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Abstract

In this work, we are modelling the physic-chemical parameters of water
using bioindicator data (diatom taxa abundance data). Chemical status of
the water (or water quality class) is defined by the values of measured
physic-chemical parameters. Traditional approach to model these data is to
learn a separate model for each parameter and then derive a global
overview with some kind of summarization over the multiple models.
Another approach is to learn a single model that describes all parameters
(multi target approach). We explore these approaches and apply them on
data from Lake Prespa and its tributary rivers. The obtained models
revealed interesting connections between the diatom taxa and the water
quality (i.e. the values of the chemical parameters).
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1 Introduction

High population densities and the multiplicity of industrial and agricultural
activities expose most hydrographical basins close to urban centres to
heavy and rising environmental impacts. Usual approaches to water quality
evaluation are divided in two main categories. One based on physical and
chemical methods, and another considering biological community’s evalu-
ation [1]. Physical and chemical monitoring reflects only instantaneous
measurements, restraining the knowledge of water conditions to the mo-
ment when the measurements were performed. Biotic parameters on the
other hand provide better evaluation of environmental changes, because
community development integrates a period of time reflecting conditions
that might not be anymore present at the time of sampling and analysis.

The water quality models (WQMs) are focused on predicting water
chemical parameters using the biological characteristics of the water as in-
dicators of ecological status of the lake. Diatoms are usually considered as
very reliable bioindicators of the environment [10, 11]. The relationship
between the presence/abundance of these diatoms and the specific abiotic
factors can be studied using machine learning techniques. This is done un-
der the implicit assumption that both are observed at a single point in time
for a given spatial unit. WQMs takes into account only the specified target
abiotic factors of the environment, but still some temporal aspects may be
taken into account.

In this work, we model the physic-chemical (abiotic) parameters of the
water in Lake Prespa and its tributaries. We are modelling these paramet-
ers using the presence/abundance of some diatom taxa (biological paramet-
ers). The obtained models for the chemical parameters can be further used
to define the water classes. We decided to use trees as modelling tech-
nique. This decision was made because the interpretability of the trees and
their relatively good performance.

Having in mind that there are multiple chemical parameters (in statistic-
al terminology - multiple response variables), we investigate two ap-
proaches for modelling: (1) learn a regression tree (RT) [2] for each chem-
ical parameter separately and (2) learn a multiple targets regression tree
(MTRT) [3, 4] to predict all parameters simultaneously. The advantages of
the latter approach are that the obtained MTRT is smaller than the sum of
the RTs for each chemical parameter and that the MTRT is more reliable
in to reveal and explain the dependencies between the different physic-
chemical parameters [4].
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The data that we use were collected during the EU funded project
TRABOREMA (FP6-INCO-CT-2004-509177). They describe the diatom
abundance in Lake Prespa and its tributary rivers [13]. The measurements
comprise several important parameters that reflect the physical, chemical
and biological aspects of the water quality of the lake [5, 6]. These include
measurements of the relative abundance of different taxa belonging to the
group Bacillariophyta (diatoms). The focus of this paper is the investiga-
tion of the relationship between their relative abundance and the abiotic
characteristics of the habitat. Later, these diatoms are used as bioindicat-
ors, primary attributes for building the WQMs.

The remainder of this paper is organized as follows. In Section 2, we
describe the machine learning methodology that was used (regression trees
and multiple targets regression trees). Section 3 describes the data and Sec-
tion 4 explains the experimental design that was employed to analyse the
data at hand. In Section 5, we present the obtained WQ models and discuss
them. Section 6 gives the main conclusions.

2. Methodology

2.1 Regression Trees

Regression trees are decision trees that are capable of predicting the value
of a numeric target variable [2]. Regression trees are hierarchical struc-
tures, where the internal nodes contain tests on the input attributes. Each
branch of an internal test corresponds to an outcome of the test, and the
prediction for the value of the target attribute is stored in a leaf. Regression
tree leafs contain constant values as predictions for the target variable
(they represent piece-wise constant functions). To obtain the prediction for
a new data record, the record is sorted down the tree, starting from the root
(the top-most node of the tree). For each internal node that is encountered
on the path, the test that is stored in the node is applied, and depending on
the outcome of the test, the path continues along the corresponding branch
(to the corresponding subtree). The resulting prediction of the tree is taken
from the leaf at the end of the path. Example of regression tree is shown in
Figure 4.
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2.2 Multi Targets Regression Trees

Multiple Targets Regression Trees (MTRTs) generalize regression trees in
the sense that they can predict a value of multiple numeric target attributes
[3]. Therefore, for prediction, instead of storing a single numeric value, the
leafs of a MTRT store a vector. Each component of this vector is a predic-
tion for one of the target attributes.

A MTRT (and a RT) is usually constructed with a recursive partitioning
algorithm from a training set of records (known as algorithm for top-down
induction of decision trees). The records include measured values of the
descriptive and the target attributes. One of the most important steps dur-
ing the tree induction algorithm is the test selection procedure. Each test
for a given node is selected on the base of some heuristic function that is
computed on the training data. The goal of the heuristic is to guide the al-
gorithm towards small trees with good predictive performance.

In this paper, we apply the system CLUS [7] for constructing the (Mul-
tiple Targets) regression trees. CLUS uses the sum of the variations in the
induced subsets (intra-subset variance) as heuristic for selection of the
tests. The intra-subset variance is measured as:

Z Z (xij_x;')z

j=1i=1 (1)

where T is the number of target attributes, N is the number of records in
the subset, x; the value of target attribute j of the i-th record in the subset,

and x;. the subset mean of attribute j. Lower intra-subset variation res-

ults in predictions that are more accurate.

After the regression tree is constructed, it is common to prune it. With
pruning some subtrees are replaced with leafs, in order to improve predict-
ive accuracy and/or interpretability. There are two pruning approaches:
pre-pruning and post-pruning. With pre-pruning approaches, the pruning is
included in the tree building algorithm as a stopping criterion. Examples of
pre-pruning are the stopping criteria mentioned above: the number of re-
cords in a leaf and the maximum depth of the tree. The post-pruning ap-
proaches are applied after the tree construction has ended. Example of this
approach is the pruning method proposed by [8]. Essentially, this is a dy-
namic programming optimization method that selects a subtree from the
constructed tree with at most maxsize nodes and minimum training set er-
ror (mean squared error, summed over all target attributes). The restriction
maxsize is a user defined value.
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3. Data description

The data that we have at hand were measured during the EU project
TRABOREMA. The measurements cover one and a half year period (from
March 2005 till September 2006) [5]. Samples for analysis were taken
from the surface water of the lake at several locations near the mouth of
the major tributaries (see Figure 1). In total, 275 water samples were avail-
able, 218 from the lake measurements and 57 from the tributaries. The
three tributaries during the funded project were analysed in a lesser extent
than the lake itself, but they are very important factor of ecological influ-
ence for the diatom communities. On these water samples both physic-
chemical and biological analyses were performed.

Fig. 1. Sampling locations

The physic-chemical properties of the samples provided the environ-
mental variables for the habitat models, while the biological samples
provided information on the relative abundance of the studied diatoms.
The following physic-chemical properties of the water samples were meas-
ured: temperature, dissolved oxygen, Secchi depth, conductivity, pH, nitro-
gen compounds (NO,, NO;, NH,, inorganic nitrogen), SO, and Sodium
(Na), Potassium (K), Magnesium (Mg), Copper (Cu), Manganese (Mn)
and Zinc (Zn) content. Some basic statistic about the chemical parameters
is presented in Table 2.

The biological variables were actually the relative abundances of 116
different diatom taxa. Diatom cells were collected with a planktonic net or
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as an attached growth on submerged objects (plants, rocks or sand and
mud). This is the usual approach in studies for environmental monitoring
and screening of the diatom abundance [9]. The sample, afterwards, is pre-
served and the cell content is cleaned. The sample is examined with a mi-
croscope, and the diatom species and abundance in the sample is obtained
by counting of 200 cells per sample. The specific species abundance is
then given as a percent of the total diatom count per sampling site [5, 6].

From the 116 diatom taxa we selected the top 10 most abundant ones
(separately for the lake and river measurements). These taxa were used to
construct models for the chemical parameters.

Table 1. The 10 most abundant diatoms for lake and tributary rivers samples and their ac-
ronyms

Lake Rivers
Acronym Diatom Acronym Diatom
APED  Amphora pediculus AMSS  Achnanthidium minutissimum
CJUR Cyclotella juriljii CPLA Cocconeis placentula

COCE  Cyclotella ocellata DMES  Diatoma mesodon
CPLA Cocconeis placentula EMIN  Encyonema minutum

CSCU  Cavinula scutelloides  ESLS Encyonema silesiacum
DMAU Diploneis mauleri FCAP Fragilaria capuccina
NPRE  Navicula prespanense HARC  Hannea arcus

NROT  Navicula rotunda NGRG Navicula gregaria

NSROT Navicula subrotundata NLAN  Navicula lanceolata
STPNN  Staurosirella pinnata ~ PLLA Planothidium lanceolatum

4. Experimental Design

We model the data from the measurements at lake and tributaries sampling
points. We constructed a MTRT to predict all chemical parameters simul-
taneously (single model for all, see Figures 2 and 4) and RT for each
chemical parameter separately. In this paper we show and discuss the
MTRTs and single RTs both for lake and river sites (Figure 3 and Figure
5).

We applied 3 different pruning algorithms: minimal records in a leaf,
maximal depth and maximal size. The parameter setting for these al-
gorithms was as follows: for minimal records in a leaf we set 2, 4, 8, 16
and 32; for maximal depth we set 3, 4 and 5 and for maximal size we set 7,
9,11 and 13.
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We present the correlation coefficients obtained on the training set, be-
cause the main purpose of the tree is to describe the relations between the
measured data and not to be used for predictions.

5. Models of chemical parameters for water quality

We applied the methodology described in Section 2, according to the ex-
perimental setup, to the data at hand. With the modelling procedure (with
the different scenarios and the different pruning algorithms) we obtained

several models.

Table 2. Simple statistics for the chemical parameters for both datasets

Lake

Rivers

Minimum

Temperature [°C]

Dissolved Oxygen [mg/dm?]
Saturated Oxygen [%]
Deficit Oxygen [mg/dm’]

Secchi Depth [m]

Conductivity [uS/cm]

pH factor

NO, [mg/dm?]
NO; [mg/dm?]
NH, [mg/dm?]
Total N [mg/dm?]

Inorganic N [mg/dm’]
Organic N [mg/dm’]

SO, [mg/dm?]
Total P [ug/dm?]
Na [mg/dm?]

K [mg/dm’]
Mg [pg/dm’]
Cu [ug/dm?]
Mn [ug/dm’]
Zn [pg/dm?]

29
0.7
6.6

1.8

Maximum

26.8
12.6

Mean Value

15.56
8.04

114.1983.07
-9.32 1.33

54

142.5318

5.5
0

0
0.01
0.09
0.01
0.02
2.68
1.15
0.75
0.23
1.11
1.04
0.88
0.27

24.8
0.44
13.4
1.07
9.07
0.83
8.41
266.1
83.13
13.15
4.8
19.45
233
230
22.7

-1.73
3.09

g DeviationStandard|

1.99
19.54
2.02
0.76

196.2327.84

8.68
0.03
2.07
0.29
2.07
0.22
1.83
29.47
18.63
4.36
1.50
5.70
3.97
7.88
5.23

2.86
0.05
2.13
0.18
1.12
0.14
1.10
22.98
15.31
2.10
0.66
2.84
2.79
16.79
4.42

Minimum

6.2
3.6
394
-5.53
/

23
5.48
0

0
0.03
0.24
0.02
0.08
1.18
1.5
0.73
0.31
0.23
0.64
1.04
0.25

Mean Value
Standard
Deviation

Maximum

21 12.29 475
11 7.80 1.81
102.574.40 13.15
0.24 -2.65 1.27
/ / /

224 58.21 41.81
88 6.99 0.62
0.34 0.04 0.06
20.713.25 3.55
0.78 0.34 0.19
459 1.85 1.17
0.61 0.26 0.15
432 1.59 1.10
102.325.70 26.75
125 18.58 20.96
8.89 2.09 1.32
6.65 1.19 1.04
9.63 2.50 2.50
13.284.43 3.00
79.3 16.51 19.25
214.59.84 29.48
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From these models we select the ones that have better predictive power,
and have reasonable size (in the most cases the tree size is 9). The diatom
species in the models are presented with their respective abbreviations.
Their complete names can be found in Table 1.

Table 3. Correlation Coefficient obtained on the training sets. MTRT = Multi Target Re-
gression Trees, RT = Regression Trees

Lake Rivers
MTRT RT MTRT RT
Temperature 0.5 0.58 0.65 0.80

Dis. Oxygen 0.52 0.33 0.63 0.84
Sat. Oxygen 0.53 0.54 0.47 0.78
Def. Oxygen  0.56 0.57 0.41 0.78

Secchi Depth  0.33 0.50 / /

Conductivity ~ 0.32 0.55 0.73 0.86
pH Factor 0.19 0.77 0.46 0.73
NO, 0.44 0.62 0.64 0.81
NO; 0.51 0.64 0.51 0.64
NH, 0.26 0.45 0.79 0.63
Total N 0.35 0.44 0.65 0.78
Inorganic N 0.26 0.43 0.79 0.86
Organic N 0.32 0.44 0.63 0.75
SO, 0.2 0.67 0.55 0.87
Total P 0.25 0.53 0.73 0.80
Na 0.27 0.43 0.66 0.84
K 0.32 0.41 0.71 0.76
Mg 0.36 0.43 0.55 0.82
Cu 0.21 0.46 0.33 0.80
Mn 0.1 0.31 0.65 0.92
Zn 0.33 0.42 0.30 0.71

The correlation coefficients of the obtained trees are presented in Table
3 and 4. We can note that the performance of the trees from river measure-
ments is generally better than the performance of the trees from lake meas-
urements. Also, the regression trees achieve slightly better performance
than the multi target regression trees.
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Table 4. Correlation Coefficient obtained on the testing sets. MTRT = Multi Target Re-
gression Trees, RT = Regression Trees

Lake Rivers

MTRT RT MTRT RT
Temperature 0.25 0.38 0.1 0.4
Dis. Oxygen 0.14 0.03 0.09 0.44
Sat. Oxygen 0.06 0.41 0.11 0.17
Def. Oxygen  0.02 0.26 0.23 0.16
Secchi Depth  0.04 0.06 / /
Conductivity  0.14 0.35 0.02 0.09
pH Factor 0.04 0.02 0.21 0.02
NO, 0.3 0.2 0.05 0.12
NO; 0.35 0.35 0.05 0.21
NH, 0.03 0.06 0.36 0.3
Total N 0.09 0.2 0.06 0.14
Inorganic N 0.03 0.09 0.36 0.3
Organic N 0.07 0.17 0.1 0.05
SO, 0.03 0.11 0.29 0.34
Total P 0.03 0.13 0.09 0.15
Na 0.02 0.16 0.02 0.31
K 0.01 0.06 0.15 0.22
Mg 0.14 0.12 0.1 0.24
Cu 0.02 0.03 0.35 0.02
Mn 0.04 0.1 0.22 0.32
Zn 0.1 0.05 0.1 0.02

5.1 Models from lake measurements

Figure 2 depicts a MTRT that presents the relationship between the pres-
ence/absence of diatom taxa and the abiotic parameters. This tree illus-
trates 6 different chemical situations that are described in the leafs of tree
and focus the analysis on the trophic state indicators (total phosphorus,
secchi depth and nitrogen). The situation when Navicula rotunda (NROT)
and Diploneis mauleri (DMAU) occurs with situation when NROT is
present and DMAU in smaller quantities (the two left-most leafs from the
tree). We can conclude that DMAU indicates chemical situation with
lower total phosphorus and nitrogen (indicators of clean water status) and,
correspondingly, higher Secchi depth values. Absence of NROT and Cyc-
lotella ocellata (COCE) (right most leaf) indicates higher phosphorus val-
ues (between eutrophic and mesotrophic state).
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Fig. 2. MORT of the TOP 10 Diatom from lake measurements dataset

Lowest phosphorus values can be related to absence of NROT and Cavin-
ula scutelloides (CSCU) and presence of COCE and Cocconeis placentula
(CPLA) (oligotrophic state). The rest of the situations indicate similar
trophic state. Additionally, this tree shows that NROT is capable of living
in alkaline environment (higher pH levels).
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Fig. 3. Regression tree for temperature from lake measurements

The tree presented in Figure 3 shows similar relations between the tem-
perature and the diatoms as its more general variant from Figure 2. It is
easy to see that an NROT diatom is mostly influenced by the temperature.
High temperatures are favourable environment for NROT, but low temper-
ature is satisfying for DMAU population if higher than 7.

5.2 Models from river measurements

Figure 3 presents a tree obtained from the data from the tributary rivers. It
represents chemical situations that are generalized from all tributary rivers.

The presence of Navicula lanceolatum (NLAN) (left most leaf) indic-
ates the highest total phosphorus concentrations and higher metal concen-
trations as compared to the other chemical situations from the tree. If there
are relatively low quantities of NLAN (6 - 21) and higher quantities of Na-
vicula gregaria (NGRG) then the conductivity is high and the concentra-
tion of nitrates (NO, and NOs) is higher.
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Fig. 4. MORT of the TOP 10 Diatom from inflow rivers measurements dataset

Highest conductivity can be found at lower or no presence of NLAN
(less than 6) and presence of Fragilaria capucina (FCAP) (between 4 and
6). Higher concentration of FCAP, in this case is encountered at lower
temperatures. Relatively low concentrations of phosphorus can be found at
low or no presence of NLAN (less than 6) and FCAP (less than 4). Addi-
tionally, if the Planothidium lanceolatum (PLLA) diatom is more present
(more than 6) then the concentration of metals and sulphates (SO,) is high-

Cr.

aaeed —

77.816

_;\MSﬁ >8
yes no

/‘
s
yes %o
/
29.20 EMIN > 4
yes o
e
FCAP >3 11.5695
yes -
P e
20,525 11.935

Fig. 5. Regression tree for the total phosphorus from river measurements
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The tree presented in Figure 5 shows similar relations between the phos-
phorus and the diatoms as its more general variant from Figure 4. The
highest concentration of phosphorus is expected at NLAN values higher
than 21 (as in tree from Figure 4).

If NLAN is present less than 21% (or not present at all), then higher
phosphorus concentration are encountered and FCAP is present more than
8%.

6. Conclusion

In this paper, we applied machine learning methodology, in particular re-
gression trees and multiple targets regression trees, to predict the chemical
parameters of the environment using the diatom community in Lake
Prespa and its tributaries.

Regarding the performance, in our case, RTs [12] achieve slightly better
correlation coefficients than MTRTs. However, the presented methodology
of multi-target regression trees has several advantages with respect to the
more commonly used approach of single target regression trees. Namely,
the MTRTs provide knowledge about all targets and, in our case, identify
the diatom taxa that are present in the water samples under some specific
physic-chemical conditions. On the other hand, using the traditional ap-
proach, one would have to construct separate model for each chemical
parameter and to summarize over the multiple models, which is not a trivi-
al task.

For further work, we intend to define water classes based on the chem-
ical parameters and construct trees to predict the water classes from the di-
atom abundance. We, also, intend to acquire data with better quality and
obtain trees with better correlation coefficients.
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