Decision Analysis Part 1

Decision Analysis and Decision Tables

Decision Analysis, Part 1

- Introduction to Decision Analysis
 - Concepts: modelling, evaluation, analysis
 - Decision Problem-Solving: Stages
 - Relation of DA to some other Disciplines
- Decision-Making under Uncertainty
 - Decision-Making under Strict Uncertainty

 - Decision Table
 Various Decision Criteria
 - Decision-Making under Risk
 Expected Value
 Sensitivity Analysis

Decision Analysis

Decision Analysis: Applied Decision Theory

- Provides a framework for analyzing decision problems by structuring and breaking them down into more manageable parts,

 explicitly considering the:

 possible alternatives,

 available information
- - uncertainties involved, and
- relevant preferences
- combining these to arrive at optimal (or "good") decisions

Decisi	on-Making unde	r Uncertainty	
	_	-	
		Mank o Bot as oc	-
		Maria O Lio Lan Go	·
De	ecision-Making F	Problem	
	it one must choose betwe		
	ertain alternatives.		
Given: • Alternativ			
described	equences of choosing eac with a <i>single</i> number,		
	/ loss in € or aggregated	value.	-
Taok. Willow	alternative to gridege.	Mark o Bot ar ac	
		Mast o not as ex	
	Decision Tab	مام	
Decision-Maki	ng under Strict Uncertainty	nic .	-
State of the world θ (Event)	Value of alternatives $1 \dots m$ $a_1 \dots a_m$		-
θ ₁ :	y ₁₁ y _{1m} :		
θ,, Decision-Mak	y_{n1} y_{nm} ing under Risk		
State of the world (Event)	Probability that θ will happen	Value of alternatives $1 \dots m$ $a_1 \dots a_m$	
θ_{i}	p(θ ₁)	y ₁₁ y _{1m} :	
θ_n	$p(\theta_n)$	y_{n1} y_{nm}	

Working Example

A manufacturing company, faced with a possible increase in demand for its product, considers the following:

Alternatives:

- 1. status quo: no change
 2. extend: extending their production line buying a new machine
 3. build: building a new production hall with new equipment
 4. cooperate: finding additional business parters for production

Uncertainty involved:
Market reaction: after the decision, the sales can increase or decrease.

Consequences:
Expected profit, shown in decision table on the next slide

Working Example

Decision table

			alternative				
			status quo	extend	build	cooperate	
	states	decreased sales	28	24	16	30	
etat	sta	increased sales	30	42	44	34	

Decision-Making under Strict Uncertainty

Decision Criteria

- Dominance
- Pessimistic (Maximin, Wald's)
- Optimistic (Maximax)
- Hurwicz's
- Laplace's
- Minimax Regret

Mark o Bot an e

Dominance

- Choose the alternative with best consequences in all states of the world.
- Such alternative is seldom found.

			alternative				
		status quo	extend	build	cooperate		
states	decreased sales	28	24	16	30		
sta	increased sales	30	42	44	34		

No dominant alternatives in this case

Mark o Bot an

Pessimistic Criterion (Wald's, Maximin)

- Each alternative is represented by its *worst* possible consequence.
- According to these, the alternative with the *best* worst case is chosen.

		alternative				
		status quo	extend	build	cooperate	
states	decreased sales	28	24	16	30	
	increased sales	30	42	44	34	
Pessimist		28	24	16	<u>30</u>	

(ank oBot an ec

Optimistic Criterion (Maximax)

- Each alternative is represented by its *best* possible consequence.
- The alternative for which this *best* consequence is best is chosen.

		alternative				
		status quo	exte nd	build	cooperate	
states	decreased sales	28	24	16	30	
stai	increased sales	30	42	44	34	
Optimist		30	42	44	34	

Mark o Bot an ec

Hurwicz's Criterion

- Introduce a parameter $d \in [0,1]$.
- Combine Optimistic and Pessimistic criteria so that $u_{\scriptscriptstyle h} = du_{\scriptscriptstyle o} + (1-d)u_{\scriptscriptstyle p}$

			alteri	native	
		status quo	extend	build	cooperate
states	decreased sales	28	24	16	30
sta	increased sales	30	42	44	34
Pess	simist	28	24	16	30
Optimist		30	42	44	34
Hurwiz (d=0,3)		28,6	29,4	24,4	31,2

Laplace's Criterion

- Consider all states (events) equally likely,
- thus, consider the *average* of outcomes for each alternative.

			alternative				
		status quo	exte nd	build	cooperate		
states	decreased sales	28	24	16	30		
sta	increased sales	30	42	44	34		
Laplace		29	33	30	32		

Mark o Bot as ac

Minimax Regret

The **regret** r_{ij} for the alternative a_j in state θ_i is equal to the difference between the best alternative in given state θ_i and a_{j} : $r_{ij} = \max_{k=1}^m \{y_{ik}\} - y_{ij}$

Choose the alternative having the least maximum regret.

		a ternative				
		status quo	extend	build	cooperate	
States	decreased sales	30-28=2	30-24=6	30-16=14	30-30=0	
Sta	increased sales	44-30=14	44-42=2	44-44=0	44-34=10	
Regret		14	<u>6</u>	14	10	

Mark o Bot an e

Summary

		ajternative				
		status quo	exte nd	build	cooperate	
states	decreased sales	28	24	16	30	
sta	increased sales	30	42	44	34	
Pessimist Optimist		28	24	16	<u>30</u>	
		30	42	44	34	
Hurw	viz (<i>d</i> =0,3)	28,6	29,4	24,4	<u>31,2</u>	
Lapla	ace	29	<u>33</u>	30	32	
Regr	et	14	6	14	10	

janko Bohan eo

Questions

- If you were the manager, which alternative would you take? Why?
- Is this really the best alternative? Why? Under which circumstances it is best?
- What can you say about the *status quo* alternative? According to the analysis, when should be it taken, or should it be taken at all?

Questions

Assess the presented decision criteria:

- Describe the prevalent characteristics of each criterion
- What do you think about the criteria:

 Are they comprehensible?

 - Are they realistic?
 - Are they useful for practice?
 - Which is your favourite criterion?
- Is there a single "best" criterion? Which and why?

Decision-Making under Risk

Working Example

Now we know (or estimate) the probablity of states

		alternatives			
states	probability	status quo	extend	build	cooperate
decreased sales	25%	28	24	16	30
increased sales	75%	30	42	44	34

Mark o Bot an ec

Decision Criteria

- Mode: Select the most probable state
- Expected Value (EV), Expected Monetary Value (EMV)

Mark o Bot an e

Expected (Monetary) Value

Maximise the expected value: $EV_i = \sum_{j=1}^{n} p(\theta_j) y_{ji}$

		alternatives				
states	probability	status quo	exte nd	build	cooperate	
decreased sales	25%	28	24	16	30	
in creased sales	75%	30	42	44	34	
Expected value		0,25×28+ 0,75×30= 29,5	0,25×24+ 0,75×42= <u>37,5</u>	0,25×16+ 0,75×44= 37	0,25×30+ 0,75×34= 33	

atankio Bohan ec

Exercise 1

	P(θ)	a_1	a_2	a_3
$\theta_{\rm l}$	2/9	8	4	20
θ_2	3/9	7	15	10
θ_{2}	4/9	6	5	0

Given this decision table:

- Determine which alternative is best according to all the criteria (Dominance, Pessimistic, Optimistic, Hurwiz (d=0.7), Laplace, Regret, Mode, Expected Value). Draw a chart evaluating the Hurwiz's criterion for $d \in [0,1]$.
- Do sensitivity analysis.

Exercise 2

Help the farmer who is deciding which crop to plant in the face of uncertain weather and resulting crop yield:

Weather			
probability	.55 Normal	.15	30
	Normal	Drought	Rainy
Plant soybeans	\$ 10	5	12
Plant corn	7	8	13
	profit per acre		

Exercise 3

- 1. Define a decision problem of your own,
- 2. represent it in a decision table,
- 3. and repeat the steps of Exercise 1

Exercise 4

Using some decision table, implement in spreadsheet software (such as MS Excel):

- evaluation of alternatives using all the criteria,drawing the chart associated with Hurwiz's criterion
- drawing the sensitivity analysis chart

Compare the two charts.