended from |𝑺| to |𝑺|
|𝑆𝑠|+1

|𝑆𝑠|
 and all the old decision rules are preserved.

Differently from section 4.2.1, all the new rules involving the new value 𝑣′ ∈ 𝑆′𝑠 are assigned the same

outcome as old rules involving 𝑣 ∈ 𝑆𝑠. An example with central rules omitted is shown in Table 9.

Table 9: Example of duplicating the value med of attribute C (calling the duplicate med2).

 A B C DuplicateInpValue

15

1 low low low bad
2 low low med bad
3 low low med2 bad
4 low low high bad
5 low med low bad
6 low med med acc
7 low med med2 acc
8 low med high acc

 ==================
29 high med low acc
30 high med med acc
31 high med med2 acc
32 high med high good
33 high high low acc
34 high high med good
35 high high med2 good
36 high high high good

4.2.3 Delete input value

Deleting an input value 𝑣 ∈ 𝑆𝑠, where 𝑆𝑠 ∈ 𝑺 and |𝑆𝑠| > 1, is a straightforward transformation in which

all decision rules for which 𝑥𝑠 = 𝑣 are removed from the table. The table size is reduced from |𝑺| to

|𝑺|
|𝑆𝑠|−1

|𝑆𝑠|
. Formally, 𝑅′ = 𝑅𝑥𝑠≠𝑣. See the example in Table 10. Let us also remark that deleting a single

element from a single-element scale is not admissible, as it violates assumptions about decision spaces

(|S|>0 for each scale). In practice, such operations may still be supported in software at the cost of

substantial conceptual difficulties and are not addressed in this report.

Table 10: Example of deleting the value med from the scale of C.

 A B C DeleteInpValue

1 low low low bad
2 low low high bad
3 low med low bad
4 low med high acc
5 low high low bad
6 low high high acc
7 med low low bad
8 med low high acc
9 med med low acc

10 med med high acc
11 med high low acc
12 med high high good
13 high low low bad
14 high low high acc
15 high med low acc
16 high med high good
17 high high low acc
18 high high high good

4.2.4 Merge input values

Merging is a transformation that turns two values 𝑣𝑎 , 𝑣𝑏 ∈ 𝑆𝑠 into a new single value 𝑣𝑎𝑏 of the

transformed scale 𝑆′𝑠. With ordered scales, 𝑣𝑎 , 𝑣𝑏 are usually adjacent values, but this is not required

(although may violate the principle of dominance). This transformation is similar to deletion (as we

“lose” one scale value along the way), however it makes different requirements to the newly generated

decision rules: each new rule referring to the value 𝑣𝑎𝑏 must combine the outcomes of two original

rules that refer to 𝑣𝑎 and 𝑣𝑏, respectively. Similarly as in section 4.1.3, we have to join a set consisting

of at most two outcomes (there may be less due to non-entered rules referring to 𝑣𝑎 and 𝑣𝑏). The

same type of join operations as in section 4.1.3 are applicable. Table 14 shows the example of merging

16

the values med and high and displays outcomes in terms of general value distributions. These are all

easily transferable to intervals, sets, and probability and fuzzy distributions.

Table 11: Example of merging values med and high of C to a new value med+high, showing value distributions.

 A B C MergeInpValue

1 low low low bad:1
2 low low med+high bad:2
3 low med low bad:1
4 low med med+high acc:2
5 low high low bad:1
6 low high med+high acc:2
7 med low low bad:1
8 med low med+high acc:2
9 med med low acc:1

10 med med med+high acc:2
11 med high low acc:1
12 med high med+high acc:1,good :1
13 high low low bad:1
14 high low med+high acc:2
15 high med low acc:1
16 high med med+high acc:1,good :1
17 high high low acc:1
18 high high med+high good :2

4.2.5 Copy input value

Copying an input value 𝑣 ∈ 𝑆𝑠 to some position 𝑞 ∈ [1, 𝑘𝑠] effectively means the following: make

decision table behave the same for rules 𝑅𝑣𝑠=𝑣 and 𝑅𝑣𝑞=𝑣. That is, to each rule whose condition

contains 𝑣𝑞 = 𝑣, assign the same outcome as the outcome of original rule where 𝑣𝑣 = 𝑣, while all the

other conditions are the same. Also, leave all the remaining rules intact. In this case, the size of decision

table does not change. Affected are only rules containing the condition 𝑣𝑞 = 𝑣, as shown in the

example in Table 12. There, the most revealing contents is around the rules 22–24, particularly rule

24. The outcomes of rules 22 and 23 (acc) are intact with respect to Table 3. However, the original

outcome of original rule 24 (good) was replaced by acc as a result of copying the outcome from rule

23.

Table 12: Example of copying the value med of C to the third position (previously high, now med).

 A B C CopyInpValue

1 low low low bad
2 low low med bad
3 low low med bad
4 low med low bad
5 low med med acc
6 low med med acc
 =================

22 high med low acc
23 high med med acc
24 high med med acc
25 high high low acc
26 high high med good
27 high high med good

4.2.6 Move input value

Moving an input value is another transformation that does not change the dimensions of decision

table, but just reshuffles decision rules within the table. The transformation occurs due to moving

some value 𝑣 ∈ 𝑆𝑠 from its original position in the scale to some other position, shifting other values if

17

necessary. This repositioning is also expected to affect the underlying decision table so that outcomes

that were associated with the original 𝑣’s position move together with 𝑣 moving to a new position.

Again, let us consider rows 22–24 in Table 13. Moving the value med from the third to second place in

the scale of C effectively exchanged the outcomes of rules 24 as 23. In this way, the original value of

rule 24 good was assigned to rule 23, and the original value acc of rule 23 was assigned to rule 24.

Actually, a similar transformation was applied to other pairs, such as 2 and 3, 5 and 6, 26 and 27 and

others, not shown in Table 13.

Table 13: Example of moving the value med of C from the second to third position.

 A B C MoveInpValue

1 low low low bad
2 low low high bad
3 low low med bad
4 low med low bad
5 low med high acc
6 low med med acc

 =================
22 high med low acc
23 high med high good
24 high med med acc
25 high high low acc
26 high high high good
27 high high med good

Here, we should remark that moving values of ordered value scales is “tricky” and generally not

advised. In most cases, it violates the principle of dominance and requires additional recovery editing

from the user.

4.2.7 Exchange input values

This is another “tricky” operation, similar to moving an input value. Here, two values of the same scale

𝑆𝑠 exchange positions and “drag” the original outcome assignments with them. The transformation is

evident from the example in Table 14. Again, this transformation often violates the principle of

dominance.

Table 14: Example of exchanging the values low and high of attribute C.

 A B C ExchangeInpValues

1 low low high bad
2 low low med bad
3 low low low bad
4 low med high acc
5 low med med acc
6 low med low bad

 =================
22 high med high good
23 high med med acc
24 high med low acc
25 high high high good
26 high high med good
27 high high low acc

4.3 Transformations due to changes of output attribute scale

The final set of transformations addresses changes of the output attribute 𝑦 and the associated scale

𝑆𝑦. They are generally similar to those of input attribute scales in section 4.2 (adding, inserting,

duplication, etc.), however they affect the underlying decision tables differently. The new decision

space is 𝐷𝑆′ = 〈𝑿, 𝑦′, 𝑺, 𝑆′𝑦〉. This indicates that the basic dimensions, consisting of attributes 𝑿 and

18

their scales 𝑺 do not change. Consequently, the original and transformed decision tables have exactly

the same number of rules and only their outcomes are generally changed.

4.3.1 Add/Insert output value

Adding (to the end) or inserting (at some position) a new output value 𝑣′ ∈ 𝑆′𝑦 does not change the

decision table size or structure. Furthermore, all the rules can remain intact, mapping only to old values

from 𝑆𝑦. The only disadvantage of this transformation is that the new decision rules never map to 𝑣′

and require manual post-transformation editing to achieve that.

4.3.2 Delete output value

Deleting an output value 𝑣 ∈ 𝑆𝑦 means that 𝑣 has to be removed from all outcomes already existing

in 𝑅. This is particularly tricky with rules that map to exactly that value: 𝑟: 𝒗 → 𝑣. In this case, it is not

possible to preserve the source information; the new rule is assigned the unknown or ‘*’ outcome and

marked as non-entered. In all other cases it is possible to remove 𝑣 from the outcome and assign a

stripped-down outcome to the new rule.

Let us illustrate this principle using Table 15, where the value acc has been removed from outcomes.

The original outcomes other than acc have been retained. However, all acc outcomes have been

converted to ‘*’.

Table 15: Example of deleting value acc from outcomes.

 A B C DeleteOutValue

1 low low low bad
2 low low med bad
3 low low high bad
4 low med low bad
5 low med med *
6 low med high *
7 low high low bad
8 low high med *
9 low high high *

 =================
21 high low high *
22 high med low *
23 high med med *
24 high med high good
25 high high low *
26 high high med good
27 high high high good

Since the above example lacks variety, let us mention that:

• Removing a value from an interval restricts its bounds or internal contents. Considering the interval

bad:good, removing bad yields acc:good, removing acc yields bad:good (without acc in the middle,

because it is no longer there) and removing good yields bad:acc.

• Removing a value from a set is trivial, but may render an empty set.

• Removing a value from a distribution is equivalent to setting the corresponding value 𝑝 to 0.

4.3.3 Duplicate output value

Duplicating an output value means taking some value 𝑣 ∈ 𝑆𝑦 and inserting its copy 𝑣′ to 𝑆𝑦, typically

at the position right after 𝑣. Then, whenever the underlying decision rules map to 𝑣, they should map

to 𝑣′ as well. In other words, if an outcome contains 𝑣, it should contain 𝑣′, too. The example in Table

16 shows that duplicating the value acc to acc2 turns all acc outcomes to the interval acc:acc2 (or

equivalent set {acc, acc2}).

19

Table 16: Example of duplicating the output value acc and calling the duplicate acc2, using interval notation.

 A B C DuplicateOutValue

1 low low low bad
2 low low med bad
3 low low high bad
4 low med low bad
5 low med med acc:acc2
6 low med high acc:acc2
7 low high low bad
8 low high med acc:acc2
9 low high high acc:acc2

 =====================
22 high med low acc:acc2
23 high med med acc:acc2
24 high med high good
25 high high low acc:acc2
26 high high med good
27 high high high good

4.3.4 Copy output value

Copying an output value 𝑣𝑠 ∈ 𝑆𝑦 to some other output value 𝑣𝑑 ∈ 𝑆𝑦 essentially just renames 𝑣𝑑 to

𝑣𝑠, while still considering the two values distinct. Table 17 illustrates that the old output good has been

renamed to acc, still leaving two distinct values: acc (previous) and acc (newly renamed from good).

While not really useful by itself, this transformation is needed for consistency with copying an input

value (section 4.2.5), which typically occurs simultaneously at one level higher in the model, where the

current output attribute 𝑦 plays the role of some input attribute in another decision space.

Table 17: Example of copying the output value acc to the third position, replacing good with acc.

 A B C CopyOutValue

1 low low low bad
2 low low med bad
3 low low high bad
4 low med low bad
5 low med med acc
6 low med high acc
7 low high low bad
8 low high med acc
9 low high high acc

 =================
22 high med low acc
23 high med med acc
24 high med high acc
25 high high low acc
26 high high med acc
27 high high high acc

4.3.5 Move output value

Moving an output value 𝑣 ∈ 𝑆𝑦 means placing it in some other position in 𝑆𝑦, shifting other values if

necessary. In the underlying decision table this means that all outcome values are modified so as to

reflect this change of position.

The example in Table 18 shows what happens when moving output value acc from position 2 to

position 3, effectively exchanging the values acc and good. While retaining their names, the new acc

became preferentially better than good. This is exemplified in Table 18 by showing output value ordinal

numbers in parentheses; the ordinal numbers of the new acc and good are 3 and 2, respectively.

Unfortunately, this transformation generally results in rules violating the principle of dominance.

20

Table 18: Example of moving output value acc to position 3. Output value ordinal numbers are shown in parentheses.

 A B C MoveOutValue

1 low low low bad (1)
2 low low med bad (1)
3 low low high bad (1)
4 low med low bad (1)
5 low med med acc (3)
6 low med high acc (3)
7 low high low bad (1)
8 low high med acc (3)
9 low high high acc (3)
 ====================

22 high med low acc (3)
23 high med med acc (3)
24 high med high good (2)
25 high high low acc (3)
26 high high med good (2)
27 high high high good (2)

4.3.6 Exchange output values

Similarly as in section 4.2.7, exchanging two output values means exchanging positions of two values

in 𝑆𝑦. This transformation is carried out similarly as moving output values (section 4.3.5): in all

outcomes, the former value is replaced with the latter and vice versa.

Here, two values of the same scale 𝑆𝑠 exchange positions and “drag” the original outcome assignments

with them. The transformation is evident from the example in Table 14. Again, this transformation

often violates the principle of dominance.

Table 19: Example of exchanging the output values bad and good. Output value ordinal numbers are shown in parentheses.

 A B C ExchangeOutValue

1 low low low bad (3)
2 low low med bad (3)
3 low low high bad (3)
4 low med low bad (3)
5 low med med acc (2)
6 low med high acc (2)
7 low high low bad (3)
8 low high med acc (2)
9 low high high acc (2)

 ====================
22 high med low acc (2)
23 high med med acc (2)
24 high med high good (1)
25 high high low acc (2)
26 high high med good (1)
27 high high high good (1)

4.3.7 Merge output values

Similarly as merging input values (section 4.2.4), this transformation turns two values 𝑣𝑎, 𝑣𝑏 ∈ 𝑆𝑦 into

a new single value 𝑣𝑎𝑏 of the transformed scale 𝑆′𝑦. In this case, all references to either 𝑣𝑎 or 𝑣𝑏 in the

outcomes of entered decision rules are transformed to 𝑣𝑎𝑏.

Table 20 illustrates merging the output values acc and good to a new value named good+acc. Notice

that all rules that originally contained either one of the former values now yield good+acc.

Table 20: Example of merging output values acc and good to a single value called good+acc.

 A B C MergeOutValue

1 low low low bad

21

2 low low med bad
3 low low high bad
4 low med low bad
5 low med med good+acc
6 low med high good+acc
7 low high low bad
8 low high med good+acc
9 low high high good+acc

 ======================
22 high med low good+acc
23 high med med good+acc
24 high med high good+acc
25 high high low good+acc
26 high high med good+acc
27 high high high good+acc

4.4 Other changes

There are some other DEX-model editing operations that may affect the underlying decision tables,

but have not been considered above. Most notably:

• Changing scale orders from ordered to unordered and vice versa. These operations do not change

decision table dimensions, but often substantially affect their “correctness” in terms of logical

consistency and adhering to the principle of dominance. It is hard to perform any meaningful

automatic transformation in such situations. DEX typically allows such operations (silently or

issuing warnings) and leaves the task of clearing out the table to the user.

• Assigning a different scale to an attribute: Generally, this operation is admissible only if the new

scale has the same number of values as the original one. In this case, the table structure does not

change; checking a possible change of the table semantics is left to the user. Any assignment of a

scale with a different number of values is disallowed and should be carried out by a sequence of

other operations (e.g. first delete the old attribute and then add the attribute associated with the

new scale).

• Operations involving attributes with undefined scales, for adding such an attribute as an input to

an existing table or deleting the scale of some input or output attribute. Generally, such operations

are destructive and thus disallowed in DEX, but if explicitly requested, they result in a deletion of

the underlying table.

5 Conclusion
The transformations discussed in this report are driven by two key requirements outlined in the DEX

method:

• Decision tables are bound to their respective decision spaces at all times and must adapt

automatically to any changes.

• While adapting to changes, the information content of a table must be preserved as much as

possible.

These requirements evolved gradually with software supporting the DEX method. For instance, the old

DEXi Classic software (https://dex.ijs.si/dexiclassic/dexiclassic.html) supported only changes of input

and output scales to some extent. Whenever adding or deleting an input attribute, the affected

decision table was simply deleted; this turned out to be too restrictive. The new DEXi Suite software

(https://dex.ijs.si/dexisuite/dexisuite.html) implements all the discussed transformations, however it

is still restricted to using only value intervals as decision table outcomes. A full implementation for all

types of output value spaces (section 3) is being developed in software called DEX_Library, which has

been used to generate examples presented in section 4.

https://dex.ijs.si/dexiclassic/dexiclassic.html
https://dex.ijs.si/dexisuite/dexisuite.html

22

Why are there so many transformations? Why do we not consider just inserting and deleting elements?

For instance, why do we need duplicating and copying, as they just add a new element (new attribute,

new scale value) in the given dimension? Why merging as we already have deleting? The answer is

that these transformations have different semantics and affect decision rules differently. For example,

when adding a new input attribute to a decision table, we do not know anything about that attribute

and can hardly do anything more than just adapting table dimensions. In contrast, when duplicating

an attribute, we can consider everything that we already know about that attribute and create more

informed outcomes in the transformed decision table.

A few transformations are trivial, but most of them are not. Many require additional methods, such as

join to combine multiple outcomes represented in a variety of output spaces: intervals, sets and value

distributions. Actually, operations upon such representations were addressed only informally in this

report. However, they are an interesting topic in their own right and warrant a more formal treatment.

Also, we deliberately avoided some issues that substantially complicate practical implementation, for

instance considering undefined/empty scales, using the value undefined, and using both scale

orderings, ascending and descending.

We also deliberately excluded related work from this report. Although we did consult related

literature, we were not satisfied with the results and wish to look further. We were really surprised to

find out that the literature about transformation of decision tables was so scarce. Most authors take

decision tables as “granted”, using them for whatever purpose, but without modification. There are

only a few studies addressing decision table transformations, most of which date back to before 2000.

This remains a task for the future. Also, despite using a pretty standard notation for decision tables

(c.f. Greco, et al., 2001; 2016), we feel there is a need for a more “fit-for-purpose” notation to express

concepts related with decision tables and their transformations. In this report, we occasionally found

it easier to explain the concepts vaguely in text; we wish to develop a more appropriate formal

notation also for these cases. Last but not least, we wish to provide an open-source implementation

of DEX_Library, contributing an algorithmic approach and supporting further applications in the field.

23

6 References

Bohanec, M.: DEXi: Program for Multi-Attribute Decision Making, User's Manual, Version 5.04. IJS
Report DP-13100, Jožef Stefan Institute, Ljubljana, 2020.

Bohanec, M.: DEX (Decision EXpert) (2022): A qualitative hierarchical multi-criteria method. Multiple
Criteria Decision Making (ed. Kulkarni, A.J.), Studies in Systems, Decision and Control 407, Singapore:
Springer, doi: 10.1007/978-981-16-7414-3_3, 39-78.

Bohanec, M.: Introduction to Decision Modeling Method DEX (Decision EXpert). Institut Jožef Stefan,
Delovno poročilo IJS DP-14746, 2024.

Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E. (2009) Aggregation Functions. Cambridge University
Press.

Greco, S., Ehrgott, M., Figueira, J. (Eds.) (2016): Multi Criteria Decision Analysis: State of the art Surveys.
Springer, New York.

Greco, S., Matarazzo, B., Słowiński, R. (2001): Rough sets theory for multi-criteria decision analysis.
European Journal of Operational Research, 129, 1, 1–47.

24

Appendix 1: Notation

Input attributes 𝑿 = {𝑥𝑖, 𝑖 = 1, … , 𝑛}

Output attribute 𝑦

Input attributes' scales 𝑆𝑖 = {𝑣𝑖,1, 𝑣𝑖,2, … , 𝑣𝑖,𝑘𝑖
}, 𝑘𝑖 > 0

Output attribute scale 𝑆𝑦 = {𝑣𝑦,1, 𝑣𝑦,2, … , 𝑣𝑦,𝑘𝑦
} , 𝑘𝑦 > 0

Some (general) value scale 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑘}, 𝑘 > 0

Scale ordering: some scale 𝑆 can be
preferentially ordered or not

𝑆 = {𝑣1, 𝑣2, … } and ordered(𝑆) ⟹
∀𝑣𝑖, 𝑣𝑗 ∈ 𝑆, 𝑗 > 𝑖: 𝑣𝑗 ≽ 𝑣𝑖

Scale sizes |𝑆𝑖| = 𝑘𝑖, 𝑖 = 1, … , 𝑛; |𝑆𝑦| = 𝑘𝑦; |𝑆| = 𝑘

Input space 𝑺 = 𝑆1 × 𝑆2 × ⋯ × 𝑆𝑛

Input space size |𝑺| = 𝑘1𝑘2 … 𝑘𝑛

Decision space 𝐷𝑆 = 〈𝑿, 𝑦, 𝑺, 𝑆𝑦〉

Value space over 𝑆𝑦.

There are several possible definitions:

𝑉(𝑆𝑦)

Single value 𝑉(𝑆𝑦) ≡ 𝑆𝑦

Value interval (meaningful only for
ordered scales)

𝑉(𝑆𝑦) ≡ 𝐼(𝑆𝑦) = [𝑣low, 𝑣high], 𝑣low, 𝑣high𝜖𝑆𝑦, 𝑣low

≼ 𝑣high

Value set 𝑉(𝑆𝑦) ≡ 2𝑆𝑦 = {𝑣|𝑣 ∈ 𝑆𝑦}

Value distribution
𝑉(𝑆𝑦) ≡ 𝐷(𝑆𝑦) = (

𝑣𝑦,1 𝑣𝑦,2

𝑝1 𝑝2
…

𝑣𝑦,𝑘𝑦

𝑝𝑘𝑦
) , 𝑝𝑖 ∈ ℝ+, 𝑖

= 1,2, … , 𝑘𝑦

Probability distribution 𝑉(𝑆𝑦) ≡ 𝑃(𝑆𝑦) = 𝐷(𝑆𝑦) where ∑ 𝑝𝑖 = 1
𝑘𝑦

𝑖=1

Fuzzy distribution 𝑉(𝑆𝑦) ≡ 𝐹(𝑆𝑦) = 𝐷(𝑆𝑦) where 𝑝𝑖 ∈ [0, 1], 𝑖 =

1,2, … , 𝑘𝑦

Normalized fuzzy distribution 𝑉(𝑆𝑦) ≡ 𝐹(𝑆𝑦) where max
𝑖=1

𝑘𝑦 𝑝𝑖 = 1

Extended value space 𝑋𝑊(𝑆𝑦) = 𝑊(𝑆𝑦) ∪ {undefined} where 𝑊 is one of:

𝑉, 𝐼, 2, 𝐷, 𝑃, 𝐹
Decision table as function 𝐹: 𝑺 → 𝑉(𝑆𝑦)

Conditions 𝑇 = {𝒗|∀𝒗 ∈ 𝑺}

Subset of decision conditions 𝑇cond = {𝒗 ∈ 𝑇|cond(𝒗)

𝑞-th element of vector 𝒗 𝒗𝑞 = 𝑣 ∈ 𝑆𝑞:ord(𝑣) = 𝑞

Concatenation of 𝒗 and value 𝑤 𝒗 ∘ 𝑤 = {𝑣1, 𝑣2, … , 𝑣𝑛, 𝑤}, 𝑣𝑖 ∈ 𝑆𝑖

Vector 𝒗 with removed 𝑞-th value 𝒗 ∖ 𝑞 = {𝑣1, 𝑣2, … , 𝑣𝑞−1, 𝑣𝑞+1, … , 𝑣𝑛}, 𝑣𝑖 ∈ 𝑆𝑖

Decision rule 𝑟𝒗 = 𝒗 → 𝑐, 𝒗 ∈ 𝑺, 𝑐 ∈ 𝑉(𝑆𝑦)

Components of rule 𝑟 = 𝒗 → 𝑐 𝒗(𝑟) = 𝒗 ∈ 𝑺; 𝑦(𝑟) = 𝑐 ∈ 𝑉(𝑆𝑦)

Decision table 𝑅 = {𝑟𝒗|∀𝒗 ∈ 𝑺}

Decision table subset 𝑅cond = {𝑟𝒗 ∈ 𝑅|cond(𝒗)}

Entered rules 𝐸(𝑅) = 𝑅entered(𝑟)

Simplification: ordinal notation of scale 𝑆 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑘} and considering that
ord(𝑣𝑖) = 𝑖, 𝑖 = 1,2, … , 𝑘:
𝑍 = {ord(𝑣1),ord(𝑣2), … , ord(𝑣𝑘)} = {1, 2, … , 𝑘}

Weak preference 𝑣1 ≼ 𝑣2: 𝑣2 is at least as preferred as 𝑣1

