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Abstract

Policy makers rely on risk-based maps to make informed decisions on soil protection. Producing the

maps, however, can often be confounded by a lack of data or appropriate methods to extrapolate

using pedotransfer functions. In this paper, we applied multi-objective regression tree analysis to map

the resistance and resilience characteristics of soils onto stress. The analysis used a machine learning

technique of multiple regression tree induction that was applied to a data set on the resistance and

resilience characteristics of a range of soils across Scotland. Data included both biological and physical

perturbations. The response to biological stress was measured as changes in substrate mineralization

over time following a transient (heat) or persistent (copper) stress. The response to physical stress was

measured from the resistance and recovery of pore structure following either compaction or waterlog-

ging. We first determined underlying relationships between soil properties and its resistance and resil-

ience capacity. This showed that the explanatory power of such models with multiple dependent

variables (multi-objective models) for the simultaneous prediction of interdependent resilience and

resistance variables was much better than a piecewise approach using multiple regression analysis. We

then used GIS techniques coupled with an existing, extensive soil data set to up-scale the results of the

models with multiple dependent variables to a national level (Scotland). The resulting maps indicate

areas with low, moderate and high resistance and resilience to a range of biological and physical per-

turbations applied to soil. More data would be required to validate the maps, but the modelling

approach is shown to be extremely valuable for up-scaling soil processes for national-level mapping.

Keywords: Multi-objective regression trees, pedotransfer, soil resilience, digital mapping, soil risk-

based maps

Introduction

In the European Commission Thematic Strategy for Soil

Protection (European Commission, 2006), it is recognized

that soil is subject to a series of degradation processes or

threats. The proposed Soils Framework Directive (European

Commission, 2006) will require member states to identify risk

areas on the basis of common elements to be taken into

account, set risk reduction targets for those areas and estab-

lish programmes of measures to achieve them. Thus, the use

of regional, risk-based maps indicating soil vulnerability to

stresses is now commonplace and is likely to become more

important because of growing concerns about soil sustain-

ability worldwide, as evident in Europe following discussions

of the EU Soils Framework Directive (European Commis-

sion, 2006). Policy makers rely on these maps to make larger

scale decisions about soil protection and land-use strategies.

Some recent examples of risk-based maps include subsoil

compaction (Horn et al., 2005), soil erosion risk (Davidson

& Grieve, 2004), cobalt deprivation in grazing livestock (Sut-

tle et al., 2003), sensitivity of inland waters to acidification

(Kernan et al., 2004) and run-off risk from slurry application

(Jordan et al., 2007).
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There are various approaches to making regional, risk-

based maps, including generalized linear models, classifica-

tion and regression trees, neural networks, fuzzy systems and

geostatistics (McBratney et al., 2003). Generally, the quality

of risk-based maps is limited by the spatial availability of

data. Estimates of soil properties are therefore often made

using pedotransfer functions, which can then be used to iden-

tify ‘at-risk’ soil categories based on specific soil characteris-

tics. Often pedotransfer functions are simple multiple

regression equations, but a major limitation to this approach

is that it requires the ‘function’ being mapped to have a

quantifiable relationship with specific soil properties. Model

error can present considerable uncertainty in predicting soil

processes from general properties (Chirico et al., 2007). This

can lead to the situation where models that can accurately

predict ‘function’ are not suitable for extrapolation to the

regional level as they either require extensive data input (Jor-

dan et al., 2007) or produce maps with considerable error

(McBratney et al., 2003).

The data collected also need to correspond to the data

from which the underlying soil database was constructed, so

that geographic information system (GIS) techniques can be

used to generate the regional maps. Using simple multiple

regression to generate pedotransfer functions can give con-

siderable uncertainty in the resulting map if there is a poor

correlation between the soil properties and the ‘function’. By

using regression, rather than process-based modelling

approaches, there can also be heavy empiricism and non-cau-

sal links between soil properties and ‘function’. Although a

powerful aspect of using pedotransfer functions is the estima-

tion of a particular soil process, ranging from hydraulic con-

ductivity (Chirico et al., 2007) to heavy metal sorption

(Deurer & Bottcher, 2007), such estimates may not be neces-

sary for risk-based mapping as the data are used to form

broad classifications of the potential threat to soil resources.

This opens the possibility of using other approaches to

develop risk-based maps where multiple regression functions

are not suitable.

One example where simple multiple regression equation

approaches would not have been suitable for generating

pedotransfer functions was a study on the resistance and

resilience of some Scottish soils to experimentally applied

biological and physical perturbations (Kuan et al., 2007).

Here, we adopted the definitions of resistance and resilience

as described by Seybold et al. (1999), whereby resistance is

the magnitude of the decline in capacity of the soil to func-

tion and resilience is the rate of recovery. Both are key

measures of sustainability. The study by Kuan et al. (2007)

found good correlations between soil properties and resi-

lience to compression and copper but no such relationship

with resilience to heat. Soil resilience is a key property in

deciding on management or future land-use options; so, the

provision of regional resilience maps could be a very useful

aid for decision makers. This paper proposes the use of

data mining in order to obtain classification of soil factors

affecting soil resilience as an alternative to deriving

pedotransfer functions from simple multiple regression

approaches. The machine learning technique of multiple

regression tree induction was applied for deriving models on

the effects of soil factors on the biological and physical

resilience of Scottish soils based on many positive published

results from applying machine learning methods (Struyf &

Džeroski, 2006) and in particular in ecological modelling

(Debeljak et al., 2001, 2007, 2008; Džeroski, 2001; Jerina

et al., 2003).

This paper has two major objectives. The first is to

determine whether any underlying relationships exist

between soil properties and resilience ⁄ resistance capacity.

Previous studies have tended to look only for partial rela-

tionships with no attempt to apply a systems approach to

this question. Our hypothesis was that the explanatory

power of such models with multiple dependent variables

(multi-objective models) for the simultaneous prediction of

interdependent resilience and resistance variables would be

much higher than that in the piecewise approach taken by

Kuan et al. (2007). The second is to demonstrate the feasi-

bility of up-scaling results of models with multiple depen-

dent variables using GIS techniques coupled with an

existing, extensive soil data set. The aim was to demon-

strate the potential of the methodology by producing initial

soil resilience and resistance maps to identify the range and

spatial distribution of biological and physical resilience of

Scottish soils.

Materials and methods

Two distinctive types of methods were applied in this study.

To address the first objective, we used machine learning tech-

niques to produce models with multiple dependent variables

on data from representative soil types throughout Scotland.

The second part of the study was based on data analysis and

manipulation with various GIS tools and to apply the mod-

els with multiple dependent variables to a large data set of

Scottish soil attributes to produce soil resilience and resis-

tance maps.

The data sets

The research was conducted on two data sets. The first was

used to create models with multiple dependent variables

using machine learning techniques and the second was to

produce resilience maps using a GIS. It should be empha-

sized that the purpose of this study was to assess the utility

of models with multiple dependent variables for the mapping

of soil processes. The resulting maps would require valida-

tion and the models be further improved through additional

data collection before they could provide reliable tools for

decision makers.
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The data for the creation of models with multiple depen-

dent variables were taken from the study by Kuan et al.

(2007) in which soil was sampled from 26 sites around

Scotland at a depth of 100–300 mm. Background measure-

ments (or independent variables in the terminology of the

models) included carbon (C) and nitrogen (N) content,

organic matter content, soil electrical conductivity, pH,

basal respiration, microbial biomass, dissolved organic

carbon, NO�3 and NH�4 -N, microbial metabolic quotient

and particle size distribution. Four measurements of resil-

ience (dependent variables) were made at each of the 26

sampling sites. These were the effects of heat or copper on

the short-term decomposition of added plant material, the

physical compression and rebound characteristics, and the

response and recovery to overburden stress at saturation.

For each measure of stability, the data gave a measure of

both resistance (instantaneous susceptibility to the pertur-

bation) and resilience (recovery in function over time fol-

lowing perturbation). Thus, the final set of dependent

variables consisted of heat resistance, heat resilience, cop-

per resistance, copper resilience, compression resistance,

compression resilience, overburden resistance and overbur-

den resilience. The table which we used for the creation of

data mining models comprised 26 rows (sites where soil

samples were taken) and 18 columns (dependent and inde-

pendent variables).

The second data set comprised of soil attributes across

Scotland (Towers et al., 2006). Scotland has been mapped at

the scale of 1:250 000 and the map is supported by a data-

base of approximately 13 000 soil profiles, including over

40 000 individual soil horizons, held in the Scottish soils

database in the Macaulay Institute, Aberdeen, Scotland. A

large number of variables are held for each profile and hori-

zon, but those utilized in this study comprise major soil sub-

group (according to the soil classification used in Scotland),

soil texture (sand, silt and clay percentages), pH, organic C

content, total N content and soil organic matter.

These data have recently been summarized in a variable

data set called Scottish Soils Knowledge and Information

Base (SSKIB; Lilly et al., 2004). It includes summary statis-

tics and expert knowledge on the chemical, physical and bio-

logical aspects of Scottish soils. The 1:250 000 scale national

soil map of Scotland was used as the basis for the project. A

variable data set (SSKIB) was developed for all the soils that

occur on the national map. The common framework

involved determining the proportions of soil types within

each map unit of the 1:250 000 scale map and then develop-

ing typical horizon sequences for each soil type. Summary

data such as carbon content or soil nutrients were deter-

mined from over 40 000 soil analyses and are a component

part of SSKIB.

Scottish Soils Knowledge and Information Base was

developed in an MS-Access relational database structure to

allow linkages between the various component parts at dif-

ferent levels. At the highest level, there is information on

the individual soil map units such as parent material and

soil association (a grouping of soil series developed on sim-

ilar parent materials). At the next level, there is informa-

tion on the individual soil types (series) such as soil

leaching potential, hydrology of soil types (HOST) class

Independent variables Dependent variables Model 10  (see Table 1)
Major soil subgroup
Sand
Silt
Clay
pH

N
C

Soil organic matter

Copper resilience

pH > 4.04

Sand > 0.5

pH > 5.4 Major soil subgroup
is BFS, BFSg, NCG, PP

C > 7.1

Yes

BFS = brown forest soil
BFSg = brown forest soil with gleying
NCG = nonclacareous gley
PP = peaty podzol

[41.6; 58.3]
2 soils

[59.4; 47.4]
7 soils

[58.6; 71.1]
9 soils

[74.1; 57.1]
3 soils

No
Yes No

Yes Yes

[103.2; 98.3]
3 soils

[76.1; 83.8]
2 soils

Yes

No No

No

Copper resistance

Figure 1 Multi-objective regression tree to predict the resistance and resilience of soils to copper perturbation. The independent variables are soil

properties taken from soil survey data: major soil subgroup, sand, silt, clay, pH, C, N and soil organic matter. The dependent variables are the

resistance and the resilience of the soil to copper stress (model 10, Table 1). The six stability classes are defined on both resistance and resilience,

values shown in the leaves (lowest levels of the regression tree) are [resistance; resilience]. The number of soils from the original experiment in

each class is given. Figures in bold refer to the example in the text.
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(Boorman et al., 1995) and proportion of component soil

series. At the next level, the MS-Access table comprises

information on typical horizon sequences for each soil ser-

ies (cultivated and uncultivated where appropriate) and

thicknesses of each horizon. The final level of information

is summary statistics (mean, median, geometric mean, etc.)

of the chemical and physical properties of each individual

soil horizon for both cultivated and uncultivated soils.

Information on the geochemical signature of upper hori-

zons was also collated from previous work and extended to

provide limited but extensive cover. This involved grouping

soil associations based on their component rock types and

stratigraphy. The main linking variables of SSKIB, essential

for map production, are a unique soil series numeric code

and horizon notation at lower levels and a series or map

unit at higher levels.

Data mining

Regression trees are a representation of piecewise constant

or piecewise linear functions, and models are given in a form

of hierarchical structures of their elements (Figure 1). Like

classical regression equations, they predict the numerical

value of a dependent variable from the values of a set of

independent variables (Breiman et al., 1984). A regression

tree, which has a form of inverse hierarchical structure, has a

test in each inner node (junction from where two links go to

the lower hierarchical levels) that tests the value of a certain

independent variable, and in each leaf (the lowest level of a

hierarchical tree) can be a linear equation or just a constant

for predicting the value of the dependent variable.

Regression trees are able to predict the value of single

numerical dependent variables, while multi-objective regres-

sion trees (MORTs) (Blockeel et al., 1998) are capable of

predicting several numerical dependent variables simulta-

neously (for all dependent variables only one tree is

induced). The MORTs are an instantiation of the predictive

clustering framework and is implemented in the CLUS sys-

tem (Blockeel & Struyf, 2002). With this approach, the pre-

diction is a vector of numeric values (one component of the

vector for each dependent variable). MORTs are generaliza-

tions of the regression trees and have two main advantages

over building a separate regression tree for each dependent

variable: a single MORT is usually much smaller than the

total size of the individual trees for all dependent variables,

and a MORT specifies dependencies between the different

dependent variables. In this research, we used the CLUS

system for inducing (multi-objective) regression trees. In the

CLUS system, the heuristic for selection of the tests in the

internal nodes is the sum of the variations in the induced

subsets and it is used for inducing both single-objective and

multi-objective regression trees. More information about the

CLUS system is available at http://www.cs.kuleuven.be/

�dtai/clus/ (last accessed 23 January 2009).

Regression trees are widely used in modelling (Tan et al.,

2006) and are very easy to interpret and understand. The

methods for the tree induction process are non-parametric

(it does not require prior assumptions for the probability

distribution of the dependent and the other variables) and

they are not computationally expensive, even on large data

sets. Moreover, the process of tree induction is not influ-

enced by redundant variables and noise. In essence, regres-

sion trees are models that are interpretable, have

reasonable predictive performance and can be obtained

quite fast.

Table 1 Quantitative evaluation of 16 models that best explain com-

binations of soil resistance and resilience to perturbations of heat,

copper, compression and overburden when saturated

Model Dependent variables RMSE CC

1 Heat resistance 15.07 0.16

2 Heat resilience 26.09 )0.17
3 Copper resistance 14.17 0.63

4 Copper resilience 25.15 0.24

5 Compression resistance 0.02 0.6

6 Compression resilience 0.28 0.55

7 Overburden resistance 0.07 0.28

8 Overburden resilience 0.23 0.33

9 Heat resistance 14.89 0.13

Heat resilience 25.09 0.28

10 Copper resistance 15.14 0.62

Copper resilience 21.1 0.36

11 Compression resistance 0.24 0.71

Compression resilience 0.02 0.48

12 Overburden resistance 0.1 )0.3
Overburden resilience 0.26 0.11

13 Heat resistance 15.72 )0.05
Heat resilience 23.91 )0.21
Copper resistance 12.45 0.72

Copper resilience 23.04 0.19

14 Compression resistance 0.29 )0.28
Compression resilience 0.02 0.01

Overburden resistance 0.09 0.52

Overburden resilience 0.22 0.47

15 Copper resistance 0.63 0.81

Copper resilience 0.99 0.44

Compression resistance 1.06 0.36

Compression resilience 0.55 0.85

16 Heat resistance 15.48 )0.31
Heat resilience 20.89 )0.08
Copper resistance 11.01 0.81

Copper resilience 18.59 0.44

Compression resistance 0.08 )0.14
Compression resilience 0.21 0.28

Overburden resistance 0.34 0.35

Overburden resilience 0.01 0.85

The evaluating criteria are the root mean-squared error (RMSE) and

the correlation coefficient (CC), see text for details. Those models

with the highest criteria, shown in bold, were selected for mapping.
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0 40

km

80 160

Soil biological stability to copper

Low resistance, low resilience
(sandy arable soils)

Moderate resistance, low resilience
(no trend)

Moderate resistance, moderate resilience
(sandy arable soils)

High resistance, low resilience
(organic matter rich, upland soils in general,
apart from NE Scotland)

High resistance, high resistance

Soils not covered by parameters or not
included in the experiments

Figure 2 Risk-based map of stability (resistance and resilience) to copper generated from the regression tree in Figure 1 (model 10; Table 1).
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0 40

km

80 160

Soil stability to copper and compression

High + low
(note - organic matter rich soils, copper adsorbs to
the organic matter making it biologically unavailable,
while the soils are weak like a sponge)

Low + moderate
(cultivated soils low in organic matter) 

Low + high
(cultivated sandy soils, sand confers resistance
to compression)

Moderate + moderate
(soils with medium organic matter content, pasture
or forest areas)

Soils not covered by parameters or not
included in the experiments

Figure 3 Risk-based map of stability (resistance and resilience) to copper and compression (model 15; Table 1). The land area (km2 and % of

total area) covered by each of the categories is: high and low (5209, 7%), low and moderate (20 875, 26%), low and high (277, 0.4%), moderate

and moderate (8421, 11%), not covered (43 218, 55%).
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km

800 40 160

Low resistance, low resilience
(note - generally clay based arable soils)

Low resistance, moderate resilience
(loam based arable soils)

Moderate resistance, high resilience
(organic matter rich soils)

High resistance, moderate resilience
(sandy soils)

High resistance, high resilience
(no trend)

Soils not covered by parameters or not
included in the experiments

Soil physical stability when waterlogged

Figure 4 Risk-based map of stability (resistance and resilience) to waterlogging (model 12; Table 1).
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Soil physical stability to compression

km

800 40 160

Low resistance
(soil with high organic matter content)

Moderate
(clay based cultivated soils and soil with lower
organic matter content)

Highly stable
(note - sandy soils and some cultivated soils)

Soils not covered by parameters or not
included in experiments

Figure 5 Risk-based map of stability (resistance and resilience) to compression (model 11; Table 1).
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Overall soil stability

Combines resistance and resilience to: heat, copper,
waterlogging and compression

400

km

80 160

Poor
(cultivated soils)

Moderate
(more sandy soils)

Good
(organic rich soils with more clay)

Best
(organic matter dominated soils)

Soils not covered by parameters or not
included in the experiments

Figure 6 Risk-based map of overall soil stability (resistance and resilience) determined from the response to four stresses (copper, heat, compres-

sion and waterlogging) (model 16; Table 1).
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Experimental design

To induce multi-objective regression trees, we selected from

the first data set (e.g. 18 variables and 26 sites) those soil

variables that were also present in the Scottish soils database.

These were major soil subgroup, soil texture, pH, carbon,

nitrogen and organic matter content. The CLUS system was

applied and several models were generated. To evaluate the

generated models, and to select the models which have been

used to produce soil maps in the second part of the research,

we used three types of criteria: quantitative, qualitative and

contextual. The quantitative aspects of the models were eval-

uated by the Pearson correlation coefficient (CC) and the

root mean-squared error (RMSE). For validation we used

the leave one out (LOO) procedure because of the small

number of samples. Use of other validation procedures such

as 10-fold cross-validation and splitting the data set into

training and testing part in our study were not feasible due

to the sample size (Quinlan, 1986). The Pearson correlation

coefficient was the most important quantitative measure of

model performance. The qualitative aspect of the model was

assessed from how well the model classified different soils

into their expected ranges. We validated the internal struc-

ture of the models through assessing the accuracy of the

expected relationships between the elements of the model

from our existing knowledge about the soil properties. The

models with the higher correlation coefficients with up to

three hierarchical levels and the best explanatory power were

selected for producing resilience maps.

Generation of resilience maps

The model outputs in the form of regression trees were rec-

reated as SQL (Structured Query Language) conditional

queries in Microsoft Access using the SSKIB data. The

median values for the relevant variables (e.g. organic car-

bon and total N) for the surface horizon of the soil were

used as these would be equivalent to the samples taken in

the original experiment (Kuan et al., 2007). Regression

trees were generated using results from Kuan et al. (2007)

to relate soil properties with resilience. As the regression

trees contain a number of thresholds for the independent

variables, the SSKIB data set was ‘sorted’ into a defined

number of classes based on these thresholds. This provided

an output of the models by soil series which were subse-

quently linked to a 1-km grid data set of the 1:250 000

scale soil map. This contains information on the proportion

of soil series within each 1-km cell to produce a spatial

representation of this output. In this project, the dominant

soil series in each 1-km grid cell was used for this extra-

polation phase of the work. The SSKIB data offer a num-

ber of different options for the mapping phase but using

median values and dominant soil was judged appropriate

for the purpose of demonstrating the utility of the method-

ology. The different options could be useful with other

mapping objectives.

In preparing the maps, the soil classes have been put into

more descriptive categories rather than the specific estimates

of stability generated by the regression trees. The class

descriptions on all of the maps are based on the expert

judgement of the authors and how the soils in that grouping

responded in the experiments. These categories used the

groupings ‘low’, ‘moderate’ and ‘high’ for each of resistance

and resilience. The maps show either resistance or resilience

to a particular stress, combined resistance and resilience to a

stress, or the resistance and resilience to combined stresses.

Maps were generated in identical fashion from the models

highlighted in Table 1.

Results and discussion

Several models were generated for each dependent variable

or combination of variables. All induced models, regardless

of their type, used the same set of independent variables:

major soil subgroup, soil texture, pH; carbon, nitrogen and

organic matter content. After comparison of the different

model types, the ones with the best performance evaluation

were selected for further interpretation and visualization

through GIS (Table 1).

An example of a resulting regression tree for resilience and

resistance to copper (model 10, Table 1) is shown in Figure 1.

In this example, soils with a pH >4.04 have <50% sand

and are either Brown Forest Soils, Brown Forest Soils with

Gleying, Non-calcareous Gleys or Peaty Podzols and have a

copper resistance of 58.6 and a copper resilience of 71.1

(shown in bold in Figure 1). There were six soil classes pre-

dicted by this model and they were used to make the soil

map (Figure 2). In this case, one of the classes, soils with a

pH <4.04 and a carbon content <7.6%, actually occupied

such a small portion of the soil map that it is not represented

(Figure 2).

By using those models with acceptable evaluation criteria

(Table 1), we were able to generate risk-based soil maps of

stability to copper (Figure 2), copper and compression

(Figure 3), overburden (Figure 4), compression (Figure 5),

heat, copper, compression and overburden (Figure 6). Stabil-

ity incorporated both the resistance and resilience characteris-

tics to the imposed perturbations. These outputs indicate

resistance and resilience of soils at a very broad scale, based

on national scale data. This output could be tested by select-

ing sites and soils from each of the classes and testing whether

the soils have the inherent range of properties that allocated

it to that class in the first place, thereby testing the veracity of

the original data and assessing if the responses of each soil fit-

ted into the expected pattern, thereby testing the model.

In general, the models were best able to fit stability to

copper, compression and overburden to soil properties,

while there was no good fit between the soil properties and
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stability to heat. The lack of correlation between stability to

heat and the measured soil properties was also noted in a

straightforward correlation matrix of the original data set

(Kuan et al., 2007). Although subsequent studies on the same

soils did reveal a correlation between resistance to heat and

the concentration of soil organic carbon, experiments indi-

cated that both the quantity and quality of substrate in the

soil influenced stability to heat (Griffiths et al., 2008). The

lack of a good fit for the models concerning stability to heat

precluded subsequent mapping, apart from when stability to

heat was included in combination with other perturbations

(Table 1).

The expert interpretations of the stability to individual

perturbations were the easiest to make. Thus, sandy arable

soils were less biologically stable to copper than were the

organic matter-rich upland soils, which is related to the

effects of pH and organic matter on the biological availabil-

ity of copper (Kuan et al., 2007). Similarly, the clay-based

arable soils were less physically stable to an overburden

stress than were the organic matter-rich and coarse-textured

soils because of previously described resilient properties of

organic-matter and resistance of sand particles (Kuan et al.,

2007). Although these latter soils could be identified as more

stable than the clay-rich soils, they were soils that were

highly resistant and resilient but which had no common

characteristics. Organic matter-rich soils were less resistant to

compressive stress than were the coarse-textured soils. The

models were able to identify patterns of stability to combina-

tions of perturbations, although they showed that soils were

not equally stable to all perturbations. In a comparison of

biological stability to copper and physical stability to com-

pression, the organic matter-rich upland soils were highly

stable to copper but highly vulnerable (not resistant) to com-

pression, while pasture or forest areas with a medium con-

tent of organic matter were moderately stable to both

perturbations. To get a more holistic picture of soil stability

incorporating information from all four perturbations, the

overall descriptions become necessarily less precise and show

that the cultivated soils are more vulnerable and organic

matter-rich soils the least.

Multi-objective regression trees have been applied success-

fully in ecological modelling (Debeljak et al., 2001, 2007, 2008;

Džeroski, 2001; Jerina et al., 2003) and the current study has

shown the usefulness of this approach for the mapping of soil

resilience from a limited database. Where pedotransfer func-

tions based on multiple regression analysis are not possible or

where the relationships between soil properties defining the

functions are poor, MORTs should provide a valuable tool for

risk-based mapping of soil resources. For certain processes,

for example cadmium sorption by soil (Deurer & Bottcher,

2007), fairly reliable parametric predictions are possible

through modelling, thus allowing detailed mapping. Many soil

processes, however, depend on numerous interacting variables

that vary over space and time; so, modelling is fraught with

uncertainty (Le Bissonnais et al., 2002; Chirico et al., 2007).

Moreover, classification and mapping of multiple processes,

for example the biological and physical resilience as modelled

in this paper, is not possible. MORTs extend regression tree

approaches that have been previously applied to mapping soil

processes (Bishop & McBratney, 2001). Where large national

soil databases are available such as the SSKIB database in

Scotland, the machine learning techniques employed in

MORTs offers a valuable tool for generating risk-based regio-

nal maps of potential soil threats.

Conclusions

This study demonstrates the flexibility and applicability of a

data mining approach to the problem of regression with mul-

tiple dependent variables, even if the data set is not very

large (we had 26 samples to induce multi-objective models).

The models achieve relatively good performance as judged

by statistical validation processes. Subsequent expert evalua-

tion proved the existence of internal logic in the structure of

most of the induced models. It is demonstrated that models

induced with data mining can be easily linked with tech-

niques for analysing spatially related data using a GIS. The

combination of both approaches gives high added value to

the final results (e.g. risk-based soil maps) compared with

partial approaches.

In this example, we mapped soil resistance and resilience

to biological and physical stresses. Many soil properties

influence resistance and resilience and simple relationships

using multivariate methods were found for only a few prop-

erties. For instance, increasing organic matter content

resulted in soils being more resistant to copper stress but less

resistant to compaction. While the data set which we applied

in this research was clearly not sufficient to cover all the soil

types across Scotland, it does demonstrate that a combina-

tion of data mining and GIS techniques is a useful means to

generate risk-based maps. The identification of the cultivated

areas as being of low overall stability indicates that the origi-

nal database on resistance and resilience of soils needs

expanding to cover more soils and to utilize more back-

ground information from the GIS database to improve the

accuracy of the maps.
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