

Zbornik 21. mednarodne multikonference

INFORMACIJSKA DRUŽBA – IS 2018
Zvezek A

Proceedings of the 21st International Multiconference

INFORMATION SOCIETY – IS 2018
Volume A

Slovenska konferenca o umetni inteligenci
Slovenian Conference on Artificial Intelligence

Uredili / Edited by

Mitja Luštrek, Rok Piltaver, Matjaž Gams

http://is.ijs.si

8.–12. oktober 2018 / 8–12 October 2018

Ljubljana, Slovenia

http://is.ijs.si/

Complex Decision Rules in DEX Methodology:

jRule Algorithm and Performance Analysis
Adem Kikaj

Jožef Stefan International Postgraduate School
Jožef Stefan Institute, Department of Knowledge

Technologies
Jamova 39, 1000 Ljubljana, Slovenia

adem.kikaj@ijs.si

Marko Bohanec
Jožef Stefan Institute, Department of Knowledge

Technologies
Jamova 39, 1000 Ljubljana, Slovenia

marko.bohanec@ijs.si

ABSTRACT
DEX (Decision EXpert) is a qualitative multi-criteria decision-

modeling methodology. DEX models are used to evaluate and

analyze decision alternatives. An essential component of DEX

models are decision rules, represented in terms of decision tables.

Decision tables may contain many elementary decision rules and

may be difficult to be understood by the decision maker. A more

compact and comprehensible representation is obtained by

converting elementary decision rules to complex rules. The DEX-

Rule algorithm, which is currently implemented in software

DEXi, has been found inefficient with large decision tables. This

research is aimed at improving the efficiency of the DEX-Rule

algorithm. We propose a novel algorithm, called jRule, which

generates complex rules by specialization. According to

performance analysis, jRule is indeed more efficient than DEX-

Rule. The compactness of complex rules produced by both

algorithms varies and there is no clear winner.

Categories and Subject Descriptors

H.4.2 [Types of Systems]: Decision Support

F.2.0 [General]

General Terms

Algorithms, Performance, Experimentation

Keywords

DEX methodology, decision rules, complex decision rules,

algorithm analysis

1. INTRODUCTION
Decision-making is a difficult and complex process. During this

process, a decision maker (DM) faces several decision

alternatives. To choose a particular alternative from the set of

possible alternatives, a decision-analysis approach [3, 4] can help

to satisfy the aims or goals of a decision maker. Decision analysis

[3, 4] is the discipline used to help a decision maker to deal with

uncertainty, complexity, risk, and trade-offs of the decision. The

idea of decision analysis is to develop a decision model, which

can help decision makers to evaluate alternatives and to choose

the best action.

The decision maker in a decision problem have to deal with

multiple and possibly conflicting criteria. Multiple Criteria

Decision Analysis (MCDA) or Multiple Criteria Decision Making

(MCDM) [3] provides methods for structuring, planning and

solving such decision problems. DEX methodology is one of the

MCDM methods. DEX is a qualitative multi-criteria decision-

making methodology [1, 2, 5] aimed at the assessment and

analysis of decision alternatives. DEX is supported by software

DEXi (http://kt.ijs.si/MarkoBohanec/dexi.html).

DEX models have a hierarchical structure, which represents a

decomposition of some decision problem into smaller, less

complex sub-problems. DEX models are developed by defining

(i) attributes, (ii) scales, (iii) hierarchically structured attributes

(the tree of attributes), and (iv) decision rules. In DEX models,

attributes are variables that represent properties of decision

alternatives. Attributes can be either basic or aggregated.

Aggregated attributes have subordinate attributes, while basic

attributes do not. Basic attributes represent inputs and aggregate

attributes represent outputs (results). A scale represents a set of

values that can be assigned to an attribute. Scales are qualitative

and can take discrete values like ‘excellent’, ‘acceptable’,

‘inappropriate’, etc. Decision rules represent the mapping of

subordinate attributes to an aggregated attribute (see section 2 on

more details about decision rules in DEX).

In a DEX model, an aggregated attribute may involve many

subordinate attributes (e.g., more than five) in which case the

decision table will contain many elementary decision rules and

may be difficult to be understood. In order to obtain a more

comprehensible representation, the DEXi software implements

DEX-Rule, an algorithm that converts elementary decision rules

to more compact complex rules. DEX-Rule has been found

inefficient in decision tables with many subordinate attributes and

many elementary decision rules that map to a single decision

value.

This research is aimed at improving the efficiency of the DEX-

Rule algorithm. We propose a novel algorithm, called jRule,

which finds complex rules by specialization, i.e., by narrowing

down too general rules that are constructed initially. The jRule

algorithm performed better regarding the running time. The

results generated by both algorithms are guaranteed to cover the

whole decision table.

This paper is structured as follows: Section 2 formulates the

Decision Rules in DEX, Section 3 presents the DEX-Rule

algorithm, Section 4 presents the jRule algorithm, Section 5

presents the comparison of the two algorithms regarding the

algorithm complexity and the number and form of complex

decision rules that they generate. Section 6 summarizes and

concludes the paper.

2. DECISION RULES IN DEX
In DEX models, attributes can be either basic or aggregated.

Aggregated attributes are attributes which depend on their

descendants, known as subordinate attributes. Decision rules in

DEX define the bottom-up mapping of the scale values of

17

http://kt.ijs.si/MarkoBohanec/dexi.html

subordinate attributes to the values of the aggregated attribute. An

example of such mapping, represented in terms of a decision

table, is shown in Table 1. The example is taken from a well-

known model for evaluating cars based on attributes such as

buying price, maintaining price, safety, and comfort [1]. The

example occurs at the top level (root) of the model and maps the

subordinate attributes PRICE and TECH.CHAR (technical

characteristics) to the overall evaluation of a CAR. The value scale

of the involved attributes are ordered values as follows:

 PRICE = {high, medium, low},

 TECH.CHAR = {bad, acc, good, exc}, and

 CAR = {unacc, acc, good, exc}.

Each row in Table 1 defines the value of the aggregated attribute

CAR for each combination of subordinate attributes’ values.

Therefore, the decision table maps all the combination of PRICE

and TECH.CHAR scale values into the value of CAR.

Table 1. Decision table with elementary decision rules of DEX

model known as CAR Evaluation Model [1].

 PRICE TECH.CHAR CAR

1 high bad unacc

2 high acc unacc

3 high good unacc

4 high exc unacc

5 medium bad unacc

6 medium acc acc

7 medium good good

8 medium exc exc

9 low bad unacc

10 low acc good

11 low good exc

12 low exc exc

A decision rule consists of the condition and decision part:

if subAttr1 = value1

and subAttr2 = value2

…

and subAttrn = valuen

then aggAttr = value (or interval of values)

The condition part is the Cartesian product of the scale values of

the subordinate attributes of an aggregated attribute (subAttr1,

subAttr2, …, subAttrn). The decision-maker defines the value of

each decision rule, which might be a single value or an interval of

values of the aggregated attribute. Such decision rules are also

called elementary decision rules, since each rule defines the value

for exactly one combination of subordinate attributes’ values.

In this way, the first row in Table 1 represents the following

elementary rule:

if PRICE = high and TECH.CHAR = bad then CAR = unacc

An alternative representation of the decision rules can be by an n-

dimensional matrix, depending on the number of subordinate

attributes. Figure 1 shows such a representation of Table 1. Here,

each cell of the matrix represents one elementary decision rule

from the decision table.

Figure 1. Elementary decision rules represented in a matrix.

In order to represent the decision table in a more compact and

possibly comprehensible way, DEX uses complex decision rules.

A complex decision rule consists of the condition and decision

value part. In contrast with elementary rules, each clause in the

condition part can represent an interval. The decision value is

always a single value. Thus, a complex rule generally takes the

form:

if subAttr1 [low_value1 , high_value1]

and subAttr2 [low_value2 , high_value2]

…

and subAttrn [low_valuen , high_valuen]

then aggAttr = value

For comprehensibility, DEXi software traditionally represents

intervals as follows:

 ‘*’: the asterisk include all possible scale values of a

specific subordinate attribute;

 ‘>=w’: stands for better than or equal to value;

 ‘<=w’: stands for worse than or equal to value;

 ‘w1:w2’: interval between value w1 and value w2,
including the two values.

Figure 2 shows several complex decision rules on the matrix from

Figure 1. It is important to notice that each complex decision rule

covers an area that corresponds to one or more elementary

decision rules. In this way, the number of complex rules that

completely cover the matrix is generally lower than the number of

elementary rules, and the resulting representation is more

compact.

Figure 2. Complex decision rules represented in a matrix

through different dotted rectangles for each decision value.

18

3. DEX-RULE ALGORITHM
DEX-Rule is an algorithm currently implemented in DEXi [1]

that converts elementary decision rules into more compact

complex decision rules. The DEX-Rule generates complex

decision rules by finding areas limited by bounds, which may

cover more than one elementary decision rule. An area is

represented by two bounds: a low and a high bound. Both are

vectors of scale values of the subordinate attributes.

The input to the DEX-Rule algorithm is a decision table,

represented in a form of a decision matrix, such as in Figure 1. All

the rules are marked as uncovered. The low and high bound (l and

h) are vectors (coordinates) that define an area of decision rules

with the target value t. Initially, l = h, which means that they

define a single elementary decision rule. Later, with recursive

invocation of the algorithm, these boundaries are gradually

extended to cover larger areas with the target value t. On the

output, DEX-Rule generates a set of decision rules, such as in the

example shown in Table 4. DEX-Rule proceeds by considering all

target decision values, t, in succession. For each t, DEX-Rule

proceeds by generalization, as shown in Algorithm 1.

Algorithm 1. Pseudo-code of the DEX-Rule Algorithm.

Inputs:

 l := low bound.

 h := high bound.

 t := target decision value.

 m := last elementary decision rule from decision table

 (representing the highest current bound).

Outputs:

 p := complex decision rules

begin

 cover := ValidateBounds(l, h, t)

 if cover then

 for i = 0 to |h| do

 if h[i] < m[i] then

 DEXRule(l, Increase(h), t, m)

 end if

 end for

 for i = 0 to |l| do

 if l[i] > 0 then

 DEXRule(Decrease(l), h, t, m)

 end if

 end for

 p.add(l + h)

 end if

end

For each decision value t and each elementary decision rule that

has not been covered so far (represented by l and h, l = h), DEX-

Rule tries to extend the boundaries l and h in different directions.

When the area cannot be extended any more, a complex decision

rule is created. More precisely, a complex decision rule is

generated in two cases:

 when the algorithm reaches the highest or lowest scale

value for the specific subordinate attribute, see Figure

3.a, or

 when an extension would cover an elementary decision

rules with a different target value, see Figure 3.b.

The process continues until the matrix has been completely

covered by complex rules.

Figure 3. Two cases of generating complex decision rules with

DEX-Rule algorithm.

4. JRULE ALGORITHM
The aim of this research was to improve the efficiency of the

DEX-Rule algorithm. We propose a novel algorithm, called jRule.

While the main idea behind DEX-Rule is to find areas by

generalization (extending the area bounds), the main idea of the

jRule is to reverse this method and use specialization. jRule

proceeds by finding largest areas covering yet uncovered rules for

t and gradually reducing them.

Algorithm 2. Pseudo-code of the jRule Algorithm.

Inputs:

 t := target decision value.

 ger := elementary decision rules for target value t,

 lexicographically sorted by subordinate attribute values.

Outputs:

 p := complex decision rules

begin

 l := lowest subordinate attributes’ values from ger

 for i = |ger| to 0

 if !ger[i].isCoveredBy(p) then

 lb = l

 hb = ger[i]

 while !ValidateBounds(lb, hb, t) do

 lb = Increase(lb) // reduce the area by increasing the lb

 end while

 p.add(lb + hb)

 end if

 end for

end

The pseudo-code of the jRule algorithm is shown in Algorithm 2.

First, the algorithm finds l, the lowest bounds for each

subordinate attribute of elementary rules for the target value t.

Then, it locates the last (i.e., highest) currently uncovered

elementary rule. This gives the high bound of the area. If the area

with bounds lb and hb is valid, meaning that covers only rules for

t, a new complex rule is generated. Otherwise, this area is reduced

by increasing the low bound lb. This process is repeated until all

elementary rules for t have been covered by complex rules. Notice

that, unlike DEX-Rule, areas in jRule are gradually reduced by

increasing only the low bound lb. Figure 4 illustrates this process

for elementary rules shown in Table 1 and the target value t =

unacc. In this case, ger is composed of rules 1, 2, 3, 4, 5 and 9 (in

this order) from Table 1. The low bound is lb = <high, bad>.

jRule makes two iterations, first finding the high bound from rule

9 (hb = <low, bad>) and then from rule 4 (hb = <high, exc>). In

both cases, the areas cover t and no reduction is necessary.

19

Figure 4. jRule Algorithm identifying the lowest and highest

bound for elementary decision rules with decision value t =

unacc.

5. PERFORMANCE ANALYSIS
The comparison between the DEX-Rule and jRule algorithms is

made with respect to (i) time complexity, (ii) the running time and

(iii) the number of complex rules that these two algorithms

generate.

Regarding the time complexity, the DEX-Rule algorithm is O(mn)

because of its recursive nature, where m is the number of

subordinate attributes and n is the number of the elementary

decision rules. On the other hand, the time complexity of the

jRule algorithm is O(n2m).

The experimental comparison of the algorithms is based in

different DEX models for different aggregated attributes. Both

algorithms are implemented in JDEXi

(http://kt.ijs.si/MarkoBohanec/jdexi.html) and DEX.NET2

(http://kt.ijs.si/MarkoBohanec/dexinet.html). The algorithms were

compiled with the same compiler and run on the same computing

environment. Table 4 shows running times of the algorithms on

three selected DEX models. Generally, jRule is more efficient,

and a major difference occurs with Model 2, which is a large

decision table having five subordinate attributes and 1728

elementary decision rules.

Table 4. Difference between two algorithms based on running

time and number of generated complex rules.

Running time [s] # of complex decision rules

Models DEX-Rule jRule DEX-Rule jRule

1 0.75 0.200 30 18

2 1280.00 0.395 121 64

3 1.94 0.980 11 26

Table 5. Complex decision rules generated by DEX-Rule for

CAR aggregated attribute of CAR Evaluation model.

PRICE TECH.CHAR CAR

1 high * unacc

2 * bad unacc

3 medium acc acc

4 medium good good

5 low acc good

6 >=medium exc exc

7 low >=good exc

The two algorithms, in general, produce different complex

decision rules. For example, Tables 5 and 6 show the respective

complex rules for the CAR evaluation model. The rules are very

similar, there is only a small difference in rule 7. In some other

cases (Table 4), the differences between the algorithms are more

pronounced: jRule produces more compact representations for

Models 1 and 2, but less compact for Model 3. More research is

needed to establish which algorithm is better and under which

circumstances.

Table 6. Complex decision rules generated by jRule for CAR

aggregated attribute of CAR Evaluation model.

PRICE TECH.CHAR CAR

1 high * unacc

2 * bad unacc

3 medium acc acc

4 medium good good

5 low acc good

6 >=medium exc exc

7 low good exc

6. CONCLUSIONS
In this work, we proposed a novel algorithm jRule for converting

elementary decision rules to complex decision rules in the DEX

methodology. In contrast with the current DEX-Rule algorithm,

which employs generalization, jRule uses the principle of

specialization.

Regarding the time complexity and running time, jRule algorithm

perform better than DEX-Rule in all experiments performed for

different DEX models. On the other hand, none of the algorithm

was clearly better with respect to the number of generated

complex decision rules. As part of this work, both algorithms

were implemented in two open source libraries, JDEXi V4 and

DEXi.NET2.

7. ACKNOWLEDGMENTS
The Public Scholarship, Development, Disability and

Maintenance Fund of the Republic of Slovenia (Contract no.

11011-44/2017-14) financially supported this research.

8. REFERENCES
[1] Bohanec, M. (2015). DEXi: Program for Multi-Attribute

Decision Making User's Manual. Ljubljana, Slovenia:

Institut Jozef Stefan.

[2] Bohanec, M., Žnidaršič, M., Rajkovič, V., Bratko, I., &

Zupan, B. (2013). DEX methodology: three decades of

qualitative multi-attribute modeling. Informatica, 37(1).

[3] Bouyssou, D., Marchant, T., Pirlot, M., Tsoukias, A., &

Vincke, P. (2006). Evaluation and decision models with

multiple criteria: Stepping stones for the analyst (Vol. 86).

Springer Science & Business Media.

[4] Greco, S., Figueira, J., & Ehrgott, M. (2016). Multiple

criteria decision analysis. New York: Springer.

[5] Trdin, N., & Bohanec, M. (2018). Extending the multi-

criteria decision making method DEX with numeric

attributes, value distributions and relational models. Central

European Journal of Operations Research, 26(1), 1-41.

20

http://kt.ijs.si/MarkoBohanec/jdexi.html
http://kt.ijs.si/MarkoBohanec/dexinet.html

