Using Data Mining to Predict Soil Quality after Application of Biosolids in Agriculture
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ESPITE A VAST AMOUNT of scientific literature on biosol-
D ids application in agriculture, and successful modeling of
related soil fertility aspects (Gabrielle et al., 2005), few models are
available to predict the accompanying risks and benefits (mostly
urban sludges and compost derivates). Such tools are urgencly
needed due to the increase in the amount of biosolids recycled in
agriculrure in recent decades. There has been a gradual strength-
ening of related legislation in the European Union, particularly
in France, in the last 15 yr. During that period, the quantity of
sludge has steadily increased; from 800 ke in 2000 to 950 ke (dry
wt.) today. In France, the three main methods of sludge disposal
are incineration, land-filling, and most important, agricultural
land application (60%). ‘

Soil quality has been defined as “the capacity of a specific
kind of soil to function, within natural or managed ecosystem
boundaries, to sustain plant and animal productivity, maintain
or enhance water and air quality, and support human health and
habitation” (Karlen et al., 1997). In agricultural conrexts, soil fer-
tility and contamination thus appear to be key paramerters when
surveying soil quality. Numerous case studies have explored the
potendial positive and/or negative effects of biosolid application
on soil quality. Most of the benefits concern soil fertility. Biosolids
in general, and sludge in particular, are rich in nutrients, calcium,
and organic martter, and their application is known to have more
or less long-lasting, favorable effects on both biocmass produc-
tion and chemical and physical soil properties. These effects have
been the subject of a considerable number of studies since the
late 1970s (e.g., Mitchell et al., 1978; Wei et al., 1985; Logan et
al,, 1997; Stamatiadis et al., 1999; Aggelides and Londra, 2000;
Al-Assiuty eral. (2000)). More recent investigations include those
described by Mantovi et al. (2005), Oliver et al. (2005), Oleszczuk
(2006), and Brazauskiene et al. (2008). These studies showed that
spreading sludge improves the structural properties and fertility
of soil and increases its permeability, hydraulic conductivity, and
water retention capacity. Moreover, sludge decreases the rate of
soil erosion. Sludge spreading also has a favorable effect on soil
biological characteristics by stimulating microbial activity and
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biomass {(Mitchell et al., 1978; Robert, 1996; Banerjee et al.,
1997; Criquet et al,, 2007).

The main risks concerning biosolids application are associ-
ated with soil pollution, particularly the transfer of mineral and
organic pollutants within the agrosystem. It has been previously
demonstrated that with high amounts of sludge application, pos-
sible transfers of pollutants, mainly trace elements, from soil to
plants are possible (Juste and Solda, 1977; Morel and Guckert,
1984; Juste and Mench, 1992). Furthermore, concerns about
the behavior of organic pollutant, particularly PAHs and poly-
chlorinated biphenyls (PCBs), coming from sewage sludge have
been raised (Rogers, 1996; Petersen et al., 2003; Oleszczuk,
2006). These investigations were recendy summarized in sev-
eral reviews showing that sewage sludge used in recommended
doses could usually increase fertility and yield, whereas the bio-
availability of merals increases only in sludge-amended soil at
excessive rates of application over many years (Hargreaves et al.,
2008; Singh and Agrawal, 2008; Smith, 2009).

Long-term experiments on the effects of biosolids on soil
fertility and contamination are sometimes difficult to interpre,
however, because they are, by definition, multifactorial. For
instance, it has been shown that the transfer of metals to plants
can vary with soil properties, particularly pH or texture (Morel
and Guckert, 1984; Juste and Mench, 1992; Brazauskiene etal.,
2008; Smith, 2009). Also, classic mineral fertilization is known
to be a considerable source of metals. Furthermore, some other
factors can modify the results of such studies, such as crop
type or agricultural pracrices {Oleszczuk, 2006). Indeed, even
though European and more particulacly French regulations
have sought to standardize the quality of biosolids for spread-
ing, their nutrient content can change over time (Oliver et al.,
2005). Additional factors of differentiation include the appli-
cation frequency and protocols used. Therefore, the divergence
in results obtained from numerous studies underline the com-
plexity of biosolid—soil-plant system relationships. Despite the
challenge of obtaining comparable data and given the context
of current regulation, stakeholders urgently need methods to
assess the effects of biosolid application.

Consequently, we have followed an alternative approach to
considering soil responses to the addition of biosolids. Our aim
is to propose an integrative method to assess the benefits and
risks of biosolid application in agriculture, using data mining on
results from a 10-yr field experiment in the northeast of France
(1997-2006). The experiment includes four biosolid applica-
tions, eight types of biosolids, and several successive crops. We
propose here to identify the main factors, in terms of soil and
biosolid quality, as well as of agriculural practices, affecting
the soil-plant system to be able to predict (i) soil fertility and
(ii) soil contamination by heavy merals and organic pollutants.
Our main hyporthesis is that four applications of biosolids over
a 10-yr period, which is very close to the recommended dose
permitted by regulations (1.3 times more) (Voynetet al., 1998),
can increase fertlity without modifying soil contamination
levels. For this purpose, we set out to analyze the dataset by
using data mining. Data mining is the central step in the pro-
cess of knowledge discovery in databases and is concerned with
applying specific algorithms to find patterns in darta. In other
words, it takes data as input and outputs knowledge in the form
of patterns (i.e., models). Environmental data have previously

been successfully modeled using data mining (for an overview,
see Debeljak and Dzeroski, 2009, 2011). The application of data
mining to soil science covers a wide spectrum of ecological and
environmental domains, including habirat modeling (Debeljak
et al., 2008), the modeling of population dynamics (Demsar et
al., 2006; Debeljak et al., 2011) and the modeling of soil qualicy
(Debeljak et al., 2007; Debeljak et al., 2009). The knowle:dge
obtained from data-mining models can be then combined with
the expert knowledge to create a decision support system (e.g.,
using DEXi [Znidarsic et al., 2006)) for optimal management
of soil quality (e.g., Bohanec et al., 2007).

Material and Methods
Experimental Setup and Data Collection

Experiments were performed on the experimental farm at La
Bouzule (12 km east of Nancy, France). The climate is oceanic
with continental influences. The principal agronomic char-
acteristics of the soil (redoxic neoluvisoil) were described by
Martin-Laurent et al. (2004).

Ten treatrnents were applied to experimental plots. The fol-
lowing six different biosolid types were applied: liquid sewage
sludge (LSS), lighdy dehydrated sewage sludge (LDSS),
lightly dehydrated composted sewage sludge (LDCSS), lightly
dehydrated composted sludge with added organic pollur-
ants (LDCSSO), lightdy dehydrated composted sludge wich
added metals (LDCSSM), and mixed paper sludge (MPS).
Additionally, two other types of wastes were tested: coal ash
(CA), and household waste ash (HWA). For convenience,
these two other types of wastes will also be called biosolids
throughour this paper. These eight biosolids are 'representative
of marerials available in France for application on agricultural
soils (ADEME and Cabinet Arthur Andersen, 1999). The two
control plots did not receive any biosolids but were subject to
mineral fertilization. The first control (control with minimal
fertilization [CMF)) received a minimal fercilizaton sufficient
only to avoid plant nutrient deficiency, whereas the second
control (control with optimal fertilization [COF]) received
a higher and optimal quantitative ferdlization, which corre-
sponds to the doses usually applied in agriculture and allowing
optimal yield (Supplemental Table S1). A split block and plor
design was created, including four plots (10 by 4 m) per treat-
ment. Thus, a total of 40 plots, including the 10 treatments,
were performed. The principal biosolid characteristics are sum-
marized in Table 1. All types of biosolids, excepr LDCSSO for
benzo(a)pyrene and fluoranthene, met regulatory compliance
needs concerning their fertilizing qualities and pollutant con-
centrations. The mean of LDCSSM trace elements met the
regulation, but the cadmium (Cd) concentration was higher
than the legal threshold value on two occasions. Each type of
biosolid was applied manually to each plot according to regula-
tions (four applications of 10 t ha™ within 10 yr, representing
160 kg of dry matter for each plot). For all the plots, biosolids
were complemented with a mineral fertilization corresponding
to the level of COF treatment. This was to avoid nutrient defi-
ciency for plants and to conform to current agricultural prac-
tices combining biosolid application and mineral fertilization.

A chronological sequence of agricultural practices and soil

sampling is described in Supplemental Table S1. Agricultural
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practices included tillage (0-20 cm) to incorporate biosolids,
followed by rotovaror cultivation to prepare sowing. The crop
rotation included spring rape (Brassica napus L. var. napus)
(Jaguar', 5 kg ha™), winter rape (Amber’, 6 kg ha™), winter
wheat (Triticum aestivam L.) ("Texel’, 190 kg ha™) and maize
(Zea mays L.) (Anjou 258’ variety, 100 000 seeds ha™).

Soil samples were usually collected twice a year, before
sowing and biosolid application, and ar harvest time. At each
sampling date, from TO to TXIII (Supplemental Table S1), soil
agronomic parameters corresponding to the tillage horizon
(0-20 cm) were assessed. All the analytical work was done by
the national laboratory for soil analysis of the Institut National
de Ia Recherche Agronomique {INRA). The laboratory is cer-
tified by the French Ministry of Agriculture for soil charac-
terization. This laboratory is working under AQ ISO 17025
and COFRAC and is a member of the International Soil-
analytical Exchange Program (Wageningen, the Netherlands)
(16 samples per year). Characrerization of soils was performed
with reference to Normes Francaises (NF) standards. Qualicy
control for soils was based on the use of certified soil samples
(GBW 07401, 07402, 07404, 07405, and 07406), samples
from interlaboratory comparisons, internal control samples,
and duplicates of the analysis.

Analyses included pH (NF ISO 14254), cation exchange
capacity (CEC) (NF ISO 11260), organic carbon (Ccrg) (NF
ISO 14235), total organic matter, total nitrogen (NF ISO
11261), available phosphorus (Pom) (NF ISO 11263), and
C/N (AFNOR, 2004).

Trace elements (Cd, Cu, Ni, Pb, and Zn) were analyzed
by ICP-AES (NF EN ISO 11885) after mineralization (NF

ISO 1466, 1995 and NF X 31-151, 1993). Total PAHs and
total PCBs were analyzed following the standardized protocol
XP-X 33-012, 2000 and NF ISO 13877, 1999. Furthermore,
for dates from TVII to TXII, extractable CaCl, trace elements
were analyzed to assess the availability and mobility of the con-
taminants (Lebourg et al., 1996), but measurements for each
treatment were obtained from a pooled sample from the 4 plots.

Data Analysis
Descriptive Statistics

Differences between treatments were assessed for each sam-
pling date for each fertilicy (pH, Corg, total N, P, and C/N)
and for each total rrace element (total Cd, Cu, Ni, Pb, Zn)
parameter, using one-way ANOVA followed by a Tukey HSD
pairwise test. No statistics were calculated for organic pollut-
ants and extractible CaCl, trace elements, as measurements for
each treatment were obtained from a pooled sample from the
four plots. All statistical calculations were performed using R

software (Thaka and Gendeman, 1996).
Scenarios and Dataset

To examine the effects of biosolid application on soil fertility
and to see if these lead ro the contamination of the soil wich
pollutants, we considered four different scenarios (i.e., data
analysis setups). The general goal of this data analysis was to
predict soil properties at harvest time from variables describ-
ing soil properties before sowing, biosolid properties, min-
eral ferdlization, and management pracrices. Scenario 1 aims
to predict soil fertility parameters (C,p ol N, C/N, P, ),
Scenarios 2 and 3 aim respectively to predict total and CaCl,

Table 1. Biosolid characteristics, trace elements and organic pollutants content. Mean of four values for each parameter {one for each spreading
during the study). Values in italics are close to or above the threshold values.

155+ LDSS LDCSS  LDCSSO  LDCSSM MPS CA HWA ngfjfe‘;’d
Dry matter (DM), % 3.70 23.78 39.23 39.18 38.63 4770 76.15 80.58 -
Organic matter, % 5455 49.13 61.60 55.20 60.48 48.25 6.70 40.85 -
Organic carbon (C), % 31.60 27.50 3328 3065 32.75 27.35 5.63 22.40 -
Total nitrogen (N}, % 595 385 1.95 1.65 1.93 0.83 0.06 1.28 -
/N 530 718 17.38 23.23 18.93 3430 1074 17.80 -
PH, ... 765 7.73 6.25 6.75 6.05 7.53 9.08 8.25 -
Ca0, %o 84.75 76.75 50.48 7930 54.30 126.30 2263 83.18 -
MgO, %o 7.65 9.48 6.85 11.73 6.95 2255 32.85 12.83 -
P,0,, %o 7225 -67.33 34.20 2675 "35.20 5.00 263 6.25 -
K,0, %o . 7.90 770 8.15 7.10 8.95 410 3530 12.50 -
Cd, mg kg™ DM 1.25 3.28 2.20 337 9.89 0.23 0.59 1.81 10
Cu, mg kg™ DM 49575 45025 232.50 230.75 495.25 16775 95.50 21875 1000
Ni, mg kg™’ DM 4275 38.75 25.50 3175 84.00 11.50 125.50 44.00 200
Pb, mg kg™ DM 284.00 285.75 160.5 162.75 284.00 2550 10475 373.25 800
Zn, mg kg DM 127125 135850 682.75 70200 1455.75 14825 24975 111325 3000
Benzo{a)pyrene, mg kg™ DM 0.26 0.35 0.77 10.20 Q.15 0.05 0.01 0.04 2
Fluoranthene, mg kg™ DM 1.78 0.98 248 18.63 0.44 0.01 0.01 0.08 5
Benzo(b)fluoranthene, mg kg™ DM 0.35 0.35 0.08 0.32 0.18 0.58 0.01 0.16 2.5
7 PCBS sum, mg kg™ OM 0.16 0.16 0.1 0.07 0.12 0.15 0.01 0.20 08

LSS, liquid sewage sludge; LDSS, lightly dehydrated sewage sludge; LDCSS, lightly dehydrated composted sewage sludge; LDCSSG, lightly dehydrated

composted sludge added with organic pollutants; LDCSSM, lightly dehydrated composted sludge added with metals; MPS, mixed paper

coal ashes; HWA, household waste ashes.
F French Council decision of 8 Jan. 1998 (Voynet et al.,, 1998).
§ PCB, polychlorinated biphenyl.

sludge; CA,
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extractible trace elements (Cd, Cu, Ni, Pb, Zn) in the soil, and
Scenario 4 predicts organic pollutants concentrations (total
PAH, total PCB) in the soil. These four scenarios are described
in detail in Table 2.

For 2003, 2004, and 2005, soil data was collected just after the
harvest of maize. To make predictions for Scenarids 1 and 4, the
total dataset was used (V = 360). For Scenarios 2 and 3, extracr-
able CaCl, trace elements had not been measured throughout the
experiment, explaining the smaller dataset (V = 200).

Data Mining
The CLUS data-mining system (heep://deai.cs.kuleuven.be/

clus/} was used to construct regression tree models (Blockeel and
Struyf, 2002). Regression trees predict the value of a numeric
target variable (Breiman et al., 1984). They have a hierarchical
structure, where the internal nodes conrain tests on the input
attributes and the leaves predictions for the target variable. Tree
construction starts with the complete set of dara and recursively
splits the data, selecting an attribure test at cach step. The heuris-
tic diagram used to select the attribure tests in the internal nodes
is an intracluster variation summed over the subsets induced by
the test. Intracluster variation is defined as V- Var(y), with N the
number of examples in the cluster and Var(y) the variance of
target variable y in the cluster. Lower intrasubset variation results
in predictions thar are more accurate.

To improve the predictive performance and/or interpretabil-
ity of the trees, trees can be pruned. In this work, we use three
different pruning techniques: minimal number of instances in a
leaf, maximal tree depth, and maximal size. The first two tech-
niques are utilized during the construction of the tree, and the
third technique is used after the tree is built. More derails about
these techniques can be found in Struyf and Dieroski (2006).

The construction of regression trees is a widely used model-
ing approach (Tan et al., 2006); regression trees enable easy
understanding of results, where interpretation of the studied
phenomena from a systemic point of view is possible. The
method for the construction of regression trees is nonparamet-

Table 2. Predicted and independent attributes in each of the scenarios.

ric (which does not require prior assumptions concerning the
distribution probability of the predicted and other attributes).
In addition, it is not compurationally expensive even in the
case of large darasers. Also, the process of tree construction can
handle redundant attributes and noise effectively.

During the modeling process, we explored the aforemen-
tioned pruning settings to control the size and complexity of
the constructed regression trees:

* minimum instances in a leaf (i.e,, minimum number of
samples from which the predicted value is calculated): 16,
24 or 32;

* maximum tree depth (i.e., number of hierarchical levels of
the tree): 2, 3, or 4; and

* maximum size {i.e., maximum number of predictions
[leaves}): 7,9, or 11.

Additionally, these setting values were combined (i.e., mini-
mum number of instances in a leaf was set to 32 and the maxi-
mal tree depth to 3) to find the regression trees with the best
performance and the most interpretable structure. In chis way,
we obtained a set of models (i.e., regression trees) for each
scenario.

The predictive performance of the models on unseen data
was assessed according ro the following three quantitative cri-
teria estimated by 10-fold cross-validation: correlation coefh-
cient, root mean squared error (RMSE) and relative root mean
squared error (RRMSE). One model from each scenario, i.e.,
the best according to the criteria of size, predictive perfor-
mance, and interpretability, was selected for further presenta-
tion and interpretation in this paper.

Results

For each soil characteristic (ateribure), the resules present (i)
the significant differences between treatments for each sam-
pling date and (ii) the main points describing the decision trees
resulting from dara mining.

Independent attributes

Predicted attributest Soil properties before
sowingt

Biosolid propertiest  Mineral fertilizers§

Management and temporal
aspects of farming practices

Scenario 1 C. - Nm » C/N, PO, in pH,,, [Flog10 H+], CEC, pH, o Flog10 H+, Cmg, N, BK
Soil fertility soil at harvest time Cor - Nm " C/N, on5 N Nmt‘ C/N, ons'
Ca0, MgO, K,0
Scenario 2 Total Cd, Cu, Ni, Pb, pH,, [Flog10 H+],
Trace elements Zninsoilatharvest  CEC, Corg’ N /N, Time since last biosolid
time P,O, Total and Cadl, spreading; time since fast
extractible Cd, Cu, mineral fertilization; number of
Ni, Pb, Zn previous biosolid spreadings;

Scenario 3 Cadl, extractible Cd, pH,_,, [Hog10 H+],

Extractible trace Cu, Ni, Pb, Zninsoil  CEC, Cmg, N /N,

elements at harvest time PO, Total and Cadl,
extractible Cd, Cu,
Ni, Pb, Zn

Scenario 4 PAH and PCB in soil at pH,,, [Flog10 H+], CEC,

Organic pollutants harvest time

PO

org’ ~ “tot! C/N’ 275

pH_, [Hog10 H+], Cmg,
dry matter, organic
matter, total Cd, Cu,
Ni, Pb, Zn, PAH, PCB

type of the current crop,
previous crop (type of the crop
1 yr before and type of the crop
2 yr before)

N, BK Total Cd, Cr,
Cu, Zn, Ni

T CQrg (organic carbon), N, (total nitrogen), P.,0,, Ca0, Mg0, and K,0 in soils are in %so; cation exchange capacity (CEC) is in cmol kg™; Cd, Cu, Ni, Pb, Zn,
PAH (polycyclic aromatic hydrocarbon), and PCB (polychlorinated biphenyl) are in mg kg™ of dry matter.

#C, ¢ Ny, dry matter, and organic matter in biosolids are in %; CECis in cmol kg™'; PO, Ca0, MgO, K,0 are in %c; Cd, Cu, Ni, Pb, Zn are in mg kg™,

§ N, P.Kare in unit ha™; Cd, Cr, Cu, Zn,Niarein g ha™.
9 Time is in months.

1Ty
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Soil Fertility (Scenario 1)

The data for Cmg, total N, and P
Supplemental Table S2. At several sampling dates, C,, was sig-
nificandy lower in COF and CMF compared with LDCSSM,
LDCSSO, LDSS, LSS, and MPS {» < 0.05), yet at the end
of the study (date TXIII), no significant difference could be
observed between treatments. Significant increases in total
N and available P were observed after the first three LSS and
LDSS applications. When applications ceased, N concen-
trations tended to decrease, butr not available B, which had
accumulated for these two kinds of biosolids. Nitrogen con-
centration was significantly greater in LSS than in COF for
dates TIII, TV, TVIL, TV, TIX, TX, TXI, and TXII {p <
0.05), yet at the end of the experiment, the same level of N was
observed for both treatments. In the case of Pmm significant
differences occurred between treatments throughout the study,
usually with greater LSS and LDSS concentrations than for
COEFE. However, at the end of the experiment, P concentrations
were only greater in LDSS than in CA.

The results of the data-mining models (Fig. 1) indicate that
soil fertility parameters (Corg, total N, C/N, and Py after
harvest depend mostly on three types of variables: (i) soil fer-
tilicy before sowing, (i) characteristics of the biosolids, the
number and period of biosolid applications, and (iii) previous
crops {Fig. 1). Organic C in the soil after harvest is generally
positively correlated with the initial C,, before sowing. To a

are presented in

lesser extent, an increase in Py in soil before sowing is also

correlated with an increase in soil C,, after harvest (Fig. 1, top
3

left, 7= 0.65). Soil N after harvest is positively correlated to the

‘%;fgzti Cos [Cm.g (before) > 185!
Corr.Coef. = 0.65
yes no )
IE’O,AH(before) > 22.2; LC’arg(before) > lm
yes no yes no
~ N
2435 | Potgen (before) > 0.129] 18.04 16.47
yes 1o
b AN
19.74 18.85
%Ifg:im [C’I"Opz years age = grassi{md]
Corr.Coef, = 0.81
yes no
8.96 mfaste Spreadings = 4]

no,

yes no yes no
/
10.51 10.03 9.99 9.53

initial N content in soil before sowing but also to the date of
last mineral fertilization. In cases where fertilization occurred
6 mo previously, the N content in soil after harvest was lower
than when fertilization occurred four and 5 mo before har-
vest (Fig. 1, top-right, 7 = 0.71). Soil C/N model predictions
showed a shift corresponding to an initial modification of land _ ‘
use (i.e., a shift from grassland to arable crop). Thus, the C/N
ratio was negatively affected when the soil 2 yr prior to harvest
was under grass. Then, the C/N ratio was positively affected (i)
by the number of biosolid applications, reaching its maximum
after four applications, and (ii) by the quality of biosolids, as
the C/N ratio was positively correlated with the C/N ratio in
the biosolids (Fig. 1, botrom-left, » = 0.81). Phosphorus con-
tent after harvest was clearly positively correlated with the Py
content before sowing. Furthermore, soil P was slightly
positively correlated with the biosolid CaO content. It also
tended to decrease when the last biosolid spreading occurred at
least 12 mo before (Fig. 1, bottom-right, 7 = 0.89).

Trace Elements
Total Metals (Scenario 2)

The dara on the total meral contents measured in the soil are

* presented in Supplemental Table S3. At the end of the experi-

ment, all the metals except Cd and Zn were at the same level
as in the initial samples. A slight increase in Zn (20%) was
observed, whereas Cd more than tripled during the period.
Significant differences between treatments appeared during
the field experiment. For Cd, these differences fuctuated
throughout the study, but at the end, COF, CME, and MPS con-

MS=9
Target = Ny
Corr.Coef. = 0.71

E\"Kjezdam (before) > 1.92}

yes 1no
lLast fertilization =ﬂ Last fertilization = a
yes no ves no
e N
185 | Nicjeigani (before) > 2.15} 1.63 1.82
N
yes o
/ N
2.15 1.99
e by Pousen(before) > 0.154]
Con.Coef. =0.89
yes no
{fogsen(before) > 0.‘2@ {ﬁ;lsen(before) > O.l()g]
yes no yes no
0.23 0.18 CaO, > 27.1 0.09
yes no
@st Waste Spreading > 12 0.12
yes no
yd AN
0.13 0.14

Fig. 1. Regression trees predicting values for soil fertility parameters at harvest time {Scenario 1) MS: maximal size of the constructed regression
trees (i.e, maximum number of predictions [leaves]). MI: minimum instances in a leaf (i.e,, minimum number of samples from which the predicted
value is calculated). “(before)” = content in soil at sowing time; “w” = content in biosolids. Time is expressed in months. See Table 2 for further
explanation of attributes. Trees should be read like “what-if” questions from the root of each tree. The closer the attribute is to the root of the tree,

the more it is statistically influent for the considered predicted attribute.
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tained significantly greater Cd than did LDSS and LDCSSO.
Copper contents appeared significandy lower in control plots
than in the other plots receiving trearments at dates TII, TV,
TVL TVIL TX, and TXL At the end of the experiment, how-
ever, no significant difference could be detected berween treat-
ments. Nickel did not show any significant differences between
treatments throughout the study. Lead showed sighiﬁcant dif-
ferences during the study and remained greater in HWA than
in LDCSSO, MPS, CA, CME and COF at the end of the
study. Zinc appeared to be significantly lower in COF than
after biosolid treatmenrs at dates TIII, TVI, TXI, and TXII,
but no significant difference could be detected between treat-
ments at the end of the experiment.

An examination of the data-mining models (Fig. 2) shows
that “total Cd” was mostly influenced by the attributes “previ-
ous crop,” “time since last biosolid spreading,” and the extract-
ible Cd and Pb in the soil before sowing (Fig. 2, top left, 7 =
0.88). The highest values were obrained when “previous crop”
was “not winter wheat” (e.g., when the crop was maize), when
“last biosolid spreading” occurred at least 18 mo before har-
vest, and when “extractable Pb” in the soil before sowing was
greater than 50 pg kg™ of dry matter. The lowest values were
observed if “previous crop” was “winter wheat,” and “extract-
able Cd” in the soil was lower than 22.2 pg kg™ of dry matter
before sowing.

MS=9
Targe

i Ca, IC"rop1 year ago = Winter W heaﬁ‘
Corr.Coef. = 0.88

yes no

“Total Cu” was mainly influenced by the total Cu and Zn
content in soil before sowing, and the attribute “previous crops”
(Fig. 2, top right, » = 0.79). In fact, a positive correlation was
found with “previous Cu content,” but a negative'one with “pre-
vious Zn content.” Finally, the highest values were obtained with
high Cu and moderate Zn contents in the soil before sowing and
when “previous crop” was “not winter wheat.” The lowest Y%lues
of total Cu after harvest were obtained with low initial Cu con-
tent bur high initial Zn contents in a soil before sowing.

“Total Ni” was mostly influenced by “previous crop,” with
the highest values occurring when maize was cultivated the
previous year (Fig. 2, center left, 7= 0.85). In this case, a higher
pH of the biosolid tended to increase the total Ni in the soil. In
the other case, a negative correlation was found with toral Zn
in the soil at the time of sowing.

“Total Pb” in soil after harvest positively increased when
the “previous crop” was “maize” (Fig. 2, center right, » = 0.88).
In this case, a negative correlation was found with “total Ni”
in the soil before sowing. When the “previous crop” was “not
maize,” a negative correlation was observed with “toral Cd” in
the soil before sowing, but a positive correlation with “total Pb”
in the biosolids. Finally the highest values were observed when
“maize” was “previous crop” combined with a soil wich low Ni
content. The lowest values were obrained when the “previous
crop” was “not maize”, with a high Cd content soil.
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Fig. 2. Regression trees predicting values for total metals in soil (mg kg™ dry matter [DM]) at harvest time {Scenario 2). MS: maximum size of the
constructed regression trees (i.e., maximum number of predictions [leaves]); Ml = minimum instances in a leaf (i.e., minimum number of samples
from which the predicted value is calculated): MD = maximum tree depth (i.e., number of hierarchical levels of the tree); “(before)” = content in soil
at sowing time; “w” = content in biosolids; “tot” = total metal content (mg kg™ DM); “ext” = CaCl,~extractible metal content (ug kg~ DM). Time is
expressed in months. See Table 2 for further explanation concerning attributes. Trees should be read like “what-if” questions from the root of each
tree. The closer the attribute is to the root of the tree, the more it is statisti cally influent for the considered predicted attribute
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“Total Zn” at harvest seemed to be mainly influenced
by the “last mineral fertilizacion.” The highest values were
observed when this ferrilization occurred 5 mo before har-
vest (Fig. 2, bottom left, » = 0.76). Where this was not the
case, a positive correlation was observed with “toral Ni
before sowing.”

Extractable Metals (Scenario 3)

The data on extractable metals are shown in Supplemental
Table S4. The extractable metal concentrations were always
much lower than those observed for total metal content (50
times), except for Cd, whose extractable fraction represented
approximately 10% of the total metal content. No significant
difference could be observed between treatments. However,
soils with MPS tended to contain lower concentrations of Cd,
Zn, and Nj, than those treated with other biosolids.

Examining the data-mining results (Fig. 3), “extractable
soil Cd” seemed to be strongly positively correlated with
“Cu biosolid content” (Fig. 3, tbp left, » = 0.83). In the
case of high Cu content in biosolids, the highest values
were obtained when the “previous crop” was “not wheat.”
In the case of low Cu content in biosolids, a negative cor-
relation was observed with “initial roral Zn® soil content
before sowing and a positive correlation with “initial total
Pb” content in soil. '

“Extractable soil Cu” was negarively correlated with the
“initial roral soil Cd” before sowing (Fig. 3, center left, » =

MS=9 )
Target = Cdy, Cuw > 272
Cor.Coef. = 0.83]

yes no

0.84). In the case of high total Cd content in soil, the lowest
extractable Cu concentrations were obtained when the “pre-
vious crop” was “winter wheat.” In the case of low total Cd
content in the soil, the highest values were observed with high
organic C in biosolids.

“Extractable Ni” in the soil was strongly influenced by the
attribure “previous crop,” with lowest values when “wheat” was
cultivated 1 yr before (Fig. 3, bottom left, » = 0.80). In this
case, a positive correlation was observed with “extractable Ni
in soil before sowing.” In the case of “maize,” the quality of
biosolids influenced “extractable Ni,” with high extractable soil
Ni values correlated with low dry matter content in biosolids.

“Extractable Pb” in the soil at harvest was most increased
when the “last mineral fertilization” was recent (4 mo) (Fig. 3,
top right, 7= 0.88). In this case, “extractable Pb” was negatively
correlated with the “total Cd in the soil before sowing.” Where
this was not the case, “extractable Pb content” was negatively
correlated with “initial extracrable Ni before sowing” and posi-
tively correlated with “initial extractable Cu before sowing.”

“Extractable Zn” in soil at harvest was mainly influenced
by “Cu content in biosolids,” with the highest levels obtained
with high Cu contents when the “previous crop” was “maize”
(Fig. 3, center right, # = 0.81). When “Cu content in biosolids”
was lower, “extractible Zn in soil” was negatively correlated to
the “dry matter of biosolids” but positively to “organic C in
the soil.”
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Fig. 3. Regression trees predicting values for CaCl, extractable metals in soil (ug kg™! dry matter [DM]) at harvest time (Scenario 3). MS = maximum
size of the constructed regression trees (i.e, maximum number of predictions [leaves]); Ml = minimum instances in a leaf (i.e., minimum number
of samples from which the predicted value is calculated); MD: maximum tree depth (i.e., number of hierarchical levels of the tree); “(before)” = con-
tent in soil at sowing time; “w” = content in biosolids; “tot” = total metal content {mg kg™ DM); “ext” = CaC_-extractible metal content (g kg~ DM).
Time is expressed in months. See Table 2 for further explanation concerning attributes. Trees should be read like “what-if” questions from the root
of each tree. The closer the attribute is to the root of the tree, the more it is statistically influent for the considered predicted attribute.
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Organic Pollutants (Scenario 4)

The data on total PAHs and PCBs in the soils are presented
in Supplemental Table 55. Concerning PAHs, the values were
usually under or very close to quantification limics. They never
exceeded 2.6 mg kg™ of soil, obrained for the treatment LDSS
at date TIX. At the end of the study (date TXIII), no PAH
could be detected in the soil.

Examining the data-mining results (Fig. 4), “total PAHs
concentrations” were mainly correlated to mertal contents in
soil and biosolids (Fig. 4, top, r = 0.64). They were mainly
negatively correlated with “total soil Ni in soil before sowing.”
Furthermore, in the case of low Ni conrent in soil, “total PAHs
concentrations” were positively correlated to “Cu content in
biosolids” and negatively correlated to “Ni content in biosol-
ids” and to “rotal soil Pb in soil before sowing.”

Total PCB values were very low, close to, or below quan-
tification limits. The maximum value was obtained in the
LDCSSO trearment at date TIII, with 40 pg-ke™ of soil. At
the end of the study, no PCB could be detected in the soil sam-
ples for any treatment. The regression trees in Fig. 4 show that
“total PCBs” mostly increased when “total Cd in soil before
sowing” was low (Fig. 4, bottom, » = 0.92). If “total Cd in soil
before sowing” was high, it was positively correlated to “toral
PCB in biosolids” and “phosphorus fertilization.”
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Fig. 4. Regression trees predicting values for total polycyclic aromatic
hydrocarbons (PAH) and polychlorinated biphenyl (PCB) (mg kg™ dry
matter [DM]) at harvest time {Scenario 4). Mi = minimum instances

in a leaf (i.e., minimum number of samples from which the predicted
value is calculated); MD = maximum tree depth (i.e., number of hier-
archical levels of the tree); “(before}” = content in soil at sowing time;
“w” = content in biosolids; “tot” = total metal content {mg kg™ DM); “f”
= content in fertilizers. See Table 2 for further explanation concern-
ing attributes. Trees should be read like “what-if” questions from the
root of each tree. The closer the attribute is to the root of the tree, the
more it is statistically influent for the considered predicted attribute.

Discussion

These results demonstrate that data mining is a potent tool for
extracring patterns from a large database, here including results
of a 10-yr field survey after the application of eight biosolids
representative of biosolids potentially used in agriculture.

Soil Fertility s

The regression trees for predicting soil fertility parameters
show that the initial fertility of soil and crop management are
of greater importance than are biosolid applications, especially
when biosolids are complemented with mineral fertlizers,
which is the most probable case in crop production. Thus,
organic matter and N content at harvest are mainly predicted
by their contents in soil before sowing: the greater they are at
sowing, the greater they will be at harvest. Even if significant
differences in N concentrations berween biosolid treatments
have been shown in the soil, mineral fertilization applied each
year is still more predictive of soil N content at harvest than the
biosolid N content or the time elapsed since its last application.
This result confirms previous reports showing very contrast-
ing results pertaining to the effects on soil N content of bio-
solid applications. Indeed, these results are highly dependent
on the type of crop, the quality of biosolids, or the dose of
biosolid applied. Moreover, biosolids are often reported to be
less effective in supplying N than inorganic mineral fertilizers
(Hargreaves et al., 2008).

In contrast, that the soil C/N ratio can be influenced by
biosolids has been confirmed, with values increasing with the
number of biosolid applications and higher biosolid C/N ratio.
However, even for C/N, crop rotation is still the main driving
force. Thus, a change from pasture to a crop production system
leads to a decrease in C/N, which has been already been dem-
onstrated in long-term experiments (Blair et al., 2006).

Furthermore, this study has demonstrated that biosolids, par-
ticularly biosolids presenting a high CaO content, can slighdy
increase the available P content in soil at harvest, even though
the initial soil P content at sowing is still the best predicror. In
addirion, it is not available P in biosolids chat influences the
available P in soil, but other characreristics of biosolids, such as
their CaO content. These results confirm that the physicochem-
ical characteristics of biosolids need to be taken into account
when assessing the impact of their application in agriculture.
They lead us to the conclusion that available P and C/N ratio of
a soil is probably the best indicator—ar least better than organic
matter and total N—to be included in decision support systems
for stakeholders wishing to assess agricultural practice manage-
ment involving the use of biosolids.

Concerning available P, the above conclusion is supported
by recent results obtained under controlled conditions, show-
ing strong but transient phosphatase activity and available P
increases following sewage sludge application. These effects
vary with the initial sludge chemical characteristics bur not
with soil initial characteristics (Criquet et al., 2007). Field
studies have also confirmed that soil P is strongly modified,
usually increased, -by sewage sludge compost applicaton
{Korboulewsky et al., 2002; Mantovi et al., 2005).
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Trace Elements

Total trace element concentrations in soils were systemati-
cally lower than threshold values accepted by French legisla-
tion (Voynet et al,, 1998). In addition to the chemical forms
in which each trace metal occurs, metal mobility and behavior
into the soil are known to be governed by soil properties, such
as the pH, or the abundance of constituents that can easily
retain metals, such as iron and manganese oxides or organic
matter (Baize, 2009).

Cadmium

An increase in a soil’s total Cd is observed over a period of time,
from low values ar the beginning of the experiment to compar-
atively higher values at the end. This result is reflected by the
regression tree models: low values are observed when the previ-
ous crop was winter wheat, which is the case at the beginning of
the experiment, and higher values are observed later. Similarly,
the situarion with the “last biosolids spread occurring more
than 18 months previously,” which is correlated to the highest
toral Cd values, corresponds to the end of the experiment. No
trearment effect is shown by the model, and the increase in
time is probably due to another parameter independent of any
treatment in the system. Mineral ferdlization cannot explain
this global increase, as no difference occurs between the two
controls CMF and COE Aerial deposit increases might be sus-
pected but would require more investigation.

When comparing CaCl,—extractable Cd with total Cd, the
opposite situation is observed, with a decrease in concentra-
tion levels with time following the last biosolid application.
This result has been commonly observed and indicates that the
meral evolves over time toward less mobile forms (Morel and
Guckert, 1984). Furthermore, due to the significant effect of
biosolids on soil pH (Supplemental Table S2), soil extractable
Cd is less important after MPS application compared with
other biosolids. This result is also reflected by our models,
showing that the main factor able to predict extractable Cd is
linked to the biosolid quality, particularly biosolid Cu content.
Thus, the different sewage sludges (from liquid to composted
sludge: LSS, LDSS, LDCSS, LDCSSO, and LDCSSM) con-
tain more Cu and are clearly discriminated by the model from
the other biosolids (MPS, CA, and HWA).

For liquid and composted sludge, the CaCl,~extractable
Cd fraction is dependent on time (expressed here by “crop the
year before”), with a decrease in concentrations over periods of
years following sludge application. For MPS, CA, and HWA,
extractable Cd is positively correlated with Zn and negatively
with Pb, which agrees with the literature relating to the behav-
ior of merals following biosolids application (Smith, 2009).
'This leads us to the conclusions thar for extractable Cd pre-
diction, (i) the inidal composition of biosolids is the stron-
gest indicator; {ii) the maturation processes occurring during
sludge composting are not enough to discriminate liquid and
composted sludge; and {iii) no correct prediction on Cd bio-
availability can be performed from total Cd content, as no clear
relation can be established between available and toral Cd.
Finally, our long-term in situ results confirm a recent review
showing that biosolids applied in accordance with the 1998
French regulation had no significant impact on total soil Cd
concentrations (Baize, 2009).

Copper

Contrary to Cd, total Cu in soil at harvest mostly depends on
total Cu in soil before and, to a lesser extent, on total Zn in the
soil before harvest, showing some antagonism berween the two
merals. This result of the model confirms the dynamics of total
Cu in soil, with no real increase wich time in situ. Total Cu )
is thus rather more soil-property dependent than time depen-
dent, being partly influenced by the previous crop. No biosolid
effect was identified by the model, even though significanc dif-
ferences were noticed during the srudy.

The picture looks different when considering “extractable
Cu,” which is strongly correlated to “total Cd in soil before
sowing.” This is due to the coincidence in time of decreasing
extractable Cu and increasing total Cd. Indeed, “CaCI2 extract-
able Cu” is time dependent. However, at the beginning of the
experiment, when the extractable Cu in the soil was the high-
est, the amount of extractable Cu also depended on the biosolid
quality, particularly its C, 5 content: high extractable Cu in soil
is linked ro high C__ in biosolids. This result agrees with recent
studies showing thar the addition to soil of organic matter from
composted biosolids can raise the extractable concentrations
of Cu compared with unamended soil receiving only mineral
fertilizers (Herencia et al., 2008).

Nickel

Justas with total Cd content, total Ni is time dependent, increas-
ing during the study for all the treatments, when “previous
crop” was “maize.” However, at the end of the experiment, the
biosolid quality, and particularly the biosolid pH, also seemed
to influence toral Ni in soil. Lower values were predicted when
composted studge (pH < 6.5) was used than with the other bio-
solids. We suspect that a lower pH in biosolids could increase
the mobility of Ni in soil and thus reduce the total amount
in the soil. This result is supported by the significantly lower

" soil pH when using sewage studge (whether composted or not)
compared with MPS, CA, or HWA (Supplemental Table S2).
This hypothesis is confirmed by the literature on the subject of
sequential extraction during sewage sludge composting (Amir
et al., 2005). Indeed, Ni was observed to behave differendy
from other metals. This behavior could be atrributed to the
high proportion of Ni in the raw material that is present in
an organic, readily biodegradable form mobilizing Ni during
the composting process (Smith, 2009). As with total Cu, some
antagonism of total Ni is noticed with total Zn, Ni increasing
when Zn decreases.

The CaCl,—extracrable Ni shows another pattern and looks
to be primarily time dependent, with, as observed for Cd and
Cuy, lower values when “winter wheat” was the “previous crop.”
It is interesting to observe that extractable Ni is also dependent
on the amount of “extractable Ni in the soil before sowing,”
but also on the “dry marter content of biosolid.” This observa-
tion helps to distinguish between MPS, CA, and HWA and
other biosolids.

Lead

Tortal Pb seems to depend mostly on time, but some antago-
nism with rotal Ni and Cd is also confirmed. Furchermore,
an increase in total Pb content in biosolids is shown to induce
an increase in Pb in a soil. However, unlike other merals,
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“extractable Pb” follows more or less the same rules as “toral
Pb,” as some antagonism is found berween “total Cd” and
“extractable Ni.” This result leads us to the conclusion that
the mobility of Pb is weak, as has been noted many times in
the literature (Smith, 2009). Furthermore, the positive cor-
relation found between extractable Pb and Cu confirms their
similar behavior.

Zinc

The slight increase in total Zn over time is reflected by the
model, as the maximum Zn content coincided with a mineral
fertilization occurring 5 mo previously. Only a positive cor-
relation with total Ni was noticeable. No treatment effect was
predicted by the model, suggesting the relative inefficiency of
biosolid effects as predicrors of total Zn.

A completely different situation is observed for CaCl -
extractable Zn, which is influenced, like extractable Cd, by the
biosolids quality and particularly Cu content. Furcthermore, as
for extractable Ni, when the dry matter of biosolids increased,
the Zn extractable fraction decreased. The hypothesis sug-
gested for Cd and Ni can be also argued here. Finally, to a
lesser extent, the CaCl —extractable Zn fraction is classically
influenced by C, content in the soil.

Organic Pollutants

The PAH values obtained were lower than commonly consid-
ered to be hazardous in several countries: 40 mg kg™ in the
Netherlands, 20 mg kg™ in Canada (Quebec province) and
Switzerland, and 50 mg kg™ in the United Kingdom (Costes
and Druelle, 1997; Conseil Fédéral Suisse, 1998). The same
" conclusion can be drawn concerning PCBs with regards to the
200 mg kg™ threshold accepted in Switzerland.

The results concerning organic pollutants are more difficule
to interpret than those relating to métals because the evolution
of these pollutants, after the addition of biosolids, is the com-
bined result of multiple processes, including adsorption, desorp-
tion, bioformation, volatilization, photodegradation, leaching,
and incorporation into humic substances (Oleszczuk, 2006). In
our study, PAHs seemed to be linked to the presence of merals
in soils and biosolids, particularly Cu, Ni, and Pb. In fact, this
result is not surprising, as some studies have demonstrated that
metals could increase the sorption by the soil of phenanthrene,
which is used as a representative PAH (Gao et al., 2006).

Similarly, using soil collected from the same site (La
Bouzule), it has been previously demonstrated that the adsorp-
tion of phenanthrene was higher in the presence of mertals,
which may be related to a change in the structural conforma-
tion of organic molecules in soils. Furthermore, metals would
increase the extractability of phenanchrene (Saison etal., 2004).
However, in our case, it remains unclear why correlations are
sometimes positive and sometimes pegative with Cu in bio-
solids, with Ni in soil and biosolids, and with Pb in biosolids.

On the other hand, it is interesting to observe that PCBs
are also correlated to the presence of metals, particularly Cd in
soil. However, unlike PAHs, PCRBs in soil are also correlated to
PCBs in biosolids and to the P provided by ferrilization. Thus,
PCBs measured in the soil are probably a combination of PCBs

~originating in biosolids and mineral fertilizers in interaction
with merals in the soil.

Finally, our results show that (i) biosolid spreading at
recommended doses offers a good alternative for agriculture
to increase soil fertility, as this can provide at least the same
amounts of N and C, and more P as mineral fertilization; (ii)
a long-term effect of biosolids is observed on available P and
C/N in soils; and (iii) significant differences occur between the
different types of biosolids. Concerning metallic and organic
trace elements, the measured values were far lower than the
commonly accepted values in Europe. This means that biosolid
spreading at recommended doses is safe in terms of contami-
nant behavior and accumulation in soils.

Consequently, these results show that data mining is a
powerful tool for extracting and linking various attributes
into patterns consistent with existing knowledge of the bio-
geochemical functioning of the soil-biosolid—plant system. As
an example, our approach has confirmed that depending on
the biosolid quality, the P content provided could vary greatly
and should thus be included, together with N, in any decision
support system used to decide on the application level of these
biosolids. More generally, the results obtained by this study
enable us to identify and choose relevant indicators to enhance
and refine a decision support system for efficient biosolid appli-
cation in agriculture.
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