

Zbornik 23. mednarodne multikonference

INFORMACIJSKA DRUŽBA – IS 2020
Zvezek A

Proceedings of the 23rd International Multiconference

INFORMATION SOCIETY – IS 2020
Volume A

Slovenska konferenca o umetni inteligenci
Slovenian Conference on Artificial Intelligence

Uredili / Edited by

Mitja Luštrek, Matjaž Gams, Rok Piltaver

http://is.ijs.si

6. – 7. oktober 2020 / 6 - 7 October 2020

Ljubljana, Slovenia

http://is.ijs.si/

Uredniki:

Mitja Luštrek

Odsek za inteligentne sisteme

Institut »Jožef Stefan«, Ljubljana

Matjaž Gams

Odsek za inteligentne sisteme

Institut »Jožef Stefan«, Ljubljana

Rok Piltaver

Celtra, d. o. o. in

Odsek za inteligentne sisteme

Institut »Jožef Stefan«, Ljubljana

Založnik: Institut »Jožef Stefan«, Ljubljana

Priprava zbornika: Mitja Lasič, Vesna Lasič, Lana Zemljak

Oblikovanje naslovnice: Vesna Lasič

Dostop do e-publikacije:
http://library.ijs.si/Stacks/Proceedings/InformationSociety

Ljubljana, oktober 2020

Informacijska družba

ISSN 2630-371X

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni

knjižnici v Ljubljani

COBISS.SI-ID=33223427

ISBN 978-961-264-202-0 (epub)

ISBN 978-961-264-203-7 (pdf)

http://library.ijs.si/Stacks/Proceedings/InformationSociety

Generating Alternatives for DEX Models using Bayesian
Optimization

Martin Gjoreski
 Department of Intelligent

Systems

 Jožef Stefan Institute

Jožef Stefan Postgraduate School

 Ljubljana, Slovenia
 martin.gjoreski@ijs.si

Vladimir Kuzmanovski
Department of Computer Science

Aalto University, Finland

 vladimir.kuzmanovski@aalto.fi

Department of Knowledge

Technologies

 Jožef Stefan Institute

 Ljubljana, Slovenia

Marko Bohanec
Department of Knowledge

Technologies

 Jožef Stefan Institute

 Ljubljana, Slovenia
 marko.bohanec@ijs.si

ABSTRACT

Multi-attribute decision analysis is an approach to decision

support in which decision alternatives are assessed by multi-

criteria models. In this paper, we address the problem of

generating alternatives: given a multi-attribute model and an

alternative, the goal is to generate alternatives that require the

smallest change to the current alternative to obtain a desirable

outcome. We present a novel method for alternative generation

based on Bayesian optimization and adapted to qualitative DEX

models. The method was extensively evaluated on 42 different

DEX decision models with a variable complexity (e.g., variable

depth and variable attribute’s weight distribution). The method’s

behavior was analyzed with respect to computing time, time to

obtaining the first appropriate alternative, number of generated

alternatives, and number of attribute changes required to reach

the generated alternatives. The experimental results confirmed

the method’s suitability for the task, generating at least one

appropriate alternative within one minute. The relation between

the decision-model’s depth and the computing time was linear

and not exponential, which implies that the method is scalable.

KEYWORDS

multi-attribute models, method DEX, alternatives, decision

support, Bayesian optimization

1 INTRODUCTION

Hierarchical multi-attribute models are a type of decision models

[1],[2],[3], which decompose the problem into smaller and less

complex subproblems and represent it by a hierarchy of attributes

and utility functions. Such decision models are especially useful

in complex decision problems [4],[5].

DEX is a hierarchical qualitative multi-attribute method

whose models are characterized by using qualitative (symbolic)

attributes and decision rules. The method is supported by DEXi

[6],[6],[7],[8], an interactive computer program for the

development of qualitative multi-attribute decision models and

the evaluation of alternatives (options). DEXi has been used to

analyze decision problems in different domains in healthcare [9],

agriculture [10], [11], [12], economy [13], etc.

A useful extension of DEX would be the possibility to search

for new alternatives that require the smallest change to the

existing alternative to obtain a desirable outcome. This task is

important for practical decision support [14], however the related

work on generating alternatives for qualitative multi-attribute

decision models is quite scarce. The only related study was

presented by Bergez [15], in which the focus is on attribute

scoring (and not on the alternatives), and the starting (current)

alternative was not taken into a consideration. More specifically,

Bergez developed a genetic algorithm for searching a set of the

‘‘worst-best’’ i.e., lowest scores for the input attributes that lead

to the highest score for the root attribute (the decision model’s

output), and ‘‘best-worst’’ i.e., highest scores for the input

attributes that lead to the lowest score for the root attribute.

 In this study, we developed a stochastic method for

generating alternatives that require the smallest change to the

current alternative to obtain a desirable outcome. To avoid

combinatorial explosion, the method uses guided search based on

Bayesian optimization. The method is evaluated on 42 different

qualitative multi-attribute models with a varying complexity.

The method’s behavior was analyzed with respect to several

characteristics including: computing time, time to first

appropriate alternative, number of generated (appropriate)

alternatives, and number of attribute changes required to reach

the generated alternatives.

2 DOMAIN DESCRIPTION

In this study, a set of 42 DEX multi-attribute decision models

were used. The models are benchmark mock models, designed

by Kuzmanovski et al. [16]. The decision models are designed

by taking into account properties such as model depth,

distribution of attributes' aggregation weights (weights'

distribution), and inter-dependency of attributes (input links).

Table 1 presents a summary of the decision models. The weights'

distribution is given with descriptive names: skewed, normal,

and uniform. All the attributes in the models are defined with

same value scale (low, medium, high), including the input and

the output attributes. Additional assumption is that all attribute

combinations are possible.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).

Information Society 2020, 5–9 October 2020, Ljubljana, Slovenia

© 2020 Copyright held by the owner/author(s).

23

Table 1: Properties of the mock DEX decision models.

3 METHOD FOR GENERATING

ALTERNATIVES

An efficient search strategy is required to generate alternatives

that require the smallest change to the current alternative to

obtain a desirable outcome. A naïve approach would be to

generate all possible alternatives, or to iteratively generate

random alternatives, and to evaluate the outcome for each

alternative. However, for reasonably complex decision models,

the search space can be enormous, rendering the naïve

approaches unsuitable.

A more appropriate approach would be to use informed

search based on the history of previously generated and evaluated

alternatives. The history can be used to estimate the search space

and the behavior of the decision model. Based on that estimation,

more promising alternatives can be generated. By focusing on

the more promising alternatives the search space is reduced, and

consequently, the time needed to find the appropriate alternatives

is also reduced. The next subsections describe a stochastic

method that uses Bayesian optimization to efficiently generate

such alternatives. The method assumes that we do not know the

internal rules by which the decision models operate, thus it falls

into the category of ‘‘black-box’’ optimization techniques.

Knowing and utilizing the decision rules might help the search

algorithm, but this option was not addressed in this study.

3.1 Implementation

The problem of generating alternatives that require the smallest

change to the current alternative to obtain a desirable outcome

can be defined as an optimization problem with two objectives:

(1) improved outcome (desired output) of the decision model,

and (2) maximum similarity between the current alternative 𝑐,̅

and the new proposed alternative �̅�. For each decision model

𝐷𝑀, one alternative can be defined as a tuple of attributes �̅� =

(𝑎1,𝑎2, … , 𝑎𝑛) , where each attribute can take any value of a

limited set of values. Usually, that set includes ordinal values

(e.g., low, medium and high) and those values can be encoded

with integers (e.g., 0, 1 and 2). Consequently, a distance 𝑑

between alternatives can be defined over Euclidean space. The

specific distance function used by the method is a modified

element-wise difference between the candidate alternative �̅� and

the current alternative 𝑐 ̅ . This distance considers only the

attributes for which the candidate alternative has higher values

compared to the current alternative �̅�.

𝑑(𝑐,̅ �̅�) = ∑ {
𝑎𝑗 − 𝑐𝑗 , 𝑖𝑓 𝑎𝑗 > 𝑐𝑗

0, 𝑖𝑓 𝑎𝑗 ≤ 𝑐𝑗

From the distance function, a similarity function 𝑠 can be also

defined as one minus the normalized distance. The distance is

normalized using the maximum plausible distance for the

specific problem. For example, if �̅� has 20 attributes with

possible values between 0 and 2 and each attribute has the highest

possible value, and if �̅� has only attributes with the lowest

possible value (0), then the maximum distance is 20 * 2.

𝑠(𝑐,̅ 𝑎,̅̅ ̅) = 1 −
𝑑(𝑐,̅ �̅�)

max_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Finally, the optimization function can be defined as:

𝑓(𝑐,̅ �̅�, 𝐷𝑀(𝑐,̅), 𝐷𝑀(�̅�))

= {
𝑠(𝑐,̅ 𝑎,̅̅ ̅), 𝑖𝑓 𝐷𝑀(�̅�) > 𝐷𝑀(�̅�)

0, 𝑖𝑓 𝐷𝑀(�̅�) ≤ 𝐷𝑀(�̅�)

where 𝐷𝑀(∗) is the output of the decision model for the specific

alternative. By optimizing 𝑓 , the method searches for

alternatives that are as similar as possible to �̅� and improve the

output of the decision model (𝐷𝑀(�̅�) > 𝐷𝑀(�̅�)).

In order to apply the Bayesian optimization approach, a

surrogate function (a model), an acquisition function, and a

generator of alternatives, need to be defined. The surrogate

model 𝑆𝑀 is a model that estimates the objective function for a

given alternative as input. Typically, models based on Gaussian

Process (GP) [17] are used because by exploiting the mean and

the standard deviation of the output distribution, we can balance

the trade-off of exploiting (higher mean) and exploring (higher

standard deviation). Since GP models are computationally

expensive with the complexity of 𝑂(𝑛3), ensemble models such

as Random Forest (RF) can be also used [18]. In that case, the

mean and the variance are calculated based on the predictions of

all base models available in the ensemble. Our method uses RF

with 1000 decision trees as base models.

The acquisition function operates on top of the mean and

standard deviation of the 𝑆𝑀’s output. The final version of the

method uses the expected improvement (𝐸𝐼) as an acquisition

function [19]. This acquisition function checks the improvement

that each candidate alternative brings with respect to the

maximum known value (µ(𝑆𝑀(�̅�)) − 𝑎𝑏), and scales those

improvements with respect to the uncertainty. If two alternatives

have a similar mean value, the one with higher uncertainty

(𝜎(𝑆𝑀(�̅�)) will be preferred by the acquisition function.

Finally, we need to define the generator of alternatives. Our

method uses two generators of alternatives: a neighborhood

generator and a random generator. Based on the distance function

 𝑑 , neighborhood relation can be defined. Two alternatives 𝑎1̅̅ ̅

and 𝑎2̅̅ ̅ are considered as neighbors with a degree k, if 𝑑(𝑎1̅̅ ̅ , 𝑎2̅̅ ̅)

= k. . The random generator is a generator of alternatives which:

(1) avoids generating known alternatives; and (2) is conditioned

by the best-known (with respect to the optimization function)

alternative discovered in the previous iterations.

Algorithm 1 presents the implementation of the proposed

method. The function check_promising_values runs the 𝑆𝑀 on a

set of promising alternatives. This set contains all alternatives

that have been previously generated as neighbors to a specific

best alternative, but have not been evaluated with the 𝐷𝑀

because the acquisition function has selected other alternatives.

This enables one final check of the most promising solutions

which may have been missed because of an earlier bad prediction

of the 𝑆𝑀.

24

Algorithm 1:

Input: Decision model DM, current alternative CA,
Output: best_alternatives
parameters and initialization
max_e = 150 # maximum number of epochs
n_candidates = 10 # candidates per iteration
objective_jitter = 0.8 # if an alternative is close to the current

best (e.g, 75% as good as the current best , the
alternative’s neighbors should be checked)

random_sample_size = 10000
best_alternatives = []
surrogate_model = new Random_Forest()
promising_alternatives_pool = []
#initial values
candidate_alternatives = generate_random_alternatives(10)
real_objective_values = objective_func(DM, CA, alternatives)
surrogate_model.fit(candidate_alternatives, real_objective_values)
known_alternatives.add(candidate_alternatives,

real_objective_values)
best_alternative,best_score = max(candidate_alternatives

,real_objective_values)
neighboring_alternatives= gen_neighborhood(best_alternative)
while counter < max_e do:

if size(neighboring_alternatives)>0:
alternatives_pool = neighboring_alternatives
else:
alternatives_pool = gen_rand_alternatives(best_alternative,

random_sample_size)
get top ranked (e.g., 10) candidates using the acquisition

function

candidate_alternatives, candidate_scores =

perform_acquisition(alternatives_pool, n_candidates)

#evaluation of candidate alternatives

real_objective_values = objective_func(DM, CA, alternatives)

known_alternatives.add(candidate_alternatives,

real_objective_values)

#update current best and promising alternatives

i=0

while i < size(candidate_scores) do:
if best_score*objective_jitter <= candidate_scores[i] do:
neighboring_alternatives = gen_

neighbourhood(candidate_alternatives[i])
promising_alternatives_pool.add(neighboring_alternatives)
if best_score< candidate_scores[i] do:
best_alternatives = []
best_alternatives.add(candidate_alternatives[i])
if best_score==candidate_scores[i] do:
best_alternatives.add(candidate_alternatives[i])
i++
#update the surrogate model

surrogate_model.fit(candidate_alternatives, real_objective_values)

counter++
end
#peform final check of the promising alternatives
best_alternatives =

check_promising_values(promising_alternatives_pool,best_alt
ernatives)

return best_alternatives

4 EXPERIMENTS

4.1 Experimental Setup

The method was evaluated with the 42 decision models described

in Section 2. For each decision model, nine different randomly

sampled starting alternatives (current alternatives �̅�) were

sampled. Three of those alternatives were with a final attribute

value low, three with a final attribute value medium, and three

with a final attribute value high. The desirable outcome was also

1 Repository link.

varied, i.e., from low to medium, from low to high, from high to

medium, and from high to low. This experimental setup resulted

in 756 different experimental runs. Each experiment was running

for a minimum of 100 epochs, a maximum of 150 epochs, and 50

epochs without improvement. The method and the experiments

were implemented in Python, and are available online1.

4.2 Experimental Results

The average experiment duration for the models with depth 3 was

less than 5 min. For the models with depth 4, the duration

increased for 3 min and for the models with depth 5 the duration

increased for additional 3 min. This indicates that the relation

between the computational time and the model depth is linear.

The final output of the algorithm is a set of thousands of

different alternatives. However, from a user perspective, only

one or just a few alternatives should be enough. Figure 1 presents

the number of epochs required to generate the first alternative for

the most complex models (depth 5). From the figure it can be

seen that on average, the first alternatives are generated in the

first 10 epochs. For the less complex models, the number of

required epochs was less than 5.

Figure 1: Number of epochs required to generate the first

alternative in the final set of alternatives.

In each epoch, the algorithm selects the top 10 alternatives

with respect to the optimization score. The higher the score, the

better the alternatives are. The selected alternatives depend on

the acquisition function, which in turn depends the predictions of

the surrogate model. Figure 2 present the average optimization

score in each epoch for the most complex models (depth 5). For

a comparison, the average optimization score of 10 randomly

sampled alternatives at each epoch is also presented (dashed line).

From the figure it can be seen that the optimization score of the

random samples is significantly lower than the optimization

score of the samples selected using the proposed algorithm.

Finally, the presented algorithm is stochastic and the

optimality of the solution cannot be guaranteed. One metric that

presents the quality of the solutions is the number of attribute

changes required to achieve the final solution starting from the

current state of the current alternative. Figure 3 presents that

metric, which is the same as the distance defined in Section 3.1.

From the figure it can be seen that in the majority of the cases,

the final solution can be reached with less than 5 attribute

changes. Exception of this are the decision models that have a

depth 5 and uniform weights’ distribution.

25

https://repo.ijs.si/martingjoreski/decision-support-generating-alternatives-bayesian-approach

Figure 2: Average optimization score for the decision

models with depth 5. Full line - alternatives generated by

the surrogate model. Dashed line - random alternatives. The

type of attribute weights is color-coded (blue-normal,

orange-skewed, green-uniform).

This is because these models have a larger number of input

attributes and the uniform distribution requires many attributes

to be changed in order for that change to be prolonged to the

aggregate attribute. On the other hand, the models with normal

and skewed weights’ distribution require smaller number of

attribute changes for that change to be propagated to the

aggregate attributes.

5 DISCUSSION AND CONCLUSION

We presented a novel method for generating alternatives for

multi-attribute DEX decision models based on Bayesian

optimization. The main goal of the method was to generate

alternatives that require the smallest change to the current

alternative to obtain a desirable outcome. The method was

extensively evaluated on 42 different DEX decision models. The

models were with a variable complexity (e.g., variable depth and

variable attribute’s weight distribution). The method’s behavior

was analyzed with respect to several characteristics: computing

time, time to first appropriate alternative, number of generated

(appropriate) alternatives, and number of attribute changes

required to reach the generated alternatives.

The experimental results confirmed that the method is

suitable for the task i.e., it generates at least one appropriate

alternative in less than a minute, even for the most complex

decision models. In the majority of the cases, the computing time

was lower than that. The discovery of the alternatives was

equally distributed throughout the overall runtime. Exception of

this is the final check performed by the algorithm (see

check_promising_values in Algorithm 1), which generates the

majority of the alternatives for the more complex models (depth

4 and depth 5). The quality of the alternatives was also

appropriate as in the majority of the cases, the generated

alternatives could be reached by less than 5 attribute changes.

Finally, the relation between the decision-model’s depth and the

computing time was linear and not exponential, which implies

that the method is scalable.

The method implementation considers ordinal attribute

values. However, there is possibility for considering other types

of distance measures that would work in nominal settings (e.g.,

Levenshtein distance).

Figure 3: Boxplots for the number of changes required to

switch from the starting alternative to the best alternative.

Regarding the future work, the proposed method is stochastic

and the optimality of the final solution cannot be guaranteed. In

order to do that, the method needs to be validated additionally.

Promising options include comparison of the proposed method

with deterministic methods and methods that utilize internal rules

by which the decision models operate.

REFERENCES
[1] Power, D.J. Decision Support Systems: Concepts and Resources for

Managers. Quorum Books, Westport, 2002.
[2] Turban, E., Aronson, J. and Liang, T.-P. Decision Support Systems and

Intelligent Systems, Prentice Hall, Upper Saddle River, 7th Edition, 2005.
[3] Mallach, E.G. Decision Support and Data Warehouse Systems. Irwin,

Burr Ridge, 2000.
[4] Sadok, W., Angevin, F., Bergez, J.-E., Bockstaller, C., Colomb, B.,

Guichard, L., Reau, R., Messeau, A. and Doré, T. MASC: a qualitative
multi-attribute decision model for ex-ante assessment of the sustainability
of cropping systems. Agron. Sustain. Dev. 29, 447–461, 2009.

[5] Munda, G. Multiple criteria decision analysis and sustainable
development. In: Multiple Criteria Decision Analysis: State of the Art
Surveys, Springer-Verlag, New York, 2005.

[6] Bohanec, M. and Rajkovič, V. DEX: An Expert System Shell for Decision
Support. Sistemica 1(1), 145-157, 1990.

[7] Bohanec, M. and Rajkovič, V. Multi-attribute decision modeling:
Industrial applications of DEX. Informatica 23, 487-491, 1999.

[8] Bohanec, M. DEXi: Program for Multi-Attribute Decision Making User's
Manual." Ljubljana, Slovenia: Institut Jozef Stefan, 2008.

[9] Bohanec, M., Zupan, B. and Rajkovič, V. Applications of qualitative
multi-attribute decision models in health care, International Journal of
Medical Informatics 58-59, 191-205, 2000.

[10] Bohanec, M., Cortet, J., Griffiths, et al. A qualitative multi-attribute
model for assessing the impact of cropping systems on soil quality.
Pedobiologia 51, 239–250, 2007.

[11] Bohanec, M., Messéan, A., Scatasta, S. et al. A qualitative multi-attribute
model for economic and ecological assessment of genetically modified
crops. Ecol. Model. 215, 247–261, 2008.

[12] Coquil, X., Fiorelli, J.L., Mignolet, C., et al. Evaluation multicritère de la
durabilité agr environnementale de systèmes de polyculture élevage
laitiers biologiques. Innov. Agron. 4, 239–247, 2009.

[13] Bohanec, M., Cestnik, B., Rajkovič, V. Qualitative multi-attribute
modeling and its application in housing, Journal of Decision Systems 10,
pp. 175-193, 2001.

[14] Debeljak, M., Trajanov, A., Kuzmanovski, V. et al. A field-scale decision
support system for assessment and management of soil functions.
Frontiers in Environmental Science, 7, p.115, 2019.

[15] Bergez, J.-E. Using a genetic algorithm to define worst-best and best-
worst options of a DEXi-type model: Application to the MASC model of
cropping-system sustainability. Computers and electronics in agriculture
90: 93-98, 2013.

[16] Kuzmanovski, V., Trajanov, A., Dzeroski, S., et al., M. Cascading
constructive heuristic for optimization problems over hierarchically
decomposed qualitative decision space. Omega, submitted September,
2020.

[17] Rasmussen C. E. and Williams C. K.I. Gaussian Processes for Machine
Learning”, MIT Press 2006.

[18] Frank, H., Hoos, H. H., and Leyton-Brown, K. Sequential model-based
optimization for general algorithm configuration (extended version).
Technical Report TR-2010–10, University of British Columbia, Computer
Science, Tech. Rep. 2010.

[19] Lizotte F. Practical Bayesian Optimization. PhD thesis, University of
Alberta, Edmonton, Alberta, Canada, 2008.

26

