
Mach Learn (2008) 73: 185–214
DOI 10.1007/s10994-008-5077-3

Decision trees for hierarchical multi-label classification

Celine Vens · Jan Struyf · Leander Schietgat · Sašo Džeroski · Hendrik Blockeel

Received: 16 October 2007 / Revised: 11 June 2008 / Accepted: 8 July 2008 /
Published online: 1 August 2008
Springer Science+Business Media, LLC 2008

Abstract Hierarchical multi-label classification (HMC) is a variant of classification where
instances may belong to multiple classes at the same time and these classes are organized
in a hierarchy. This article presents several approaches to the induction of decision trees for
HMC, as well as an empirical study of their use in functional genomics. We compare learn-
ing a single HMC tree (which makes predictions for all classes together) to two approaches
that learn a set of regular classification trees (one for each class). The first approach defines
an independent single-label classification task for each class (SC). Obviously, the hierarchy
introduces dependencies between the classes. While they are ignored by the first approach,
they are exploited by the second approach, named hierarchical single-label classification
(HSC). Depending on the application at hand, the hierarchy of classes can be such that
each class has at most one parent (tree structure) or such that classes may have multiple
parents (DAG structure). The latter case has not been considered before and we show how
the HMC and HSC approaches can be modified to support this setting. We compare the
three approaches on 24 yeast data sets using as classification schemes MIPS’s FunCat (tree
structure) and the Gene Ontology (DAG structure). We show that HMC trees outperform
HSC and SC trees along three dimensions: predictive accuracy, model size, and induction

Editor: Johannes Fürnkranz.

C. Vens (�) · J. Struyf · L. Schietgat · H. Blockeel
Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven,
Belgium
e-mail: celine.vens@cs.kuleuven.be

J. Struyf
e-mail: jan.struyf@cs.kuleuven.be

L. Schietgat
e-mail: leander.schietgat@cs.kuleuven.be

H. Blockeel
e-mail: hendrik.blockeel@cs.kuleuven.be

S. Džeroski
Department of Knowledge Technologies, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
e-mail: saso.dzeroski@ijs.si

mailto:celine.vens@cs.kuleuven.be
mailto:jan.struyf@cs.kuleuven.be
mailto:leander.schietgat@cs.kuleuven.be
mailto:hendrik.blockeel@cs.kuleuven.be
mailto:saso.dzeroski@ijs.si

186 Mach Learn (2008) 73: 185–214

time. We conclude that HMC trees should definitely be considered in HMC tasks where
interpretable models are desired.

Keywords Hierarchical classification · Multi-label classification · Decision trees ·
Functional genomics · Precision-recall analysis

1 Introduction

Classification refers to the task of learning from a set of classified instances a model that
can predict the class of previously unseen instances. Hierarchical multi-label classification
(HMC) differs from normal classification in two ways: (1) a single example may belong to
multiple classes simultaneously; and (2) the classes are organized in a hierarchy: an example
that belongs to some class automatically belongs to all its superclasses (we call this the
hierarchy constraint).

Examples of this kind of problems are found in several domains, including text clas-
sification (Rousu et al. 2006), functional genomics (Barutcuoglu et al. 2006), and object
recognition (Stenger et al. 2007). In functional genomics, which is the application on which
we focus, an important problem is predicting the functions of genes. Biologists have a set
of possible functions that genes may have, and these functions are organized in a hierarchy
(see Fig. 1 for an example). It is known that a single gene may have multiple functions.
In order to understand the interactions between different genes, it is important to obtain an
interpretable model.

Several methods can be distinguished that handle HMC tasks. A first approach trans-
forms an HMC task into a separate binary classification task for each class in the hierarchy
and applies an existing classification algorithm. We refer to it as the SC (single-label classi-
fication) approach. This technique has several disadvantages. First, it is inefficient, because
the learner has to be run |C| times, with |C| the number of classes, which can be hundreds
or thousands in some applications. Second, it often results in learning from strongly skewed
class distributions: in typical HMC applications classes at lower levels of the hierarchy of-
ten have very small frequencies, while (because of the hierarchy constraint) the frequency
of classes at higher levels tends to be very high. Many learners have problems with strongly
skewed class distributions (Weiss and Provost 2003). Third, from the knowledge discovery
point of view, the learned models identify features relevant for one class, rather than iden-
tifying features with high overall relevance. Finally, the hierarchy constraint is not taken
into account, i.e. it is not automatically imposed that an instance belonging to a class should
belong to all its superclasses.

A second approach is to adapt the SC method, so that this last issue is dealt with. Some
authors have proposed to hierarchically combine the class-wise models in the prediction

Fig. 1 A small part of the
hierarchical FunCat classification
scheme (Mewes et al. 1999)

1 METABOLISM
1.1 amino acid metabolism
1.1.3 assimilation of ammonia, metabolism of the
glutamate group
1.1.3.1 metabolism of glutamine
1.1.3.1.1 biosynthesis of glutamine
1.1.3.1.2 degradation of glutamine
...
1.2 nitrogen, sulfur, and selenium metabolism
...
2 ENERGY
2.1 glycolysis and gluconeogenesis
...

Mach Learn (2008) 73: 185–214 187

stage, so that a classifier constructed for a class c can only predict positive if the classifier
for the parent class of c has predicted positive (Barutcuoglu et al. 2006; Cesa-Bianchi et al.
2006). In addition, one can also take the hierarchy constraint into account during training
by restricting the training set for the classifier for class c to those instances belonging to the
parent class of c (Cesa-Bianchi et al. 2006). This approach is called the HSC (hierarchical
single-label classification) approach throughout the text.

A third approach is to develop learners that learn a single multi-label model that predicts
all the classes of an example at once (Clare 2003; Blockeel et al. 2006). Next to taking
the hierarchy constraint into account, this approach is also able to identify features that are
relevant to all classes. We call this the HMC approach.

Given our target application of functional genomics, we focus on decision tree methods,
because of their interpretability. In Blockeel et al. (2006), we presented an empirical study
on the use of decision trees for HMC tasks. We presented an HMC decision tree learner, and
showed that it can outperform the SC approach on all fronts: predictive performance, model
size, and induction time.

In this article, we further investigate the suitability of decision trees for HMC tasks, by
extending the analysis along several dimensions. The most important contributions of this
work are the following:

– We consider three decision tree approaches towards HMC tasks: (1) learning a separate
binary decision tree for each class label (SC), (2) learning and applying such single-label
decision trees in a hierarchical way (HSC), and (3) learning one tree that predicts all
classes at once (HMC). The HSC approach has not been considered before in the context
of decision trees.

– We consider more complex class hierarchies. In particular, the hierarchies are no longer
constrained to trees, but can be directed acyclic graphs (DAGs). To our knowledge, this
setting has not been thoroughly studied before. We show how the decision tree approaches
can be modified to support class hierarchies with a DAG structure.

– The approaches are compared by performing an extensive experimental evaluation on 24
data sets from yeast functional genomics, using as classification schemes MIPS’s Fun-
Cat (Mewes et al. 1999) (tree structure) and the Gene Ontology (Ashburner et al. 2000)
(DAG structure). The latter results in datasets with (on average) 4000 class labels, which
underlines the scalability of the approaches to large class hierarchies.

– When dealing with the highly skewed class distributions that are characteristic for the
HMC setting, precision-recall curves are the most suitable evaluation tool (Davis and
Goadrich 2006). We propose several ways to perform a precision-recall based analysis in
domains with multiple (hierarchically organized) class labels and discuss the difference
in their behavior.

The text is organized as follows. We start by discussing previous work in Sect. 2. Sec-
tion 3 presents the three decision tree methods for HMC in detail. In Sect. 4, we extend the
algorithms towards DAG structured class hierarchies. In Sect. 5, we propose the precision-
recall based performance measures, used for the empirical study described in Sect. 6. Finally,
we conclude in Sect. 7.

2 Related work

Much work in hierarchical multi-label classification (HMC) has been motivated by text clas-
sification. Rousu et al. (2006) present the state of the art in this domain, which consists
mostly of Bayesian and kernel-based classifiers.

188 Mach Learn (2008) 73: 185–214

Koller and Sahami (1997) consider a hierarchical text classification problem setting
where each text document belongs to exactly one class at the bottom level of a topic hi-
erarchy. For each topic in an internal node of the hierarchy, a Bayesian classifier is learned
that distinguishes between the possible subtopics, using only those training instances that
belong to the parent topic. Test documents are then classified by filtering them through the
hierarchy, predicting one topic at each level, until the documents reach the bottom level,
thereby ensuring the hierarchy constraint. Errors made at higher levels of the hierarchy are
unrecoverable at the lower levels. The procedure is similar to the HSC approach. Neverthe-
less, as only one path in the hierarchy is predicted, the method is not strictly multi-label.
Another difference with HSC is that the node classifiers are not binary.

In the work of Cesa-Bianchi et al. (2006), every data instance is labeled with a set of class
labels, which may belong to more than one path in the hierarchy. Instances can also be tagged
with labels belonging to a path that does not end on a leaf. At each node of the (tree-shaped)
taxonomy a binary linear threshold classifier is built, using as training instances only those
instances belonging to the node’s parent class. This is thus an HSC method. The parameters
of the classifier are trained incrementally: at each timestamp, an example is presented to
the current set of classifiers, the predicted labels are compared to the real labels, and the
classifiers’ parameters are updated. In that process, a classifier can only predict positive if
its parent classifier has predicted positive, ensuring that the hierarchy constraint is satisfied.

Barutcuoglu et al. (2006) recently presented a two-step approach where support vector
machines (SVMs) are learned for each class separately, and then combined using a Bayesian
network model so that the predictions are consistent with the hierarchy constraint.

Rousu et al. (2006) presented a more direct approach that does not require a second step
to make sure that the hierarchy constraint is satisfied. Their approach is based on a large
margin method for structured output prediction (Taskar et al. 2003; Tsochantaridis et al.
2005). Such work defines a joint feature map Ψ (x, y) over the input space X and the output
space Y . In the context of HMC, the output space Y is the set of all possible subtrees of
the class hierarchy. Next, it applies SVM based techniques to learn the weights w of the
discriminant function F(x, y) = 〈w,Ψ (x, y)〉, with 〈·, ·〉 the dot product. The discriminant
function is then used to classify a (new) instance x as argmaxy∈Y F (x, y). There are two
main challenges that must be tackled when applying this approach to a structured output
prediction problem: (a) defining Ψ , and (b) finding an efficient way to compute the argmax
function (the range of this function is Y , which is of size exponential in the number of
classes). Rousu et al. (2006) describe a suitable Ψ and propose an efficient method based on
dynamic programming to compute the argmax.

From the point of view of knowledge discovery, it is sometimes useful to obtain more
interpretable models, such as decision trees, which is the kind of approach we study here.

Clare and King (2001) presented a decision tree method for multi-label classification in
the context of functional genomics. In their approach, a tree predicts not a single class but
a vector of Boolean class variables. They propose a simple adaptation of C4.5 to learn such
trees: where C4.5 normally uses class entropy for choosing the best split, their version uses
the sum of entropies of the class variables. Clare (2003) extended the method to predict
classes on several levels of the hierarchy, assigning a larger cost to misclassifications higher
up in the hierarchy, and presented an evaluation on the twelve data sets that we also use here.

Blockeel et al. (2006) proposed the idea of using predictive clustering trees (Blockeel et
al. 1998; Blockeel et al. 2002) for HMC tasks. As mentioned in the introduction, this work
(Blockeel et al. 2006) presents the first thorough empirical comparison between an HMC
and SC decision tree method in the context of tree shaped class hierarchies.

Geurts et al. (2006) recently presented a decision tree based approach related to predic-
tive clustering trees. They start from a different definition of variance and then kernelize

Mach Learn (2008) 73: 185–214 189

this variance function. The result is a decision tree induction system that can be applied to
structured output prediction using a method similar to the large margin methods mentioned
above (Tsochantaridis et al. 2005; Taskar et al. 2003). Therefore, this system could also be
used for HMC after defining a suitable kernel. To this end, an approach similar to that of
Rousu et al. (2006) could be used.

3 Decision tree approaches for HMC

We start this section by defining the HMC task more formally (Sect. 3.1). Next, we present
the framework of predictive clustering trees (Sect. 3.2), which will be used to instantiate
three decision tree algorithms for HMC tasks: an HMC algorithm (Sect. 3.3), an SC algo-
rithm (Sect. 3.4), and an HSC algorithm (Sect. 3.5). Section 3.6 compares the three algo-
rithms at a conceptual level. In this section, we assume that the class hierarchy has a tree
structure. Section 4 will discuss extensions towards hierarchies structured as a DAG.

3.1 Formal task description

We define the task of hierarchical multi-label classification as follows:

Given:
– an instance space X,
– a class hierarchy (C,≤h), where C is a set of classes and ≤h is a partial order (structured

as a rooted tree for now) representing the superclass relationship (for all c1, c2 ∈ C: c1 ≤h

c2 if and only if c1 is a superclass of c2),
– a set T of examples (xi, Si) with xi ∈ X and Si ⊆ C such that c ∈ Si ⇒ ∀c′ ≤h c : c′ ∈ Si ,

and
– a quality criterion q (which typically rewards models with high predictive accuracy and

low complexity).

Find: a function f : X → 2C (where 2C is the power set of C) such that f maximizes q and
c ∈ f (x) ⇒ ∀c′ ≤h c : c′ ∈ f (x). We call this last condition the hierarchy constraint.

In this article, the function f is represented with decision trees.

3.2 Predictive clustering trees

The decision tree methods that we present in the next sections are set in the predictive clus-
tering tree (PCT) framework (Blockeel et al. 1998). This framework views a decision tree
as a hierarchy of clusters: the top-node corresponds to one cluster containing all data, which
is recursively partitioned into smaller clusters while moving down the tree. PCTs are con-
structed so that each split maximally reduces intra-cluster variance. They can be applied to
both clustering and prediction tasks, and have clustering trees and (multi-objective) classifi-
cation and regression trees as special cases.

PCTs (Blockeel et al. 1998) can be constructed with a standard “top-down induction of
decision trees” (TDIDT) algorithm, similar to CART (Breiman et al. 1984) or C4.5 (Quinlan
1993). The algorithm (Table 1) takes as input a set of training instances I . The main loop
(Table 1, BestTest) searches for the best acceptable attribute-value test that can be put in a
node. If such a test t∗ can be found then the algorithm creates a new internal node labeled t∗
and calls itself recursively to construct a subtree for each subset (cluster) in the partition P ∗
induced by t∗ on the training instances. To select the best test, the algorithm scores the tests

190 Mach Learn (2008) 73: 185–214

Table 1 The top-down induction algorithm for PCTs. I denotes the current training instances, t an attribute-
value test, P the partition induced by t on I , and h the heuristic value of t . The superscript ∗ indicates the
current best test and its corresponding partition and heuristic. The functions Var, Prototype, and Acceptable
are described in the text

procedure PCT(I) returns tree
1: (t∗, P ∗) = BestTest(I)

2: if t∗ �= none then
3: for each Ik ∈ P ∗ do
4: treek = PCT(Ik)
5: return node(t∗,

⋃
k{treek})

6: else
7: return leaf(Prototype(I))

procedure BestTest(I)

1: (t∗, h∗, P ∗) = (none,0,∅)

2: for each possible test t do
3: P = partition induced by t on I

4: h = Var(I) − ∑
Ik∈P

|Ik |
|I | Var(Ik)

5: if (h > h∗) ∧ Acceptable(t, P) then
6: (t∗, h∗, P ∗) = (t, h, P)

7: return (t∗, P ∗)

by the reduction in variance (which is to be defined further) they induce on the instances
(Line 4 of BestTest). Maximizing variance reduction maximizes cluster homogeneity and
improves predictive performance. If no acceptable test can be found, that is, if no test signif-
icantly reduces variance, then the algorithm creates a leaf and labels it with a representative
case, or prototype, of the given instances.

The above description is not very different from that of standard decision tree learners.
The main difference is that PCTs treat the variance and prototype functions as parameters,
and these parameters are instantiated based on the learning task at hand. To construct a re-
gression tree, for example, the variance function returns the variance of the given instances’
target values, and the prototype is the average of their target values. By appropriately defin-
ing the variance and prototype functions, PCTs have been used for clustering (Blockeel et al.
1998; Struyf and Džeroski 2007), multi-objective classification and regression (Blockeel et
al. 1998, 1999; Struyf and Džeroski 2006; Demšar et al. 2006), and time series data analysis
(Džeroski et al. 2006). Section 3.3 shows how PCTs can, in a similar way, be applied to
hierarchical multi-label classification.

The PCT framework is implemented in the Inductive Logic Programming system TILDE

(Blockeel et al. 1998) and in the CLUS system. We will use the CLUS implementation. More
information about CLUS can be found at http://www.cs.kuleuven.be/~dtai/clus.

3.3 Clus-HMC: an HMC decision tree learner

To apply PCTs to the task of hierarchical multi-label classification, the variance and proto-
type parameters are instantiated as follows (Blockeel et al. 2002, 2006).

First, the example labels are represented as vectors with Boolean components; the i’th
component of the vector is 1 if the example belongs to class ci and 0 otherwise. It is easily
checked that the arithmetic mean of a set of such vectors contains as i’th component the
proportion of examples of the set belonging to class ci . We define the variance of a set of
examples as the average squared distance between each example’s label vi and the set’s
mean label v, i.e.,

Var(S) =
∑

i d(vi, v)2

|S| .

In the HMC context, it makes sense to consider similarity on higher levels of the hierarchy
more important than similarity on lower levels. To that aim, we use a weighted Euclidean
distance

d(v1, v2) =
√∑

i

w(ci) · (v1,i − v2,i)2,

http://www.cs.kuleuven.be/~dtai/clus

Mach Learn (2008) 73: 185–214 191

Fig. 2 (a) A small hierarchy. Class label names reflect the position in the hierarchy, e.g., ‘2.1’ is a subclass
of ‘2’. (b) The set of classes {1,2,2.2}, indicated in bold in the hierarchy, and represented as a vector

where vk,i is the i’th component of the class vector vk of an instance xk , and the class
weights w(c) decrease with the depth of the class in the hierarchy (e.g., w(c) = w

depth(c)

0 ,
with 0 < w0 < 1). Consider for example the class hierarchy shown in Fig. 2, and two exam-
ples (x1, S1) and (x2, S2) with S1 = {1,2,2.2} and S2 = {2}. Using a vector representation
with consecutive components representing membership of class 1, 2, 2.1, 2.2 and 3, in that
order,

d([1,1,0,1,0], [0,1,0,0,0]) =
√

w0 + w2
0 .

The heuristic for choosing the best test for a node of the tree is then maximization of the
variance reduction as discussed in Sect. 3.2, with the above definition of variance. Note that
this essentially corresponds to converting the example labels to 0/1 vectors and then using
the same variance definition as is used when applying PCTs to multi-objective regression
(Blockeel et al. 1998, 1999), but with appropriate weights. In the single-label case, this
heuristic is in turn identical to the heuristic used in regression tree learners such as CART

(Breiman et al. 1984), and equivalent to the Gini index used by CART in classification tree
mode.

A classification tree stores in a leaf the majority class for that leaf; this class will be
the tree’s prediction for examples arriving in the leaf. But in our case, since an example
may have multiple classes, the notion of “majority class” does not apply in a straightfor-
ward manner. Instead, the mean v̄ of the vectors of the examples in that leaf is stored; in
other words, the prototype function returns v̄. Figure 3a shows a simple HMC tree for the
hierarchy of Fig. 2.

Recall that v̄i is the proportion of examples in the leaf belonging to class ci , which can
be interpreted as the probability that an example arriving in the leaf has class ci . If v̄i is
above some threshold ti , the example is predicted to belong to class ci . To ensure that the
predictions fulfill the hierarchy constraint (whenever a class is predicted its superclasses are
also predicted), it suffices to choose ti ≤ tj whenever ci ≤h cj .

Exactly how the thresholds should be chosen is a question that we do not address here.
Depending on the context, a user may want to set the thresholds such that the resulting
classifier has maximal predictive accuracy, high precision at the cost of lower recall or vice
versa, maximal F1-score (which reflects a particular trade-off between precision and recall),
minimal expected misclassification cost (where different types of mistakes may be assigned
different costs), maximal interpretability or plausibility of the resulting model, etc. Instead
of committing to a particular rule for choosing the threshold, we will study the performance
of the predictive models using threshold-independent measures. More precisely, we will use
precision-recall curves (as will be clear in Sect. 5).

192 Mach Learn (2008) 73: 185–214

Fig. 3 (a) HMC: one tree predicting, in each leaf, the probability for each class in the hierarchy. (b) SC: a
separate tree T (ci) for each class ci . (c) HSC: a separate tree for each hierarchy edge. The left part of (c)
shows how the HSC trees are organized in the class hierarchy. The right part shows T (2.1|2) and T (2.2|2);
trees T (1), T (2), and T (3) are identical to those of SC. Note that the leaves of T (2.1|2) and T (2.2|2) predict
conditional probabilities

Finally, the function Acceptable in Table 1 verifies for a given test that the number of
instances in each subset of the corresponding partition P is at least mincases (a parameter)
and that the variance reduction is significant according to a statistical F -test. We call the
resulting algorithm CLUS-HMC.

3.4 Clus-SC: learning a separate tree for each class

The second approach that we consider builds a separate tree for each class in the hierarchy
(Fig. 3b). Each of these trees is a single-label binary classification tree. Assume that the tree
learner takes as input a set of examples labeled positive or negative. To construct the tree for
class c with such a learner, we label the class c examples positive and all the other examples
negative. The resulting tree predicts the probability that a new instance belongs to c. We
refer to this method as single-label classification (SC).

In order to classify a new instance, SC thresholds the predictions of the different single-
label trees, similar to CLUS-HMC. Note, however, that this does not guarantee that the
hierarchy constraint holds, even if the thresholds are chosen such that ti ≤ tj whenever
ci ≤h cj . Indeed, the structure of the SC trees can be different from that of their parent
class’s SC tree,1 and therefore, the tree built for, e.g., class 2.1 may very well predict a higher
probability than the tree built for class 2 for a given instance. In practice, post-processing

1Figure 3 was chosen to show that the different approaches (HMC/SC/HSC) are able to express the same
concept; the SC trees all have the same structure and are subtrees of the CLUS-HMC tree. In general, this is
not the case.

Mach Learn (2008) 73: 185–214 193

techniques can be applied to ensure that a class probability does not exceed its parent class
probability. This problem does not occur with CLUS-HMC; CLUS-HMC always predicts
smaller probabilities for specific classes than for more general classes.

The class-wise trees can be constructed with any classification tree induction algorithm.
Note that CLUS-HMC reduces to a single-label binary classification tree learner when ap-
plied to such data; its class vector then reduces to a single component and its heuristic
reduces to CART’s Gini index (Breiman et al. 1984), as pointed out in Sect. 3.3. We can
therefore use the same induction algorithm (CLUS-HMC) for both the HMC and SC ap-
proaches. This makes the results easier to interpret. It has been confirmed (Blockeel et al.
2006) that on binary classification tasks, CLUS-HMC performs comparably to state of the
art decision tree learners. We call the SC approach with CLUS-HMC as decision tree learner
CLUS-SC.

3.5 Clus-HSC: learning a separate tree for each hierarchy edge

Building a separate decision tree for each class has several disadvantages, such as the pos-
sibility of violating the hierarchy constraint. In order to deal with this issue, the CLUS-SC
algorithm can be adapted as follows (Fig. 3c).

For a non-top-level class c, it holds that an instance can only belong to c if it belongs
to c’s parent par(c). An alternative approach to learning a tree that directly predicts c, is
therefore to learn a tree that predicts c given that the instance belongs to par(c). Learning
such a tree requires fewer training instances: only the instances belonging to par(c) are
relevant. The subset of these instances that also belong to c become the positive instances
and the other instances (those belonging to par(c) but not to c) the negative instances. The
resulting tree predicts the conditional probability P (c|par(c)). W.r.t. the top-level classes,
the approach is identical to CLUS-SC, i.e., all training instances are used.

To make predictions for a new instance, we use the product rule P (c) = P (c|par(c)) ·
P (par(c)) (for non-top-level classes). This rule applies the trees recursively, starting from
the tree for a top-level class. For example, to compute the probability that the instance be-
longs to class 2.2, we first use the tree for class 2 to predict P (2) and next the tree for class
2.2 to predict P (2.2|2). The resulting probability is then P (2.2) = P (2.2|2) · P (2). Again,
these probabilities are thresholded to obtain the predicted set of classes. As with CLUS-
HMC, to ensure that this set fulfills the hierarchy constraint, it suffices to choose a threshold
ti ≤ tj whenever ci ≤h cj . We call the resulting algorithm CLUS-HSC (hierarchical single-
label classification).

3.6 Comparison

To conclude this section, we compare the three proposed approaches (HMC, SC, and HSC)
at a conceptual level, according to the properties mentioned in the introduction: the effi-
ciency of learning the models, how skewed class distributions are dealt with, whether the
hierarchy constraint is obeyed, and whether global or local features are identified. Other
comparison measures, such as predictive performance and model size, will be investigated
in depth in the experiments section. Table 2 gives an overview.

Concerning efficiency, Blockeel et al. (2006) have shown that CLUS-HMC is more ef-
ficient than CLUS-SC. The CLUS-HSC algorithm is expected to be more efficient than
CLUS-SC, since smaller training sets are used for constructing the trees. Experimental eval-
uation will have to demonstrate how CLUS-HMC and CLUS-HSC relate.

As mentioned in the introduction, CLUS-SC has to deal with highly skewed class distri-
butions for many of the trees it builds. CLUS-HSC reduces the training data for each class

194 Mach Learn (2008) 73: 185–214

Table 2 Comparing the three decision tree approaches at a conceptual level

CLUS-HMC CLUS-HSC CLUS-SC

efficiency + + −
dealing with imbalanced class distributions ? +/− −
obeying the hierarchy constraint + + −
identifying global features + − −

by discarding negative examples that do not belong to the parent class. In most cases, this
yields a more balanced class distribution, although there is a small probability that the distri-
bution becomes even more skewed.2 On average we expect CLUS-HSC to suffer less from
imbalanced class distributions than CLUS-SC. For CLUS-HMC, which learns all classes at
once, it is difficult to estimate the effect of individual imbalanced class distributions.

As explained before, both CLUS-HMC and CLUS-HSC obey the hierarchy constraint if
appropriate threshold values are chosen for each class (e.g., if all thresholds are the same),
while CLUS-SC does not.

Finally, whereas the models found by CLUS-HSC and CLUS-SC will contain features
relevant for predicting one particular class, CLUS-HMC will identify features with high
overall relevance.

4 Hierarchies structured as DAGs

Until now, we have assumed that the class hierarchy is structured as a rooted tree. In this
section, we discuss the issues that arise when dealing with more general hierarchies that are
structured as directed acyclic graphs (DAGs). Such a class structure occurs when a given
class can have more than one parent class in the hierarchy. An example of such a hierarchy
is the Gene Ontology (Ashburner et al. 2000), a biological classification hierarchy for genes.
In general, a classification scheme structured as a DAG can have two interpretations: if an
instance belongs to a class c, then it either belongs also to all superclasses of c, or it belongs
also to at least one superclass of c. We focus on the first case, which corresponds to the
“multiple inheritance” interpretation, where a given class inherits the properties (classes) of
all its parents. This interpretation is correct for the Gene Ontology.

In the following sections, we discuss the issues that arise when dealing with a DAG type
class hierarchy, and discuss the modifications that are required to the algorithms discussed in
the previous section to be able to deal with such hierarchies. Obviously, CLUS-SC requires
no changes because this method ignores the hierarchical structure of the classes.

4.1 Adaptations to Clus-HMC

CLUS-HMC computes the variance based on the weighted Euclidean distance between class
vectors, where a class c’s weight w(c) depends on the depth of c in the class hierarchy (e.g.,

2Suppose we have 200 examples, of which 100 belong to class 1 and 20 to class 1.1; then when learning class
1.1 from the whole set, 10% of the training examples are positive, while when learning from examples of
class 1 only, 20% are positive. So, the problem becomes better balanced. If, on the other hand, among the 100
class 1 examples, 90 belong to 1.1, then the original distribution has 90/200 = 45% positives, whereas when
learning from class 1 examples only we have 90% positives: a more skewed dataset. Generally, the problem
will become more balanced for classes c where Nc

N
+ Nc

Npar(c)
< 1 (N denotes the number of examples and

par(c) the parent class of c).

Mach Learn (2008) 73: 185–214 195

w(c) = w
depth(c)

0). When the classes are structured as a DAG, however, the depth of a class
is no longer unique: a class may have several depths, depending on the path followed from
a top-level class to the given class (see for instance class c6 in Fig. 4a). As a result, the class
weights are no longer properly defined. We therefore propose the following approach. Ob-
serve that w(c) = w

depth(c)

0 can be rewritten as the recurrence relation w(c) = w0 ·w(par(c)),
with par(c) the parent class of c, and the weights of the top-level classes equal to w0. This
recurrence relation naturally generalizes to hierarchies where classes may have multiple par-
ents by replacing w(par(c)) by an aggregation function computed over the weights of c’s
parents. Depending on the aggregation function used (sum, min, max, average), we obtain
the following approaches:

– w(c) = w0
∑

j w(parj (c)) is equivalent to flattening the DAG into a tree (by copying

the subtrees that have multiple parents) and then using w(c) = w
depth(c)

0 . The more paths
in the DAG lead to a class, the more important this class is considered by this method.
A drawback is that there is no guarantee that w(c) < w(parj (c)). For example, in Fig. 4a,
the weight of class c6 is larger than the weights of both its parents.

– w(c) = w0 · minjw(parj (c)) has the advantage that it guarantees ∀c, j : w(c) <

w(parj (c)). A drawback is that it assigns a small weight to a class that has multiple
parents and that appears both close to the top-level and deep in the hierarchy.

– w(c) = w0 · maxjw(parj (c)) guarantees a high weight for classes that appear close to the
top-level of the hierarchy. It does not satisfy w(c) < w(parj (c)), but still yields smaller
weights than w(c) = w0

∑
j w(parj (c)).

– w(c) = w0 · avgjw(parj (c)) can be considered a compromise in between the “min” and
“max” approaches.

We compare the above weighting schemes in the experimental evaluation. Note that all
the weighting schemes become equivalent for tree shaped hierarchies.

Fig. 4 (a) A class hierarchy structured as a DAG. The class-wise weights computed for CLUS-HMC with
the weighting scheme w(c) = w0

∑
j w(parj (c)) and w0 = 0.75 are indicated below each class. (b) The

trees constructed by CLUS-HSC. Assume that these trees predict, for a given test instance, the conditional
probabilities indicated below each tree. CLUS-HSC then predicts the probability of a given class c with the
combining rule P(c) = minj P (c|parj (c)) · P(parj (c)) (indicated below each class)

196 Mach Learn (2008) 73: 185–214

4.2 Adaptations to Clus-HSC

Recall that CLUS-HSC builds models that predict P (c|par(c)). This approach can be triv-
ially extended to DAG structured hierarchies by creating one model for each combina-
tion of a parent class with one of its children (or equivalently, one model for each hi-
erarchy edge) predicting P (c|parj (c)) (Fig. 4b). To make a prediction, the product rule
P (c) = P (c|parj (c)) · P (parj (c)) can be applied for each parent class parj (c), and will
yield a valid estimate of P (c) based on that parent. In order to obtain an estimate of P (c)

based on all parent classes, we aggregate over the parent-wise estimates.
Recall that CLUS-HSC fulfills the hierarchy constraint in the context of tree struc-

tured class hierarchies. We want to preserve this property in the case of DAGs. To that
aim, we use as aggregate function the minimum of the parent-wise estimates, i.e., P (c) =
minjP (c|parj (c)) ·P (parj (c)). CLUS-HSC applies this rule in a top-down fashion (starting
with the top-level classes) to compute predicted probabilities for all classes in the hierarchy.
Figure 4b illustrates this process.

Instead of building one tree for each hierarchy edge, one could consider building a tree
for each hierarchy node and using as training set for such a tree the instances labeled with
all parent classes. This would yield trees predicting P (c|∧parj (c)). While this approach
builds fewer trees, it has two important disadvantages. First, the number of training instances
per tree can become very small (only the instances that belong to all parent classes are used).
Second, the predicted class probabilities are now given by the rule P (c) = P (c|∧parj (c)) ·
P (

∧
parj (c)), and it is unclear how the last term of this rule can be estimated for a test

example. CLUS-HSC therefore relies on the approach outlined above with one model per
hierarchy edge.

5 Predictive performance measures

After having proposed three decision tree methods for HMC tasks with DAG structured
class hierarchies, our next step is to compare their predictive performance, model size, and
induction times. Before proceeding, we discuss how to evaluate the predictive performance
of the classifiers.

5.1 Hierarchical loss

Cesa-Bianchi et al. (2006) have defined a hierarchical loss function that considers mistakes
made at higher levels in the class hierarchy more important than mistakes made at lower
levels. The hierarchical loss function for an instance xk is defined as follows:

lH (xk) =
∑

i

[vk,i �= yk,i and ∀cj ≤h ci : vk,j = yk,j],

where i iterates over all class labels, v represents the predicted class vector, and y the real
class vector. In the work of Cesa-Bianchi et al., the class hierarchy is structured as a tree,
and thus, it penalizes the first mistake along the path from the root to a node. In the case of a
DAG, the loss function can be generalized in two different ways. One can penalize a mistake
if all ancestor nodes are predicted correctly (in this case, the above definition carries over),
or one can penalize a mistake if there exists a correctly predicted path from the root to the
node.

In the rest of the article, we do not consider this evaluation function, since it requires
thresholded predictions, and we are interested in evaluating our methods regardless of any
threshold.

Mach Learn (2008) 73: 185–214 197

5.2 Precision-recall based evaluation

As argued before, we wish to evaluate our predictive models independently from the thresh-
old, as different contexts may require different threshold settings. Generally, in the binary
case, two types of evaluation are suitable for this: ROC analysis and analysis of precision-
recall curves (PR curves). While ROC analysis is probably better known in the machine
learning community, in our case PR analysis is more suitable. We will explain why this is
so in a moment, first we define PR curves.

Precision and recall are traditionally defined for a binary classification task with positive
and negative classes. Precision is the proportion of positive predictions that are correct, and
recall is the proportion of positive examples that are correctly predicted positive. That is,

Prec = TP

TP + FP
, and Rec = TP

TP + FN
,

with TP the number of true positives (correctly predicted positive examples), FP the number
of false positives (positive predictions that are incorrect), and FN the number of false neg-
atives (positive examples that are incorrectly predicted negative). Note that these measures
ignore the number of correctly predicted negative examples.

A precision-recall curve (PR curve) plots the precision of a model as a function of its
recall. Assume the model predicts the probability that a new instance is positive, and that we
threshold this probability with a threshold t to obtain the predicted class. A given threshold
corresponds to a single point in PR space, and by varying the threshold we obtain a PR
curve: while decreasing t from 1.0 to 0.0, an increasing number of instances is predicted
positive, causing the recall to increase whereas precision may increase or decrease (with
normally a tendency to decrease).

Although a PR curve helps in understanding the predictive behavior of the model, a
single performance score is more useful to compare models. A score often used to this end
is the area between the PR curve and the recall axis, the so-called “area under the PR curve”
(AUPRC). The closer the AUPRC is to 1.0, the better the model is.

The reason why we believe PR curves to be a more suitable evaluation measure in this
context is the following. In HMC datasets, it is often the case that individual classes have
few positive instances. For example, in functional genomics, typically only a few genes have
a particular function. This implies that for most classes, the number of negative instances
by far exceeds the number of positive instances. We are more interested in recognizing the
positive instances (that an instance has a given label), rather than correctly predicting the
negative ones (that an instance does not have a particular label). Although ROC curves are
better known, we believe that they are less suited for this task, exactly because they reward
a learner if it correctly predicts negative instances (giving rise to a low false positive rate).
This can present an overly optimistic view of the algorithm’s performance. This effect has
been convincingly demonstrated and studied by Davis and Goadrich (2006), and we refer to
them for further details.

A final point to note is that PR curves can be constructed for each individual class in
a multi-label classification task by taking as positives the examples belonging to the class
and as negatives the other examples. How to combine the class-wise performances in order
to quantify the overall performance, is less straightforward. The following two paragraphs
discuss two approaches, each of which are meaningful.

198 Mach Learn (2008) 73: 185–214

5.2.1 Area under the average PR curve

A first approach to obtain an overall performance score is to construct an overall PR curve
by transforming the multi-label problem into a binary problem as follows (Yang 1999;
Tsoumakas and Vlahavas 2007; Blockeel et al. 2006). Consider a binary classifier that takes
as input an (instance, class) couple and predicts whether that instance belongs to that class
or not. Precision is then the proportion of positively predicted couples that are positive and
recall is the proportion of positive couples that are correctly predicted positive. A rank clas-
sifier (which predicts how likely it is that the instance belongs to the class) can be turned into
such a binary classifier by choosing a threshold, and by varying this threshold a PR curve
is obtained. We will evaluate our predictive model in exactly the same way as such a rank
classifier.

For a given threshold value, this yields one point (Prec,Rec) in PR space, which can be
computed as follows:

Prec =
∑

i TPi
∑

i TPi + ∑
i FPi

, and Rec =
∑

i TPi
∑

i TPi + ∑
i FNi

,

where i ranges over all classes. (This corresponds to micro-averaging the precision and
recall.) In terms of the original problem definition, Prec corresponds to the proportion of
predicted labels that are correct and Rec to the proportion of labels in the data that are
correctly predicted.

By varying the threshold, we obtain an average PR curve. We denote the area under this
curve with AU(PRC).

5.2.2 Average area under the PR curves

A second approach is to take the (weighted) average of the areas under the individual (per
class) PR curves, computed as follows:

AUPRCw1,...,w|C| =
∑

i

wi · AUPRCi .

The most obvious instantiation of this approach is to set all weights to 1/|C|, with C the
set of classes. In the results, we denote this measure with AUPRC. A second instantiation is
to weigh the contribution of a class with its frequency, that is, wi = vi/

∑
j vj , with vi ci ’s

frequency in the data. The rationale behind this is that for some applications more frequent
classes may be more important. We denote the latter measure with AUPRCw .

A corresponding PR curve that has precisely AUPRCw1,...,w|C| as area can be drawn by
taking, for each value on the recall axis, the (weighted) point-wise average of the class-wise
precision values. Note that the interpretation of this curve is different from that of the micro-
averaged PR curve defined in the previous section. For example, each point on this curve
may correspond to a different threshold for each class. Section 6.3 presents examples of both
types of curves and provides more insight in the difference in interpretation.

6 Experiments in yeast functional genomics

In earlier work (Blockeel et al. 2006), CLUS-HMC has been compared experimentally to
CLUS-SC on a tree-shaped hierarchy, showing that CLUS-HMC has advantages with re-
spect to accuracy, model size, and computational efficiency (time needed for learning and

Mach Learn (2008) 73: 185–214 199

applying the model). Here we report on a broader and more detailed experimental study,
which differs from the previous one in the following ways:

– In the earlier work it was assumed that it is sensible to use greater weights in CLUS-
HMC’s distance measure for classes higher up in the hierarchy. This was not validated
experimentally, however. Here we experiment with different weighting schemes.

– Besides CLUS-HMC and CLUS-SC, CLUS-HSC is included in the comparison. One
could argue that CLUS-HSC is a better baseline learner to compare to than CLUS-SC,
because the general principle of applying single class learners hierarchically has been
proposed before, though not in the decision tree context.

– Only tree-shaped hierarchies were considered previously. We have described how the
method can be extended to DAG-shaped hierarchies, but it is not obvious that results on
tree-shaped hierarchies will carry over towards DAG-shaped hierarchies.

– For multi-label classification, it is not obvious how to measure the overall performance of
a predictive system, averaged out over all classes. In our previous work, precision-recall
curves were constructed, using a natural definition of precision and recall over all classes
together. Here we suggest a number of alternative measures. It turns out that different
measures may give a quite different view of the relative performance of the methods.

Before presenting the results (Sect. 6.3), we first discuss the data sets used in our evaluation
(Sect. 6.1) and the applied methodology (Sect. 6.2).

6.1 Data sets

Saccharomyces cerevisiae (baker’s or brewer’s yeast) is one of biology’s classic model or-
ganisms, and has been the subject of intensive study for years.

We use 12 yeast data sets from Clare (2003) (Table 3), but with new and updated class
labels. The different data sets describe different aspects of the genes in the yeast genome.
They include five types of bioinformatic data: sequence statistics, phenotype, secondary
structure, homology, and expression. The different sources of data highlight different aspects
of gene function. Below, we describe each data set in turn.

D1 (seq) records sequence statistics that depend on the amino acid sequence of the pro-
tein for which the gene codes. These include amino acid ratios, sequence length, molecular
weight and hydrophobicity. Some of the properties were calculated using PROTPARAM (Ex-
pasy 2008), some were taken from MIPS (Mewes et al. 1999) (e.g., the gene’s chromosome
number), and some were simply calculated directly. D1’s attributes are mostly real valued,
although some (like chromosome number or strand) are discrete.

D2 (pheno) contains phenotype data, which represents the growth or lack of growth of
knock-out mutants that are missing the gene in question. The gene is removed or disabled
and the resulting organism is grown with a variety of media to determine what the modified
organism might be sensitive or resistant to. This data was taken from EUROFAN, MIPS and
TRIPLES (Oliver 1996; Mewes et al. 1999; Kumar et al. 2000). The attributes are discrete,
and the data set is sparse, since not all knock-outs have been grown under all conditions.

D3 (struc) stores features computed from the secondary structure of the yeast proteins.
The secondary structure is not known for all yeast genes; however, it can be predicted from
the protein sequence with reasonable accuracy. The program PROF (Ouali and King 2000)
was used to this end. Due to the relational nature of secondary structure data, Clare per-
formed a preprocessing step of relational frequent pattern mining; D3 includes the con-
structed patterns as binary attributes.

D4 (hom) includes for each yeast gene, information from other, homologous genes. Ho-
mology is usually determined by sequence similarity. PSI-BLAST (Altschul et al. 1997)

200 Mach Learn (2008) 73: 185–214

Table 3 Data set properties: number of instances |D|, number of attributes |A|

Data set |D| |A| Data set |D| |A|

D1 Sequence (Clare 2003)
(seq)

3932 478 D7 DeRisi et al. (1997) (derisi) 3733 63

D2 Phenotype (Clare 2003)
(pheno)

1592 69 D8 Eisen et al. (1998) (eisen) 2425 79

D3 Secondary structure
(Clare 2003) (struc)

3851 19628 D9 Gasch et al. (2000) (gasch1) 3773 173

D4 Homology search (Clare
2003) (hom)

3867 47034 D10 Gasch et al. (2001) (gasch2) 3788 52

D5 Spellman et al. (1998)
(cellcycle)

3766 77 D11 Chu et al. (1998) (spo) 3711 80

D6 Roth et al. (1998)
(church)

3764 27 D12 All microarray (Clare 2003)
(expr)

3788 551

was used to compare yeast genes both with other yeast genes, and with all genes indexed
in SwissProt 39. This provided for each yeast gene, a list of homologous genes. For each
of these, various properties were extracted (keywords, sequence length, names of databases
they are listed in, . . .). Clare preprocessed this data in a similar way as the secondary struc-
ture data, to produce binary attributes.

D5, . . . ,D12. The use of microarrays to record the expression of genes is popular in bi-
ology and bioinformatics. Microarray chips provide the means to test the expression levels
of genes across an entire genome in a single experiment. Many expression data sets ex-
ist for yeast, and several of these were used. Attributes for these data sets are real valued,
representing fold changes in expression levels.

We construct two versions of each data set. The input attributes are identical in both
versions, but the classes are taken from two different classification schemes. In the first
version, they are from FunCat (http://mips.gsf.de/projects/funcat), a scheme for classifying
the functions of gene products, developed by MIPS (Mewes et al. 1999). FunCat is a tree-
structured class hierarchy; a small part is shown in Fig. 1. In the second version of the
data sets, the genes are annotated with terms from the Gene Ontology (GO) (Ashburner et
al. 2000) (http://www.geneontology.org), which forms a directed acyclic graph instead of a
tree: each term can have multiple parents (we use GO’s “is-a” relationship between terms).3

Table 4 compares the properties of FunCat and GO. Note that GO has an order of magnitude
more classes than FunCat for our data sets. The 24 resulting datasets can be found on the
following webpage http://www.cs.kuleuven.be/~dtai/clus/hmcdatasets.html.

6.2 Method

Clare (2003) presents models trained on 2/3 of each data set and tested on the remaining
1/3. In our experiments we use exactly the same training and test sets.

The stopping criterion (i.e., the function Acceptable in Table 1) was implemented as fol-
lows. The minimal number of examples a leaf has to cover was set to 5 for all algorithms.
The F-test that is used to check the significance of the variance reduction takes a signifi-
cance level parameter s, which was optimized as follows: for each out of 6 available values

3The GO versions of the datasets may contain slightly fewer examples, since not all genes in the original
datasets are annotated with GO terms.

http://mips.gsf.de/projects/funcat
http://www.geneontology.org
http://www.cs.kuleuven.be/~dtai/clus/hmcdatasets.html

Mach Learn (2008) 73: 185–214 201

Table 4 Properties of the two classification schemes. |C| is the average number of classes actually used in
the data sets (out of the total number of classes defined by the scheme). |S| is the average number of labels per
example, with between parentheses the average number counting only the most specific classes of an example

FunCat GO

Scheme version 2.1 (2007/01/09) 1.2 (2007/04/11)

Yeast annotations 2007/03/16 2007/04/07

Total classes 1362 22960

Data set average |C| 492 (6 levels) 3997 (14 levels)

Data set average |S| 8.8 (3.2 most spec.) 35.0 (5.0 most spec.)

for s, CLUS-HMC was run on 2/3 of the training set and its PR curve for the remaining 1/3
validation set was constructed. The s parameter yielding the largest area under this average
validation PR curve was then used to train the model on the complete training set. This op-
timization was performed independently for each evaluation measure (discussed in Sect. 5)
and each weighting scheme (Sect. 4.1). The PR curves or AUPRC values that are reported
are obtained by testing the resulting model on the test set. The results for CLUS-SC and
CLUS-HSC were obtained in the same way as for CLUS-HMC, but with a separate run for
each class (including separate optimization of s for each class).

We compare the AUPRC of the different methods, using the approaches discussed in
Sect. 5. For GO, which consists of three separate hierarchies, we left out the three classes
representing these hierarchies’ roots, since they occur for all examples. PR curves were
constructed with proper (non-linear) interpolation between points, as described by Davis
and Goadrich (2006). The non-linearity comes from the fact that precision is non-linear in
the number of true positives and false positives.

To estimate significance of the AUPRC comparison, we use the (two-sided) Wilcoxon
signed rank test (Wilcoxon 1945), which is a non-parametric alternative to the paired Stu-
dent’s t-test that does not make any assumption about the distribution of the measurements.
In the results, we report the p-value of the test and the corresponding rank sums.4

The experiments were run on a cluster of AMD Opteron processors (1.8–2.4 GHz,
>2 GB RAM) running Linux.

6.3 Results

In the experiments, we are dealing with many dimensions: we have 12 different descriptions
of gene aspects and 2 class hierarchies, resulting in 24 datasets with several hundreds of
classes each, on which we want to compare 3 algorithms. Moreover, we consider 3 precision-
recall evaluation measures, and for CLUS-HMC we proposed 4 weighting schemes. In order
to deal with this complex structure, we proceed as follows.

We start by evaluating the different weighting schemes used in the CLUS-HMC algo-
rithm. Then we compare the predictive performance of the three algorithms CLUS-HMC,
CLUS-HSC, and CLUS-SC. Next, we study the relation between the three evaluation mea-
sures AU(PRC), AUPRC, and AUPRCw . Afterwards, we give some example PR curves
for specific datasets. Finally, we compare the model size and induction times of the three
algorithms.

4The Wilcoxon test compares two methods by ranking the pairwise differences in their performances by
absolute value. Then it calculates the sums for the ranks corresponding to positive and negative differences.
The smaller of these two rank sums is compared to a table of all possible distributions of ranks to calculate p.

202 Mach Learn (2008) 73: 185–214

6.3.1 Comparison of weighting schemes

First, we investigate different instantiations for the weights in the weighted Euclidean dis-
tance metric used in the heuristic of CLUS-HMC. We have arbitrarily set w0 to 0.75. The
precise questions that we want to answer are:

1. Is it useful to use weights in CLUS-HMC’s heuristic? In other words, is there a difference
between using weights that decrease with the hierarchy depth and setting all weights to
1.0?

2. If yes, which of the weighting schemes for combining the weights of multiple parents
(Sect. 4.1) yields the best results for data sets with DAG structured class labels?

Tables 5 (upper part) and 6 show the average AUPRC values, and the Wilcoxon test
outcomes for FunCat. As can be seen from the tables, using weights has slight advantages
over not using weights. Therefore, for FunCat only results using weights will be reported in
the rest of the paper. Recall that FunCat is a tree hierarchy, and thus, the second question
does not apply.

For GO, the results are less clear. Table 5 (lower part) shows the average AUPRC values
and Fig. 5 visualizes the Wilcoxon outcomes. W.r.t. AUPRCw , there are no differences be-
tween the methods. For AU(PRC), w(c) = w0 ·avgjw(parj (c)) performs slightly better than

all other methods (although not significant), while for AUPRC, w(c) = w0 ·maxjw(parj (c))

performs better. For the rest of the experiments, we decided to use the former because it also
performs well for AUPRC and because the averaging may make the scheme more robust
than the scheme that takes the parents’ weights maximum.

Conclusion Blockeel et al. (2006) assumed that it is advisable to use weights in the cal-
culation of CLUS-HMC’s distance measure, giving greater weights to classes appearing
higher in the hierarchy. However, it turns out that using weights is only slightly better than
not using weights. For GO, averaging the weights of the parent nodes seems the best op-
tion. Recall that for tree shaped hierarchies, the DAG weighting schemes all become iden-
tical to the tree weighting scheme. As a result, we can use the same weighting method
(w(c) = w0 · avgjw(parj (c))) for both the GO and FunCat experiments.

Table 5 Weighting schemes for FunCat and GO: AU(PRC), AUPRC, and AUPRCw averaged over all data
sets (90% confidence intervals are indicated after the ‘±’ sign)

FunCat AU(PRC) AUPRC AUPRCw

1.0 0.191 ± 0.012 0.042 ± 0.006 0.162 ± 0.015

w0 · w(parj (c)) 0.194 ± 0.013 0.045 ± 0.009 0.164 ± 0.017

GO AU(PRC) AUPRC AUPRCw

1.0 0.364 ± 0.011 0.028 ± 0.005 0.342 ± 0.015

w0
∑

j w(parj (c)) 0.364 ± 0.010 0.028 ± 0.005 0.342 ± 0.015

w0 · minj w(parj (c)) 0.365 ± 0.009 0.027 ± 0.005 0.342 ± 0.014

w0 · avgj w(parj (c)) 0.365 ± 0.009 0.028 ± 0.005 0.342 ± 0.013

w0 · maxj w(parj (c)) 0.364 ± 0.009 0.028 ± 0.005 0.342 ± 0.013

Mach Learn (2008) 73: 185–214 203

Table 6 Weighting schemes for FunCat: comparing w(c) = w0 ·w(par(c)) to w(c) = 1.0. A ‘⊕’ means that
w(c) = w0 ·w(par(c)) performs better than w(c) = 1.0 according to the Wilcoxon signed rank test. The table
indicates the rank sums and corresponding p-values computed by the test

FunCat w(c) = w0 · w(par(c))

Score p

AU(PRC) ⊕51/15 0.12

AUPRC ⊕61/17 0.09

AUPRCw ⊕53/25 0.30

Fig. 5 Weighting schemes for GO: w(c) = 1.0, w(c) = w0
∑

j w(parj (c)), w(c) = w0 · minj w(parj (c)),

w(c) = w0 · avgj w(parj (c)), w(c) = w0 · maxj w(parj (c)). An arrow from scheme A to B indicates that
A is better than B . The line width of the arrow indicates the significance of the difference according to the
Wilcoxon signed rank test

6.3.2 Precision-recall based comparison of CLUS-HMC/SC/HSC

CLUS-HMC has been shown to outperform CLUS-SC before (Blockeel et al. 2006). This
study was performed on datasets with tree structured class hierarchies. Here we investigate
how CLUS-HSC performs, compared to CLUS-HMC and CLUS-SC, and whether the re-
sults carry over to DAG structured class hierarchies.

Tables 7 and 8 show AUPRC values for the three algorithms for FunCat and GO, respec-
tively. Summarizing Wilcoxon outcomes comparing CLUS-HMC to CLUS-SC and CLUS-
HSC are shown in Table 9. We see that CLUS-HMC performs better than CLUS-SC and
CLUS-HSC, both for FunCat and GO, and for all evaluation measures.

Table 10 compares CLUS-HSC to CLUS-SC. CLUS-HSC performs better than CLUS-
SC on GO, w.r.t. all evaluation measures. On FunCat, CLUS-HSC is better than CLUS-SC
w.r.t. AU(PRC). According to the two other evaluation measures, CLUS-SC performs better,
but the difference is not significant.

Conclusion The result that CLUS-HMC performs better than CLUS-SC carries over to
DAG structured class hierarchies. Moreover, CLUS-HMC also outperforms CLUS-HSC in
both settings. CLUS-HSC in turn outperforms CLUS-SC on GO. For FunCat, the results
depend on the evaluation measure, and the differences are not significant.

6.3.3 Relation between the different AUPRC measures

In Sect. 5, we have proposed several ways of combining class-wise PR-curves into a sin-
gle PR-curve. It turns out that these methods are quite different with respect to what they
measure.

204 Mach Learn (2008) 73: 185–214

Table 7 Predictive performance (AUPRC) of the different algorithms for FunCat

Data set AU(PRC) AUPRC AUPRCw

HMC HSC SC HMC HSC SC HMC HSC SC

seq 0.211 0.091 0.095 0.053 0.043 0.042 0.183 0.151 0.154

pheno 0.160 0.152 0.149 0.030 0.031 0.031 0.124 0.125 0.127

struc 0.181 0.118 0.114 0.041 0.039 0.040 0.161 0.152 0.152

hom 0.254 0.155 0.153 0.089 0.067 0.076 0.240 0.205 0.205

cellcycle 0.172 0.111 0.106 0.034 0.036 0.038 0.142 0.146 0.146

church 0.170 0.131 0.128 0.029 0.029 0.031 0.129 0.127 0.128

derisi 0.175 0.094 0.089 0.033 0.029 0.028 0.137 0.125 0.122

eisen 0.204 0.127 0.132 0.052 0.052 0.055 0.183 0.169 0.173

gasch1 0.205 0.106 0.104 0.049 0.047 0.047 0.176 0.154 0.153

gasch2 0.195 0.121 0.119 0.039 0.042 0.037 0.156 0.148 0.147

spo 0.186 0.103 0.098 0.035 0.038 0.034 0.153 0.139 0.139

expr 0.210 0.127 0.123 0.052 0.054 0.050 0.179 0.167 0.167

Average: 0.194 0.120 0.118 0.045 0.042 0.042 0.164 0.151 0.151

Table 8 Predictive performance (AUPRC) of the different algorithms for GO

Data set AU(PRC) AUPRC AUPRCw

HMC HSC SC HMC HSC SC HMC HSC SC

seq 0.386 0.282 0.197 0.036 0.035 0.035 0.373 0.283 0.279

pheno 0.337 0.416 0.316 0.021 0.019 0.021 0.299 0.239 0.238

struc 0.358 0.353 0.228 0.025 0.026 0.026 0.328 0.266 0.262

hom 0.401 0.353 0.252 0.051 0.053 0.052 0.389 0.317 0.313

cellcycle 0.357 0.371 0.252 0.021 0.024 0.020 0.335 0.275 0.267

church 0.348 0.397 0.289 0.018 0.016 0.017 0.316 0.248 0.247

derisi 0.355 0.349 0.218 0.019 0.017 0.017 0.321 0.248 0.246

eisen 0.380 0.365 0.270 0.036 0.035 0.031 0.362 0.303 0.294

gasch1 0.371 0.351 0.239 0.030 0.028 0.026 0.353 0.290 0.282

gasch2 0.365 0.378 0.267 0.024 0.026 0.023 0.347 0.282 0.278

spo 0.352 0.371 0.213 0.026 0.020 0.020 0.324 0.254 0.254

expr 0.368 0.351 0.249 0.029 0.028 0.028 0.353 0.286 0.284

Average: 0.365 0.361 0.249 0.028 0.027 0.026 0.342 0.274 0.270

This difference is best explained by looking at the behavior of these curves for a default
model, that is, a degenerate decision tree that consists of precisely one leaf (one CLUS-
HMC leaf, or equivalently, a set of single leaf CLUS-SC trees). The class-wise predicted
probabilities of ‘default’ are constant (the same for each test instance) and equal to the
proportion of training instances in the corresponding class, i.e., the class frequency (Fig. 6a).

PR curves of a default classifier The PR-curve of this default predictor for a single class
ci is as follows: if the overall frequency fi of the class is above t , then the predictor predicts
positive for all instances, so we get a recall of 1 and a precision of fi ; otherwise it predicts

Mach Learn (2008) 73: 185–214 205

Table 9 CLUS-HMC compared to CLUS-SC and CLUS-HSC. A ‘⊕’ (‘�’) means that CLUS-HMC per-
forms better (worse) than the given method according to the Wilcoxon signed rank test. The table indicates
the rank sums and corresponding p-values. Differences significant at the 0.01 level are indicated in bold

HMC vs. SC HMC vs. HSC

FunCat Score p Score p

AU(PRC) ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

AUPRC ⊕51/27 3.8 × 10−1 ⊕43/35 7.9 × 10−1

AUPRCw ⊕73/5 4.9 × 10−3 ⊕74/4 3.4 × 10−3

GO Score p Score p

AU(PRC) ⊕78/0 4.9 × 10−4 ⊕43/35 7.9 × 10−1

AUPRC ⊕68/10 2.1 × 10−2 ⊕55/23 2.3 × 10−1

AUPRCw ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

Table 10 CLUS-HSC compared to CLUS-SC. A ‘⊕’ (‘�’) means that CLUS-HSC performs better (worse)
than CLUS-SC according to the Wilcoxon signed rank test

HSC vs. SC HSC vs. SC

FunCat Score p GO Score p

AU(PRC) ⊕62/16 7.7 × 10−2 AU(PRC) ⊕78/0 4.9 × 10−4

AUPRC �37/41 9.1 × 10−1 AUPRC ⊕49/29 4.7 × 10−1

AUPRCw �22/56 2.0 × 10−1 AUPRCw ⊕78/0 4.9 × 10−4

negative for all instances, giving a recall of 0 and an undefined precision. This leads to one
point in the PR-diagram at (1, fi). To obtain a PR-curve, observe that randomly discarding
a fraction of the predictions results in the same precision, but a smaller recall. The PR-curve
thus becomes the horizontal line (r, fi) with 0 < r ≤ 1 (Fig. 6b) (Davis and Goadrich 2006).

Consequently, the average PR-curve constructed using the AUPRC and AUPRCw meth-
ods is also a horizontal line, at height 1

|C|
∑

i fi or
∑

i wifi , respectively. The former is
shown in Fig. 6c.

The average PR-curve for AU(PRC) is quite different, though. This curve is constructed
from predictions for all classes together. For a threshold t , all instances are assigned exactly
the classes S with frequency above t , i.e., S = {ci |fi ≥ t}. While decreasing the classification
threshold t from 1.0 to 0.0, S grows from the empty set to the set of all classes C. At the
same time, the average precision drops from the frequency of the most frequent class to
the average of the class frequencies. Correct interpolation between the points (Davis and
Goadrich 2006) leads to curves such as the one shown in Fig. 6d.

Interpretation of different average default curves Now consider the model ‘allclasses’
(Fig. 6a), that predicts each class with probability 1.0. This model’s classwise PR curves
are shown in Fig. 6b and are identical to those of ‘default’. As a consequence, also the
average PR curve combined with AUPRC and AUPRCw is identical to those of ‘default’
(Fig. 6c). Since the set S = C for all values of t for ‘allclasses’, its average PR curve for
AU(PRC) is a horizontal line with precision equal to the average of the class frequencies
(Fig. 6d), just as for AUPRC. These results show that it is more difficult to outperform
‘default’ with AU(PRC) than with AUPRC and AUPRCw : in the latter cases, the model is

206 Mach Learn (2008) 73: 185–214

Fig. 6 Example for a dataset with 100 instances. (a) Two degenerate decision tree models: ‘default’ and
‘allclasses’. The ‘default’ model’s predicted set of classes depends on the classification threshold t , while
the ‘allclasses’ model predicts all classes independent of t . (b) Class-wise PR curves (identical for ‘default’
and ‘allclasses’). (c) Average PR curve corresponding to AUPRC. (d) Average PR curves corresponding to
AU(PRC) (the non-linear curves connecting the points are obtained by means of proper PR interpolation,
Davis and Goadrich 2006)

better than default if it is better than always predicting all classes. Another way of stating
this is that AU(PRC) rewards a predictor for exploiting information about the frequencies
of the different classes. The AUPRC and AUPRCw methods, on the other hand, average the
performance of individual classes, i.e., they ignore the predictor’s ability to learn the class
frequencies.

Comparison of CLUS-HMC/SC/HSC to default Table 11 compares CLUS-HMC, SC,
and HSC to the default model. W.r.t. AUPRC and AUPRCw , all models perform better
than ‘default’, and this is true for all 24 data sets. This means that on average, for each
individual class, the models perform better than always predicting the class. Interestingly,
if we consider AU(PRC), then CLUS-SC, and also CLUS-HSC on FunCat, perform worse
than ‘default’. W.r.t. this evaluation measure, these methods produce overly complex models
and may overfit the training data.

The overfitting can be quantified by subtracting the AUPRC obtained on the test set from
that on the training set. Table 12 shows these differences, which are indeed highest for the
CLUS-SC and CLUS-HSC methods.

Mach Learn (2008) 73: 185–214 207

Table 11 CLUS-SC, CLUS-HSC, and CLUS-HMC compared to the default model. A ‘⊕’ (‘�’) means that
the given method performs better (worse) than default according to the Wilcoxon signed rank test

SC vs. DEF HSC vs. DEF HMC vs. DEF

FunCat Score p Score p Score p

AU(PRC) �1/77 9.8 × 10−4 �2/76 1.5 × 10−3 ⊕78/0 4.9 × 10−4

AUPRC ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

AUPRCw ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

GO Score p Score p Score p

AU(PRC) �0/78 4.9 × 10−4 ⊕68/10 2.1 × 10−2 ⊕78/0 4.9 × 10−4

AUPRC ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

AUPRCw ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4 ⊕78/0 4.9 × 10−4

Table 12 Difference between AUPRC obtained on the training set and AUPRC obtained on the test set.
A higher (lower) difference indicates more (less) overfitting

FunCat GO

HMC HSC SC HMC HSC SC

AU(PRC) 0.034 0.435 0.464 0.027 0.293 0.402

AUPRC 0.075 0.248 0.267 0.045 0.218 0.190

AUPRCw 0.109 0.375 0.389 0.061 0.317 0.308

Conclusion We have shown that the three proposed ways of averaging classwise PR curves
are indeed different. The AU(PRC) evaluation measure looks at the performance of the
model in a mix of classes, whereas the AUPRC and AUPRCw measures evaluate the per-
formance of individual classes independently. W.r.t. the AU(PRC) measure, CLUS-SC, and
also CLUS-HSC on FunCat, were shown to overfit the training data.

6.3.4 Example PR curves for specific datasets

Figures 7 and 8 show averaged PR curves for two data sets. These curves illustrate the above
conclusions. We see that, for both data sets, CLUS-HMC performs best, especially for the
AU(PRC) or AUPRCw evaluation measures. If we consider AU(PRC), then overfitting can
be detected for CLUS-SC and CLUS-HSC.

Figure 9 shows a number of class-wise PR curves for the dataset ‘hom’. We have chosen
the four classes for which CLUS-HMC (parameter s optimized for AU(PRC)) yields the
largest AUPRC on the validation set, compared to the default AUPRC for that class. Since
not all of these classes occurred in the test set, we have chosen the four best classes that occur
in at least 5% of the test examples. We see that for FunCat, CLUS-HMC performs better on
these classes, while for GO, the results are less clear. Indeed, if we look at Table 8, we
see that the three algorithms perform similarly for this data set if all classes are considered
equally important (corresponding to the AUPRC evaluation method). However, the other
evaluation methods (which do take into account class frequencies) show a higher gain for
CLUS-HMC, which indicates that the latter performs better on the more frequent classes.
Plotting the difference in AUPRC against class frequency (Fig. 10) confirms this result.

208 Mach Learn (2008) 73: 185–214

Fig. 7 PR curves averaged over all classes according to the 3 evaluation measures for FunCat (top) and GO
(bottom) for the data set ‘hom’

Fig. 8 PR curves averaged over all classes according to the 3 evaluation measures for FunCat (top) and GO
(bottom) for the data set ‘seq’

Figure 11 shows a part of the tree learned by Clus-HMC for the dataset ‘hom’ for GO.
The tree contains in total 51 leaves, each predicting a probability for each of the 3997 classes.
In the figure, we only show classes for which this probability exceeds 85% and which are
most specific. The homology features are based on a sequence similarity search for each

Mach Learn (2008) 73: 185–214 209

Fig. 9 Example class-wise PR curves for FunCat (top) and GO (bottom) for the data set ‘hom’

Fig. 10 Difference in AUPRC
versus class frequency for GO for
the data set ‘hom’

gene in yeast against all the genes in a large database called SwissProt. The root test, for
instance, tests whether there exists a SwissProt protein A that has a high similarity (e-value
lower than 1.0e-8) with the gene under consideration, has “inner_membrane” listed as one
of its keywords and has references to a database called “prints”.

6.3.5 Comparison of Clus-HMC/SC/HSC’s tree size and induction time

We conclude this experimental evaluation by comparing the model size and computational
efficiency of the three algorithms.

Tables 13 and 14 present the tree sizes obtained with the different methods. We measure
tree size as the number of leaves. The tables include three numbers for CLUS-HMC: one
number for each of the evaluation measures. Recall that CLUS-HMC uses the evaluation
measure to tune its F -test parameter s. Different evaluation measures may yield different
optimal s values and therefore different trees. SC and HSC trees, on the other hand, predict
only one class, so there is no need to average PR-curves; the tree induction algorithm tunes
its F -test parameter to maximize its class’s AUPRC.

Averaged over the evaluation measures and datasets, the HMC trees contain 60.9 (Fun-
Cat) and 53.6 (GO) leaves. The SC trees, on the other hand, are smaller because they each

210 Mach Learn (2008) 73: 185–214

eval(A,S), S < 1e-8, keyword(A, inner_membrane), dbref (A,prints)

+yes: eval(B,S), S < 1e-8, class(B, lagomorpha), keyword(B, transmembrane)

| +yes: eval(C,S), S < 1e-8,molwt(C,M),M < 74079,M > 53922, dbref (C,mim)

| | +yes: eval(D,S), S < 1e-8, class(D, streptococcaceae), db_ref (D,hssp)

| | | +yes: GO0042626s,GO0044464,GO0008150 [10 ex.]

| | | +no: eval(E,S), S < 1e-8, class(E,percomorpha)

| | | +yes: GO0005215,GO0044464,GO0006810 [15 ex.]

| | | +no: GO0003674,GO0005575,GO0008150 [69 ex.]

| | +no: eval(F,S),4.5e-2< S < 1.1,molwt(F,N),N > 109335), class(F, bscg)

| | +yes: eval(G,S), S < 1e-8, class(G,hydrozoa)

| | | +yes: GO0015662,GO0044464,GO0008150 [6 ex.]

| | | +no: GO0003674,GO0044464,GO0008150 [12 ex.]

| | +no: GO0005215,GO0044444,GO0008150 [24 ex.]

| +no: GO0003674,GO0005575,GO0008150 [85 ex.]

+no: ...

Fig. 11 Part of the CLUS-HMC (optimized for AU(PRC)) tree that was learned for the ‘hom’ dataset for
GO. Only the most specific classes for which the predicted probability exceeds 85% are shown

Table 13 Tree size (number of tree leaves) for FunCat

Data set CLUS-HMC CLUS-SC CLUS-HSC

AU(PRC) AUPRC AUPRCw Total Average Total Average

seq 14 168 168 10443 20.9 4923 9.9

pheno 8 8 8 1238 2.7 777 1.7

struc 12 125 56 8657 17.3 3917 7.8

hom 75 190 75 9137 18.3 4289 8.6

cellcycle 24 61 61 9671 19.4 4037 8.1

church 17 17 17 4186 8.4 2221 4.5

derisi 4 68 68 7807 15.6 3520 7.1

eisen 29 55 55 6311 13.7 2995 6.5

gasch1 10 96 96 10447 20.9 4761 9.5

gasch2 26 101 101 7850 15.7 3756 7.5

spo 6 43 43 8527 17.1 3623 7.3

expr 12 161 116 10262 20.6 4711 9.4

Average: 19.8 91.1 72.0 7878 15.9 3628 7.3

model only one class. They include on average 15.9 (FunCat) and 7.6 (GO) leaves. Never-
theless, the total size of all SC trees is on average a factor 311.2 (FunCat) and 1049.8 (GO)
larger than the corresponding HMC tree. This difference is bigger for GO than for FunCat
because GO has an order of magnitude more classes (Table 4) and therefore also an order of
magnitude more SC trees. Comparing HMC to HSC yields similar conclusions.

Compared to Blockeel et al. (2006), we observe a similar average tree size for the single-
label SC trees. However, the HMC trees, which had on average 12.5 leaves for the reported
AU(PRC) measure in Blockeel et al. (2006), now contain on average 19.8 leaves. This can
be explained by the fact that the HMC trees now have to predict more classes: the FunCat
classification scheme has grown from 250 to 1362 classes meanwhile.

Mach Learn (2008) 73: 185–214 211

Table 14 Tree size (number of tree leaves) for GO

Data set CLUS-HMC CLUS-SC CLUS-HSC

AU(PRC) AUPRC AUPRCw Total Average Total Average

seq 15 206 108 38969 9.4 21703 3.7

pheno 6 6 6 6213 2.0 5691 1.3

struc 14 76 76 36356 8.8 19147 3.3

hom 51 135 135 35270 8.5 19804 3.4

cellcycle 21 63 43 36260 8.8 19085 3.3

church 7 21 21 16049 3.9 12368 2.1

derisi 10 38 10 31175 7.6 16693 2.9

eisen 37 68 68 24844 7.0 14384 2.9

gasch1 30 129 30 37838 9.2 20070 3.4

gasch2 27 62 62 34204 8.3 18546 3.2

spo 14 60 60 35400 8.6 15552 2.7

expr 35 145 35 38313 9.3 20812 3.6

Average: 22.2 84.1 54.5 30908 7.6 16988 3.0

Observe that the HSC trees are smaller than the SC trees (a factor 2.2 on FunCat and
2.8 on GO). We see two reasons for this. First, HSC trees encode less knowledge than SC
ones because they are conditioned on their parent class. That is, if a given feature subset is
relevant to all classes in a sub-lattice of hierarchy, then CLUS-SC must include this subset
in each tree of the sub-lattice, while CLUS-HSC only needs them in the trees for the sub-
lattice’s most general border. Second, HSC trees use fewer training examples than SC trees,
and tree size typically grows with training set size.

We also measure the total induction time for all methods. This is the time for building
the actual trees; it does not include the time for loading the data and tuning the F -test
parameter. CLUS-HMC requires on average 3.3 (FunCat) and 24.4 (GO) minutes to build a
tree. CLUS-SC is a factor 58.6 (FunCat) and 129.0 (GO) slower than CLUS-HMC. CLUS-
HSC is a factor 10.2 (FunCat) and 5.1 (GO) faster than CLUS-SC, but still a factor 6.3
(FunCat) and 55.9 (GO) slower than CLUS-HMC.

Conclusion Whereas the size of the individual trees learned by CLUS-HSC and CLUS-SC
is smaller than the size of the trees output by CLUS-HMC, the total model size of the latter
is much smaller than the total size of the models output by the single-label tree learners. As
was expected, the CLUS-HSC models are smaller than the CLUS-SC models. Also w.r.t.
efficiency, CLUS-HMC outperforms the other methods.

7 Conclusions

In hierarchical multi-label classification, the task is to assign a set of class labels to examples,
where the class labels are organized in a hierarchy: an example can only belong to a class
if it also belongs to the class’s superclasses. An important application area is functional
genomics, where the goal is to predict the functions of gene products.

In this article, we have compared three decision tree algorithms on the task of hierarchical
multi-label classification: (1) an algorithm that learns a single tree that predicts all classes

212 Mach Learn (2008) 73: 185–214

at once (CLUS-HMC), (2) an algorithm that learns a separate decision tree for each class
(CLUS-SC), and (3) an algorithm that learns and applies such single-label decision trees in
a hierarchical way (CLUS-HSC). The three algorithms are instantiations of the predictive
clustering tree framework (Blockeel et al. 1998) and are designed for problems where the
class hierarchy is either structured as a tree or as a directed acyclic graph (DAG). To our
knowledge, the latter setting has not been studied before, although it occurs in real life
applications. For instance, the Gene Ontology (GO), a widely used classification scheme for
genes, is structured as a DAG. The DAG structure poses a number of complications to the
algorithms, e.g., the depth of a class in the hierarchy is no longer unique.

We have evaluated the algorithms on 24 datasets from functional genomics. The predic-
tive performance was measured as area under the PR curve. For a single-label classification
task this measure is well-defined, but for a multi-label problem the definition needs to be ex-
tended and there are several ways to do so. We propose three ways to construct a PR curve
for the multi-label case: micro-averaging precision and recall for varying thresholds, taking
the point-wise average of class-wise precision values for each recall value, and weighing the
contribution of each class in this average by the class’s frequency.

The most important results of our empirical evaluation are as follows. First, CLUS-HMC
has a better predictive performance than CLUS-SC and CLUS-HSC, both for tree and DAG
structured class hierarchies, and for all evaluation measures. Whereas this result was already
shown for CLUS-HMC and CLUS-SC by Blockeel et al. (2006) in a limited setting, it was
unknown where CLUS-HSC would fit in. Somewhat unexpectedly, learning a single-label
tree for each class separately, where one only focuses on the examples belonging to the
parent class, results in lower predictive performance than learning one single model for all
classes. That is, CLUS-HMC outperforms CLUS-HSC. CLUS-HSC in turn outperforms
CLUS-SC for DAGs; for trees the performances are similar.

Second, we have compared the precision-recall behavior of the algorithms to that of a
default model. Using micro-averaged PR curves, we have observed that CLUS-SC performs
consistently (for 23 out of 24 datasets) worse than default, indicating that it builds overly
complex models that overfit the training data. Interestingly, the other precision-recall aver-
aging methods are not able to detect this overfitting.

Third, the size of the HMC tree is much smaller (2 to 3 orders of magnitude) than the total
size of the models output by CLUS-HSC and CLUS-SC. As was expected, the CLUS-HSC
models are smaller than the CLUS-SC models (a factor 2 to 3).

Fourth, we find that learning a single HMC tree is also much faster than learning many
regular trees. Whereas CLUS-HMC has been shown to be more efficient than CLUS-SC be-
fore (Blockeel et al. 2006), it turns out to be also more efficient than CLUS-HSC. Obviously,
a single HMC tree is also much more efficient to apply than 4000 (for GO) separate trees.

Given the positive results for HMC decision trees on predictive performance, model size,
and efficiency, we can conclude that their use should definitely be considered in HMC tasks
where interpretable models are desired.

Acknowledgements Celine Vens is supported by the EU FET IST project “Inductive Querying”, contract
number FP6-516169 and the Research Fund K.U.Leuven. Jan Struyf and Hendrik Blockeel are postdoctoral
fellows of the Research Foundation, Flanders (FWO-Vlaanderen). Leander Schietgat is supported by a PhD
grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-
Vlaanderen).

The authors would like to thank Amanda Clare for providing them with the datasets and Kurt De Grave
for carefully reading the text and providing many useful suggestions. This research was conducted utilizing
high performance computational resources provided by K.U.Leuven, http://ludit.kuleuven.be/hpc.

http://ludit.kuleuven.be/hpc

Mach Learn (2008) 73: 185–214 213

References

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997).
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Research, 25, 3389–3402.

Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. The Gene Ontology Consor-
tium. Nature Genetics, 25(1), 25–29.

Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label prediction of gene
function. Bioinformatics, 22(7), 830–836.

Blockeel, H., Bruynooghe, M., Džeroski, S., Ramon, J., & Struyf, J. (2002). Hierarchical multi-classification.
In Proceedings of the ACM SIGKDD 2002 workshop on multi-relational data mining (MRDM 2002)
(pp. 21–35).

Blockeel, H., De Raedt, L., & Ramon, J. (1998). Top-down induction of clustering trees. In Proceedings of
the 15th international conference on machine learning (pp. 55–63).

Blockeel, H., Džeroski, S., & Grbović, J. (1999). Simultaneous prediction of multiple chemical parameters
of river water quality with Tilde. In Proceedings of the 3rd European conference on principles of data
mining and knowledge discovery (pp. 32–40).

Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., & Clare, A. (2006). Decision trees for hierarchical multil-
abel classification: a case study in functional genomics. In Proceedings of the 10th European conference
on principles and practice of knowledge discovery in databases (pp. 18–29).

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees.
Belmont: Wadsworth.

Cesa-Bianchi, N., Gentile, C., & Zaniboni, L. (2006). Incremental algorithms for hierarchical classification.
Journal of Machine Learning Research, 7, 31–54.

Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P., & Herskowitz, I. (1998). The tran-
scriptional program of sporulation in budding yeast. Science, 282, 699–705.

Clare, A. (2003). Machine learning and data mining for yeast functional genomics. PhD thesis, University of
Wales, Aberystwyth.

Clare, A., & King, R. D. (2001). Knowledge discovery in multi-label phenotype data. In 5th European con-
ference on principles of data mining and knowledge discovery (pp. 42–53).

Davis, J., & Goadrich, M. (2006), The relationship between precision-recall and ROC curves. In Proceedings
of the 23rd international conference on machine learning (pp. 233–240)

Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Bruus Pedersen, M., & Henning Krogh, P. (2006).
Using multi-objective classification to model communities of soil microarthropods. Ecological Mod-
elling, 191(1), 131–143.

DeRisi, J., Iyer, V., & Brown, P. (1997). Exploring the metabolic and genetic control of gene expression on a
genomic scale. Science, 278, 680–686.

Džeroski, S., Slavkov, I., Gjorgjioski, V., & Struyf, J. (2006). Analysis of time series data with predictive
clustering trees. In Proceedings of the 5th international workshop on knowledge discovery in inductive
databases (pp. 47–58).

Eisen, M., Spellman, P., Brown, P., & Botstein, D. (1998). Cluster analysis and display of genome-wide
expression patterns. Proceedings of the National Academy of Sciences of the USA, 95, 14863–14868.

Expasy (2008). ProtParam. http://www.expasy.org/tools/protparam.html.
Gasch, A., Huang, M., Metzner, S., Botstein, D., Elledge, S., & Brown, P. (2001). Genomic expression re-

sponses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Molecular
Biology of the Cell, 12(10), 2987–3000.

Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Botstein, D., & Brown, P. (2000).
Genomic expression program in the response of yeast cells to environmental changes. Molecular
Biology of the Cell, 11, 4241–4257.

Geurts, P., Wehenkel, L., & d’Alché-Buc, F. (2006). Kernelizing the output of tree-based methods. In Pro-
ceedings of the 23th international conference on machine learning (pp. 345–352)

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Proceedings
of the 14th international conference on machine learning (pp. 170–178).

Kumar, A., Cheung, K. H., Ross-Macdonald, P., Coelho, P. S. R., Miller, P., & Snyder, M. (2000). TRIPLES:
a database of gene function in S. cerevisiae. Nucleic Acids Research, 28, 81–84.

Mewes, H. W., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S., & Frishman, D. (1999). MIPS:
a database for protein sequences and complete genomes. Nucl. Acids Research, 27, 44–48.

Oliver, S. (1996). A network approach to the systematic analysis of yeast gene function. Trends in Genetics,
12(7), 241–242.

Ouali, M., & King, R. D. (2000). Cascaded multiple classifiers for secondary structure prediction. Protein
Science, 9(6), 1162–1176.

http://www.expasy.org/tools/protparam.html

214 Mach Learn (2008) 73: 185–214

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo: Morgan Kaufmann.
Roth, F., Hughes, J., Estep, P., & Church, G. (1998). Finding DNA regulatory motifs within unaligned non-

coding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnology, 16, 939–945.
Rousu, J., Saunders, C., Szedmak, S., & Shawe-Taylor, J. (2006). Kernel-based learning of hierarchical mul-

tilabel classification models. Journal of Machine Learning Research, 7, 1601–1626.
Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., & Futcher, B.

(1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cere-
visiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273–3297.

Stenger, B., Thayananthan, A., Torr, P., & Cipolla, R. (2007). Estimating 3D hand pose using hierarchical
multi-label classification. Image and Vision Computing, 5(12), 1885–1894.

Struyf, J., & Džeroski, S. (2006). Constraint based induction of multi-objective regression trees. In Knowledge
discovery in inductive databases, 4th international workshop, KDID’05, revised, selected and invited
papers (pp. 222–233).

Struyf, J., & Džeroski, S. (2007). Clustering trees with instance level constraints. In Proceedings of the 18th
European conference on machine learning (pp. 359–370)

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov networks. In Advances in neural informa-
tion processing systems 16 16

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005). Large margin methods for structured and
interdependent output variables. Journal of Machine Learning Research, 6, 1453–1484.

Tsoumakas, G., & Vlahavas, I. (2007). Random k-labelsets: an ensemble method for multilabel classification.
In Proceedings of the 18th European conference on machine learning (pp. 406–417).

Weiss, G. M., & Provost, F. J. (2003). Learning when training data are costly: the effect of class distribution
on tree induction. The Journal of Artificial Intelligence Research, 19, 315–354.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80–83.
Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Information Retrieval, 1,

69–90.

	Decision trees for hierarchical multi-label classification
	Abstract
	Introduction
	Related work
	Decision tree approaches for HMC
	Formal task description
	Predictive clustering trees
	Clus-HMC: an HMC decision tree learner
	Clus-SC: learning a separate tree for each class
	Clus-HSC: learning a separate tree for each hierarchy edge
	Comparison

	Hierarchies structured as DAGs
	Adaptations to Clus-HMC
	Adaptations to Clus-HSC

	Predictive performance measures
	Hierarchical loss
	Precision-recall based evaluation
	Area under the average PR curve
	Average area under the PR curves

	Experiments in yeast functional genomics
	Data sets
	Method
	Results
	Comparison of weighting schemes
	Conclusion

	Precision-recall based comparison of Clus-HMC/SC/HSC
	Conclusion

	Relation between the different AUPRC measures
	PR curves of a default classifier
	Interpretation of different average default curves
	Comparison of Clus-HMC/SC/HSC to default
	Conclusion

	Example PR curves for specific datasets
	Comparison of Clus-HMC/SC/HSC's tree size and induction time
	Conclusion

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

