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Structured outputs

 Target in supervised learning

– Single discrete or continuous variable

 Target in structured prediction

– Vector of discrete or continuous variables

– Hierarchy – tree or DAG

– Sequence – time series

 Solutions

– De-composition to simpler problems

– Exploitation of the structure
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Predictive Clustering Trees

 Standard Top-Down Induction of DTs

 Hierarchy of clusters

 Distance measure: minimization of intra-cluster 

variance

 Instantiation of the variance for different tasks
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CLUS

 System where the PCTs framework is 

implemented (KULeuven & JSI)
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PCTs – Multiple numeric targets

 Condition of vegetation in Victoria, Australia

 Habitat Hectares Index

– Large Trees, Tree Canopy Cover, Understorey, 

Litter, Logs, Weeds and Recruitment

 Euclidean distance  )yVar(E,=Var(E) t

Kocev et al., Ecological Modelling 220(8):1159-1168, 2009
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PCTs – Multiple discrete targets

 Mediana – Slovenian media space

– 8000 Questionnaires about reading and TV 

habits and life style of Slovenians

 What type of people read:

– Delo, Dnevnik, Ekipa, Slovenske Novice, Večer

 )yGini(E,=Var(E) t

 )yEntropy(E,=Var(E) t

Skranjc et al., Informatica 25(3):357-363, 2001
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PCTs - HMLC

Metabolism Energy

Respiration Fermentation

Transcription
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PCTs - HMLC

Metabolism (1) Energy (2)

Respiration (3) Fermentation (4)

Transcription (5)

 E

)v,d(v
=Var(E)

i 2ˆ
  2

2,1,
ˆ )v(v)ω(c=)v,d(v iiii

    i0i cparωω=cω 

Vens et al., Machine Learning 73(2):185-214, 2008
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PCTs - HMLC

 A leaf stores the mean label: proportion of the examples 

belonging to each class

 Prediction is made by using a user-defined threshold
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PCTs - HMLC

 A leaf stores the mean label: proportion of the examples 

belonging to each class

 Prediction is made by using a user-defined threshold

16. Protein with binding 

function or cofactor 

requirement

16.13. C-compound binding

16.13.1 sugar binding

…..

FunCAT annotation
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Ensemble Methods

 Ensembles are a set of predictive models

– Unstable base classifiers

 Voting schemes to combine the 

predictions into a single prediction

 Ensemble learning approaches

– Modification of the data

– Modification of the algorithm
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Ensemble Methods

 Ensembles are a set of predictive models

– Unstable base classifiers

 Voting schemes to combine the 

predictions into a single prediction

 Ensemble learning approaches

– Modification of the data

– Modification of the algorithm

Bagging
Random

Forest



21

Ensemble Methods: Algorithm

Image from van Assche, PhD Thesis, 2008
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Ensemble Methods: Algorithm
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Ensembles for structured outputs

 PCTs as base classifiers

 Voting schemes for the structured outputs

– MT Classification: majority and 

probability distribution vote

– MT Regression and HMLC: average

– For an arbitrary structure: 

prototype calculation function

 Memory efficient implementation
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 How many base classifiers are enough?

 Do ensembles of PCTs lift the predictive 

performance of a single PCT?

 Are ensembles of MT/HMLC PCTs better than 

ensembles for each target/class separately?

 Which approach is more efficient in terms of time 

and size of the models?

Experimental hypotheses
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Datasets

Datasets Examples Descriptive attributes Size of 

Output

MT Regression 14 154..60607 4..160 2..14

MT Classification 11 154..10368 4..294 2..14

HMLC 10 988..10000 80..74435 36..571

 Datasets with multiple targets

– Mainly environmental data acquired in 

EU and Slovenian projects

 HMLC

– Image classification

– Text classification

– Functional genomics
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Experimental design

 Types of models

– PCTs and ST trees (with F-test pruning)

– Ensembles of PCTs and ensembles of ST trees

 PCTs for HMLC weight for the distance - 0.75

 Number of base classifiers (unpruned)

– Classification: 10, 25, 50, 75, 100, 250, 500, 1000

– Regression: 10, 25, 50, 75, 100, 150, 250

– HMLC: 10, 25, 50, 75, 100
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Experimental design (ctd.)

 Random forest – feature subset size

– Multiple Targets: log

– HMLC: 10%

 10-fold cross-validation

 MT Classification - Accuracy

 MT Regression - correlation coefficient, RMSE, RRMSE

 HMLC - Precision-Recall (PR) curves, Area under PRCs

 Friedman and Nemenyi statistical tests
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Precision-Recall Curves

 PR curve plots Precision as a function of the Recall

 Combination of the curves per class

– Micro-averaging: Area under the average PRC

– Macro-averaging: Average area under the PRCs

FP+TP

TP
=Precision

FN+TP

TP
=Recall
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Precision-Recall Curves
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Results – Regression (RRMSE) 

MT Bagging                                           ST Bagging
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Results – Regression (RRMSE) 
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Results – Regression (RRMSE) 

 MT Ensembles perform better than

– single MT tree (stat. sign.)

– ST Ensembles

– faster to learn than ST ensembles (stat. sign.)

– smaller models than ST ensembles (stat. sign.)
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Results – Classification 

MT Bagging                                           ST Bagging
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Results – Classification 
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Results – Classification 

 MT Ensembles perform better than

– single MT tree (stat. sign.)

– faster to learn than ST ensembles (stat. sign.)

– smaller models than ST ensembles (stat. sign.)

 MT Bagging is better than ST Bagging, while MT 

random forest is worse than ST random forest
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Results – HMLC

HMLC Bagging                                    HSLC Bagging
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Results – HMLC

HMLC Bagging                                    HSLC Bagging

HMLC Random forest                          HSLC Random forest
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Results – HMLC 
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Results – HMLC 

 HMLC Ensembles perform better than

– single HMLC tree (stat. sign.)

– faster to learn than HSLC ensembles (stat. sign.)

– smaller models than HSLC ensembles (stat. sign.)

 HMLC Bagging is better than HSLC Bagging, while 

HMLC random forest is worse than HSLC random 

forest
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Results - Summary

Ensembles of PCTs:

 Perform significantly better than single PCT

 Perform better than ensembles for the sub-

components

 Smaller and faster to learn than the ensembles for 

the sub-components

– For multiple targets the ratio is ~ 3

– For HMLC the ratio is ~ 4.5



44

Outline

Background

– Structured outputs

– Predictive Clustering Trees (PCTs)

– PCTs for HMLC

Ensembles of PCTs

Experimental evaluation

Application in functional genomics

Conclusions



45

Ensembles of PCTs - functional genomics

 Automatic prediction of the multiple functions of the 

ORFs in a genome

 Bagging of PCTs for HMLC compared with state-of-

the-art approaches

 Datasets for three organisms

– S. Cerevisae, A. Thaliana and M. musculus

 Two annotation schemes

– FunCAT and GO (Gene Ontology)

Shietgat et al., BMC Bioinformatics 11:2, 2010
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Background – network based approaches

 Usage of known functions of genes nearby in a 

functional association network

 GeneFAS (Chen and Xu, 2004)

 GeneMANIA (Mostafavi et al., 2008) – combines 

multiple networks from genomic and proteomic data

 KIM (Kim et al., 2008) – combines predictions of a 

network with predictions from Naïve Bayes

 Funckenstein (Tian et al., 2008) – logistic regression 

to combine predictions from network and random forest
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Background – kernel based approaches

 KLR (Lee et al., 2006) – combination of Markov 

random fields and SVMs with diffusion kernels and 

using them in kernel logistic regression

 CSVM (Obozinski et al., 2008) – SVM for each 

function separately, and then reconciliated to enforce 

the hierarchy constraint

 BSVM (Barutcuoglu et al., 2006) – SVM for each 

function separately, then predictions combined using a 

Bayesian network

 BSVM+ (Guan et al., 2008) – extension of BSVM, 

uses Naïve Bayes to combine results over the data 

sources
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Datasets

 Saccharomyces Cerevisiae (D
0
-D

12
)

– sequence statistics, phenotype, secondary structure, 

homology and expression

 Arabidopsis Thaliana (D
13

-D
18

)

– sequence statistics, expression, predicted SCOP class, 

predicted secondary structure, InterPro and homology

– Each dataset annotated with FunCAT and GO

 Mus Musculus (D
19

)

– MouseFunc challenge, various data sources
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Experimental hypotheses

 Is bagging of PCTs better than single PCTs for HMLC 

and C4.5/H? (D
1
-D

18
)

 Compare Bagging of PCTs with BSVM on D
0

 Compare Bagging of PCTs with the approaches from 

MouseFunc Challenge (D
19

)
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Results – Bagging of PCTs vs. PCTs
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Results – Bagging vs. PCTs vs. C4.5H
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Results – Bagging of PCTs vs. BSVM

 Comparison by AUROC

 Average over the AUROC for all functions

– Bagging of PCTs: 0.871

– BSVM: 0.854

 Bagging of PCTs scores better on 73 of the 105 GO 

functions than BSVM (p = 4.37·10-5)
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Results – MouseFunc

 Comparison by 

 Different teams use different features

 Division of the dataset

– Three branches of GO (BP, MF and CC)

– Four ranges of specificity: number of genes by 

which each term is annotated with (3-10, 11-30, 31-

100 and 101-300)

  AUROC,AUPRC,PRCAU
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Results – MouseFunc (2)   

 Bagging of PCTs is 

– significantly better (p < 0.01) than BSVM+, CSVM, 

GeneFAS and KIM

– better than KLR and GeneMANIA

– Significantly worse (p < 0.01) than Funckenstein

 PRCAU
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Results – MouseFunc (3)   

 Bagging of PCTs is 

– significantly better (p < 0.01) than KIM

– not different from BSVM+, KLR, CSVM, GeneFAS

– Significantly worse (p < 0.01) than Funckenstein 

and GeneMANIA

AUPRC
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Results – MouseFunc (4)   

 Bagging of PCTs is 

– not different from KLR, CSVM, GeneFAS and KIM

– Significantly worse (p < 0.01) than Funckenstein, 

BSVM+ and GeneMANIA

AUROC
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Summary – Functional genomics

 Bagging of PCTs outperforms single PCT and 

C4.5H/M (Clare, 2003)

 Bagging of PCTs outperforms a statistical learner 

based on SVMs (BSVM) for S. Cerevisiae

 Bagging of PCTs is competitive to statistical and 

network based methods for the M. Musculus data
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Conclusions

 Lift the predictive performance of single PCT

 Better than ensembles for each of the sub-component 

of the output

 Competitive with state-of-the-art approaches in 

functional genomics

 Applicability to wide range of problems

- Different type and sizes of outputs

- Small and large datasets
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Questions?


