
 
Zbornik 23. mednarodne multikonference 

INFORMACIJSKA DRUŽBA – IS 2020 
Zvezek A 

 
 

Proceedings of the 23rd International Multiconference 

INFORMATION SOCIETY – IS 2020 
Volume A 

 
 
 
 
 
 
 

Slovenska konferenca o umetni inteligenci 
Slovenian Conference on Artificial Intelligence 

 
 
 

Uredili / Edited by 
 

Mitja Luštrek, Matjaž Gams, Rok Piltaver 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://is.ijs.si 
 

 
6. – 7. oktober 2020 / 6 - 7 October 2020 

Ljubljana, Slovenia 

http://is.ijs.si/


 

Uredniki: 

 

 

Mitja Luštrek 

Odsek za inteligentne sisteme 

Institut »Jožef Stefan«, Ljubljana 

 

Matjaž Gams 

Odsek za inteligentne sisteme 

Institut »Jožef Stefan«, Ljubljana 

 

Rok Piltaver 

Celtra, d. o. o. in 

Odsek za inteligentne sisteme 

Institut »Jožef Stefan«, Ljubljana 

 

 

 

Založnik: Institut »Jožef Stefan«, Ljubljana 

Priprava zbornika: Mitja Lasič, Vesna Lasič, Lana Zemljak 

Oblikovanje naslovnice: Vesna Lasič 

 

 
Dostop do e-publikacije: 
http://library.ijs.si/Stacks/Proceedings/InformationSociety 

 

 

Ljubljana, oktober 2020 

 

 

Informacijska družba 

ISSN 2630-371X 

 
Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni 

knjižnici v Ljubljani 

COBISS.SI-ID=33223427 

ISBN 978-961-264-202-0 (epub) 

ISBN 978-961-264-203-7 (pdf) 

 

 

http://library.ijs.si/Stacks/Proceedings/InformationSociety


Generating Alternatives for DEX Models using Bayesian 
Optimization 

Martin Gjoreski 
 Department of Intelligent 

Systems 

 Jožef Stefan Institute 

Jožef Stefan Postgraduate School 

 Ljubljana, Slovenia  
 martin.gjoreski@ijs.si 

Vladimir Kuzmanovski 
Department of Computer Science 

Aalto University, Finland 

 vladimir.kuzmanovski@aalto.fi 

Department of Knowledge 

Technologies  

 Jožef Stefan Institute 

 Ljubljana, Slovenia 

Marko Bohanec 
Department of Knowledge 

Technologies  

 Jožef Stefan Institute 

 Ljubljana, Slovenia 
 marko.bohanec@ijs.si  

 

ABSTRACT 

Multi-attribute decision analysis is an approach to decision 

support in which decision alternatives are assessed by multi-

criteria models. In this paper, we address the problem of 

generating alternatives: given a multi-attribute model and an 

alternative, the goal is to generate alternatives that require the 

smallest change to the current alternative to obtain a desirable 

outcome. We present a novel method for alternative generation 

based on Bayesian optimization and adapted to qualitative DEX 

models. The method was extensively evaluated on 42 different 

DEX decision models with a variable complexity (e.g., variable 

depth and variable attribute’s weight distribution). The method’s 

behavior was analyzed with respect to computing time, time to 

obtaining the first appropriate alternative, number of generated 

alternatives, and number of attribute changes required to reach 

the generated alternatives. The experimental results confirmed 

the method’s suitability for the task, generating at least one 

appropriate alternative within one minute. The relation between 

the decision-model’s depth and the computing time was linear 

and not exponential, which implies that the method is scalable. 

KEYWORDS  

multi-attribute models, method DEX, alternatives, decision 

support, Bayesian optimization 

1 INTRODUCTION 

Hierarchical multi-attribute models are a type of decision models 

[1],[2],[3], which decompose the problem into smaller and less 

complex subproblems and represent it by a hierarchy of attributes 

and utility functions. Such decision models are especially useful 

in complex decision problems [4],[5]. 

DEX is a hierarchical qualitative multi-attribute method 

whose models are characterized by using qualitative (symbolic) 

attributes and decision rules. The method is supported by DEXi 

[6],[6],[7],[8], an interactive computer program for the 

development of qualitative multi-attribute decision models and 

the evaluation of alternatives (options). DEXi has been used to 

analyze decision problems in different domains in healthcare [9], 

agriculture [10], [11], [12], economy [13], etc.  

A useful extension of DEX would be the possibility to search 

for new alternatives that require the smallest change to the 

existing alternative to obtain a desirable outcome. This task is 

important for practical decision support [14], however the related 

work on generating alternatives for qualitative multi-attribute 

decision models is quite scarce. The only related study was 

presented by Bergez [15], in which the focus is on attribute 

scoring (and not on the alternatives), and the starting (current) 

alternative was not taken into a consideration. More specifically, 

Bergez developed a genetic algorithm for searching a set of the 

‘‘worst-best’’ i.e., lowest scores for the input attributes that lead 

to the highest score for the root attribute (the decision model’s 

output), and ‘‘best-worst’’ i.e., highest scores for the input 

attributes that lead to the lowest score for the root attribute.  

 In this study, we developed a stochastic method for 

generating alternatives that require the smallest change to the 

current alternative to obtain a desirable outcome. To avoid 

combinatorial explosion, the method uses guided search based on 

Bayesian optimization. The method is evaluated on 42 different 

qualitative multi-attribute models with a varying complexity. 

The method’s behavior was analyzed with respect to several 

characteristics including: computing time, time to first 

appropriate alternative, number of generated (appropriate) 

alternatives, and number of attribute changes required to reach 

the generated alternatives. 

2 DOMAIN DESCRIPTION 

In this study, a set of 42 DEX multi-attribute decision models 

were used. The models are benchmark mock models, designed 

by Kuzmanovski et al. [16]. The decision models are designed 

by taking into account properties such as model depth, 

distribution of attributes' aggregation weights (weights' 

distribution), and inter-dependency of attributes (input links). 

Table 1 presents a summary of the decision models. The weights' 

distribution is given with descriptive names: skewed, normal, 

and uniform. All the attributes in the models are defined with 

same value scale (low, medium, high), including the input and 

the output attributes. Additional assumption is that all attribute 

combinations are possible.  

 
Permission to make digital or hard copies of part or all of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for third-party components of this work must 

be honored. For all other uses, contact the owner/author(s). 

Information Society 2020, 5–9 October 2020, Ljubljana, Slovenia 

© 2020 Copyright held by the owner/author(s). 

23



Table 1:  Properties of the mock DEX decision models. 

 

3 METHOD FOR GENERATING 

ALTERNATIVES 

An efficient search strategy is required to generate alternatives 

that require the smallest change to the current alternative to 

obtain a desirable outcome. A naïve approach would be to 

generate all possible alternatives, or to iteratively generate 

random alternatives, and to evaluate the outcome for each 

alternative. However, for reasonably complex decision models, 

the search space can be enormous, rendering the naïve 

approaches unsuitable. 

A more appropriate approach would be to use informed 

search based on the history of previously generated and evaluated 

alternatives. The history can be used to estimate the search space 

and the behavior of the decision model. Based on that estimation, 

more promising alternatives can be generated. By focusing on 

the more promising alternatives the search space is reduced, and 

consequently, the time needed to find the appropriate alternatives 

is also reduced. The next subsections describe a stochastic 

method that uses Bayesian optimization to efficiently generate 

such alternatives. The method assumes that we do not know the 

internal rules by which the decision models operate, thus it falls 

into the category of ‘‘black-box’’ optimization techniques. 

Knowing and utilizing the decision rules might help the search 

algorithm, but this option was not addressed in this study. 

3.1 Implementation 

The problem of generating alternatives that require the smallest 

change to the current alternative to obtain a desirable outcome 

can be defined as an optimization problem with two objectives: 

(1) improved outcome (desired output) of the decision model, 

and (2) maximum similarity between the current alternative  𝑐,̅ 

and the new proposed alternative �̅�. For each decision model 

𝐷𝑀, one alternative can be defined as a tuple of attributes  �̅� =

(𝑎1,𝑎2, … , 𝑎𝑛) , where each attribute can take any value of a 

limited set of values. Usually, that set includes ordinal values 

(e.g., low, medium and high) and those values can be encoded 

with integers (e.g., 0, 1 and 2). Consequently, a distance 𝑑 

between alternatives can be defined over Euclidean space. The 

specific distance function used by the method is a modified 

element-wise difference between the candidate alternative �̅� and 

the current alternative 𝑐 ̅ . This distance considers only the 

attributes for which the candidate alternative has higher values 

compared to the current alternative  �̅�.  
 

𝑑( 𝑐,̅  �̅�) = ∑ {
𝑎𝑗 − 𝑐𝑗 , 𝑖𝑓 𝑎𝑗 > 𝑐𝑗

0, 𝑖𝑓 𝑎𝑗 ≤ 𝑐𝑗
 

 

From the distance function, a similarity function 𝑠 can be also 

defined as one minus the normalized distance. The distance is 

normalized using the maximum plausible distance for the 

specific problem. For example, if  �̅�  has 20 attributes with 

possible values between 0 and 2 and each attribute has the highest 

possible value, and if  �̅�  has only attributes with the lowest 

possible value (0), then the maximum distance is 20 * 2. 
 

𝑠( 𝑐,̅  𝑎,̅̅ ̅ ) = 1 −
𝑑( 𝑐,̅  �̅�)

max_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
   

 

Finally, the optimization function can be defined as:  
 

𝑓( 𝑐,̅  �̅�, 𝐷𝑀( 𝑐,̅ ), 𝐷𝑀( �̅�))

= {
𝑠( 𝑐,̅  𝑎,̅̅ ̅ ), 𝑖𝑓 𝐷𝑀( �̅�) > 𝐷𝑀(  �̅�)

0, 𝑖𝑓 𝐷𝑀( �̅�) ≤ 𝐷𝑀(  �̅�)
  

 

where 𝐷𝑀(∗) is the output of the decision model for the specific 

alternative. By optimizing 𝑓 , the method searches for 

alternatives that are as similar as possible to  �̅�  and  improve the 

output of the decision model  (𝐷𝑀( �̅�) > 𝐷𝑀(  �̅�)).  

In order to apply the Bayesian optimization approach, a 

surrogate function (a model), an acquisition function, and a 

generator of alternatives, need to be defined. The surrogate 

model 𝑆𝑀 is a model that estimates the objective function for a 

given alternative as input. Typically, models based on Gaussian 

Process (GP) [17] are used because by exploiting the mean and 

the standard deviation of the output distribution, we can balance 

the trade-off of exploiting (higher mean) and exploring (higher 

standard deviation). Since GP models are computationally 

expensive with the complexity of 𝑂(𝑛3), ensemble models such 

as Random Forest (RF) can be also used [18]. In that case, the 

mean and the variance are calculated based on the predictions of 

all base models available in the ensemble. Our method uses RF 

with 1000 decision trees as base models. 

The acquisition function operates on top of the mean and 

standard deviation of the 𝑆𝑀’s output. The final version of the 

method uses the expected improvement (𝐸𝐼 ) as an acquisition 

function [19]. This acquisition function checks the improvement 

that each candidate alternative brings with respect to the 

maximum known value ( µ(𝑆𝑀( �̅�)) − 𝑎𝑏),  and scales those 

improvements with respect to the uncertainty. If two alternatives 

have a similar mean value, the one with higher uncertainty 

(𝜎(𝑆𝑀( �̅�)) will be preferred by the acquisition function. 

Finally, we need to define the generator of alternatives. Our 

method uses two generators of alternatives: a neighborhood 

generator and a random generator. Based on the distance function 

 𝑑 , neighborhood relation can be defined. Two alternatives 𝑎1̅̅ ̅ 

and 𝑎2̅̅ ̅ are considered as neighbors with a degree k, if 𝑑(𝑎1̅̅ ̅ , 𝑎2̅̅ ̅) 

= k. . The random generator is a generator of alternatives which: 

(1) avoids generating known alternatives; and (2) is conditioned 

by the best-known (with respect to the optimization function) 

alternative discovered in the previous iterations.  

Algorithm 1 presents the implementation of the proposed 

method. The function check_promising_values runs the 𝑆𝑀 on a 

set of promising alternatives. This set contains all alternatives 

that have been previously generated as neighbors to a specific 

best alternative, but have not been evaluated with the 𝐷𝑀 

because the acquisition function has selected other alternatives. 

This enables one final check of the most promising solutions 

which may have been missed because of an earlier bad prediction 

of the 𝑆𝑀. 
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Algorithm 1: 

Input: Decision model DM, current alternative CA,  
Output: best_alternatives 
# parameters and initialization 
max_e = 150 # maximum number of epochs 
n_candidates = 10 # candidates per iteration  
objective_jitter = 0.8 # if an alternative is close to the current 

best  (e.g, 75% as good as the current best , the 
alternative’s neighbors should be checked) 

random_sample_size = 10000  
best_alternatives = [] 
surrogate_model = new Random_Forest() 
promising_alternatives_pool = [] 
#initial values 
candidate_alternatives = generate_random_alternatives(10) 
real_objective_values = objective_func(DM, CA, alternatives) 
surrogate_model.fit(candidate_alternatives, real_objective_values) 
known_alternatives.add(candidate_alternatives, 

real_objective_values) 
best_alternative,best_score = max(candidate_alternatives 

,real_objective_values) 
neighboring_alternatives= gen_neighborhood(best_alternative) 
while counter < max_e do: 

if size(neighboring_alternatives)>0: 
alternatives_pool = neighboring_alternatives 
else: 
alternatives_pool = gen_rand_alternatives(best_alternative, 

random_sample_size) 
# get top ranked (e.g., 10) candidates using the acquisition 

function 

candidate_alternatives, candidate_scores = 

perform_acquisition(alternatives_pool,                   n_candidates) 

#evaluation of candidate alternatives 

real_objective_values = objective_func(DM, CA, alternatives) 

known_alternatives.add(candidate_alternatives, 

real_objective_values) 

#update current best and promising alternatives  

i=0 

while i < size(candidate_scores) do: 
if best_score*objective_jitter <= candidate_scores[i] do: 
neighboring_alternatives = gen_ 

neighbourhood(candidate_alternatives[i]) 
promising_alternatives_pool.add(neighboring_alternatives) 
if  best_score< candidate_scores[i] do: 
best_alternatives = [] 
best_alternatives.add(candidate_alternatives[i]) 
if  best_score==candidate_scores[i] do: 
best_alternatives.add(candidate_alternatives[i]) 
i++ 
#update the surrogate model 

surrogate_model.fit(candidate_alternatives, real_objective_values) 

counter++ 
end 
#peform final check of the promising alternatives  
best_alternatives = 

check_promising_values(promising_alternatives_pool,best_alt
ernatives) 

return best_alternatives 

4 EXPERIMENTS 

4.1 Experimental Setup 

The method was evaluated with the 42 decision models described 

in Section 2. For each decision model, nine different randomly 

sampled starting alternatives (current alternatives  �̅� ) were 

sampled. Three of those alternatives were with a final attribute 

value low, three with a final attribute value medium, and three 

with a final attribute value high. The desirable outcome was also 

1 Repository link. 

varied, i.e., from low to medium, from low to high, from high to 

medium, and from high to low. This experimental setup resulted 

in 756 different experimental runs. Each experiment was running 

for a minimum of 100 epochs, a maximum of 150 epochs, and 50 

epochs without improvement. The method and the experiments 

were implemented in Python, and are available online1. 

4.2 Experimental Results 

The average experiment duration for the models with depth 3 was 

less than 5 min. For the models with depth 4, the duration 

increased for 3 min and for the models with depth 5 the duration 

increased for additional 3 min. This indicates that the relation 

between the computational time and the model depth is linear.  

The final output of the algorithm is a set of thousands of 

different alternatives. However, from a user perspective, only 

one or just a few alternatives should be enough. Figure 1 presents 

the number of epochs required to generate the first alternative for 

the most complex models (depth 5). From the figure it can be 

seen that on average, the first alternatives are generated in the 

first 10 epochs. For the less complex models, the number of 

required epochs was less than 5.   

 

Figure 1: Number of epochs required to generate the first 

alternative in the final set of alternatives. 

In each epoch, the algorithm selects the top 10 alternatives 

with respect to the optimization score. The higher the score, the 

better the alternatives are. The selected alternatives depend on 

the acquisition function, which in turn depends the predictions of 

the surrogate model. Figure 2 present the average optimization 

score in each epoch for the most complex models (depth 5). For 

a comparison, the average optimization score of 10 randomly 

sampled alternatives at each epoch is also presented (dashed line). 

From the figure it can be seen that the optimization score of the 

random samples is significantly lower than the optimization 

score of the samples selected using the proposed algorithm.  

Finally, the presented algorithm is stochastic and the 

optimality of the solution cannot be guaranteed. One metric that 

presents the quality of the solutions is the number of attribute 

changes required to achieve the final solution starting from the 

current state of the current alternative. Figure 3 presents that 

metric, which is the same as the distance defined in Section 3.1. 

From the figure it can be seen that in the majority of the cases, 

the final solution can be reached with less than 5 attribute 

changes.  Exception of this are the decision models that have a 

depth 5 and uniform weights’ distribution. 
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Figure 2: Average optimization score for the decision 

models with depth 5. Full line - alternatives generated by 

the surrogate model. Dashed line - random alternatives. The 

type of attribute weights is color-coded (blue-normal, 

orange-skewed, green-uniform). 

This is because these models have a larger number of input 

attributes and the uniform distribution requires many attributes 

to be changed in order for that change to be prolonged to the 

aggregate attribute. On the other hand, the models with normal 

and skewed weights’ distribution require smaller number of 

attribute changes for that change to be propagated to the 

aggregate attributes.  

5 DISCUSSION AND CONCLUSION 

We presented a novel method for generating alternatives for 

multi-attribute DEX decision models based on Bayesian 

optimization. The main goal of the method was to generate 

alternatives that require the smallest change to the current 

alternative to obtain a desirable outcome. The method was 

extensively evaluated on 42 different DEX decision models. The 

models were with a variable complexity (e.g., variable depth and 

variable attribute’s weight distribution). The method’s behavior 

was analyzed with respect to several characteristics: computing 

time, time to first appropriate alternative, number of generated 

(appropriate) alternatives, and number of attribute changes 

required to reach the generated alternatives. 

The experimental results confirmed that the method is 

suitable for the task i.e., it generates at least one appropriate 

alternative in less than a minute, even for the most complex 

decision models. In the majority of the cases, the computing time 

was lower than that. The discovery of the alternatives was 

equally distributed throughout the overall runtime. Exception of 

this is the final check performed by the algorithm (see 

check_promising_values in Algorithm 1), which generates the 

majority of the alternatives for the more complex models (depth 

4 and depth 5). The quality of the alternatives was also 

appropriate as in the majority of the cases, the generated 

alternatives could be reached by less than 5 attribute changes. 

Finally, the relation between the decision-model’s depth and the 

computing time was linear and not exponential, which implies 

that the method is scalable.  

The method implementation considers ordinal attribute 

values. However, there is possibility for considering other types 

of distance measures that would work in nominal settings (e.g., 

Levenshtein distance). 

 

Figure 3: Boxplots for the number of changes required to 

switch from the starting alternative to the best alternative. 

Regarding the future work, the proposed method is stochastic 

and the optimality of the final solution cannot be guaranteed. In 

order to do that, the method needs to be validated additionally. 

Promising options include comparison of the proposed method 

with deterministic methods and methods that utilize internal rules 

by which the decision models operate.  
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