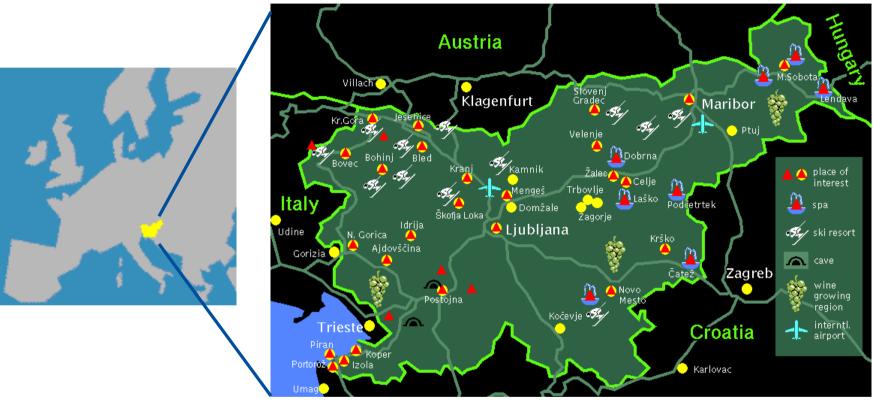
Machine Learning

Part of programme **Applied Statistics with Network Analysis** HSE University, Moscow January-February 2021

Nada Lavrač, Ljupčo Todorovski

Jožef Stefan Institute, University of Ljubljana Ljubljana, Slovenia

Slovenia – Ljubljana (capital)



Europe

Ljubljana, Slovenia

Jožef Stefan Institute, Ljubljana, Slovenia

- Jožef Stefan Institute (JSI, founded in 1949)
 - named after a distinguished physicist Stefan (1835-1893)

- leading national research organization $\mathbf{j} = \sigma \mathbf{T}^4$ s and technology (~700 researchers and students)
- Jožef Stefan International Postgraduate School (founded in 2004)
 - Offers four MSc and PhD programs (in English): ICT, nanotechnologies, ecotechnologies and sensor technologies

Department of Knowledge Technologies at JSI

Department of Knowledge Technologies

Knowledge Technologies

- Making AI techniques operational for practical problems
 Staff
- 35 researchers, 10 students

Main research areas

- Machine Learning and data Mining
- Text Mining and Human Language Technologies
- Web Services and Semantic Web
- Ontologies and Knowledge Management
- Decision Support Systems

Applications

- Medicine, Bioinformatics, Public Health
- Ecology, Finance, ...

Nada Lavrač

Research areas

- Machine Learning
- Text Mining
- Web Services
- Semantic Web

Applications

- Medicine, Bioinformatics
- Public Health
- Media News analysis

Teaching

- JSI Postgraduate School
- University of Nova Gorica
- University of Ljubljana
- HSE 😳

Ljupčo Todorovski

Research areas

- Machine learning
- Meta learning
- Symbolic regression (equation discovery)
- Time series and dynamical systems

Applications

- Bioinformatics
- Environmental sciences
- Public administration

Teaching

- University of Ljubljana
 - Faculty of Public Administration
 - Faculty of Mathematics and Physics

	State-of-the-Art	Sašo Džeroski Ljupčo Todorovski (Eds	.)
		Computationa of Scientific Kn	
		Introduction, Techniques, Environmental and Life Se	
		SESE	
1	Michelangelo Ceci - Ja: .jupčo Todorovski - C šašo Džeroski (Eds.)		
11053	Machine Lea Knowledge n Database	Discovery	
S	uropean Conference, ECML PK kopje, Macedonia, September roceedings, Part I	DD 2017 18–22, 2017	
	Part I		
	ECML PKDD 2017		
	N (2) (2)		
4	🖻 Springer	EXTRAS ONLINE	

Machine Learning 2020/2021 Logistics: Course participants

Home page: https://github.com/ljupco-todorovski/hse-moscow-ml

ZOOM link: https://fmf-uni-lj-si.zoom.us/j/97756216461

Nada Lavrač: <u>nada.lavrac@ijs.si</u>, Ljupčo Todorovski: <u>ljupco.todorovski@fu.uni-lj.si</u>

HSE 1st year MSc students - <u>masna2020group@gmail.com</u>

To be listed later – tour de table ZOOM presentation of individual students

HSE 2nd year MSc students - <u>hsemasna@yandex.ru</u>

To be listed later – tour de table ZOOM presentation of individual students

HSE Course Schedule – 2020/21

Every Tuesday and Thursday 17:30 – 20:30 Moscow time, via ZOOM

5 x 3 hours on January 14, 19, 21, 26, 28 5 x 3 hours on February 2, 4, 9, 11, 16

Possible exceptions:

- to be communicated later

Machine Learning: Credits and Coursework

Credits:

• 4 ECTS ?

Requirements:

- Attending lectures
- Attending practical exercises: Jupyter Python notebooks, R

Exam requirements:

• To be communicated later

Machine Learning course: Supporting material

- Supporting material on videolectures.net: Seminar: AI for Industry and Society, Ljubljana 2020
 - <u>http://videolectures.net/AlindustrySeminar2019/</u>
 - Marko Robnik Šikonja: Artificial Intelligence: Techniques, Trends and Applications
 - Nada Lavrač: Data Science, Machine Learning and Big Data: Current trends
 - Blaž Zupan: Data Science with the OrangeToolbox

- Open source machine learning and data visualization toolbox
 - https://orange.biolab.si/
 - http://file.biolab.si/datasets/
 - <u>https://www.youtube.com/channel/UCIKKWBe2SCAEyv7ZN</u>
 <u>Ghle4g</u>
- Interactive data analysis workflows
- Visual programming
- Based on numpy, scipy and **scikit-learn**
- GUI: Qt framework

Machine Learning

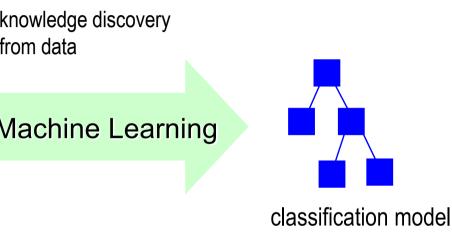
- Machine Learning (ML) computer algorithms/machines that learn predictive models from class-labeled data
 - early rule learning algorithms: AQ (Michalski 1969), ...

13

- early decision tree learning algorithms since 1970s: ID3 (Quinlan 1979), …
- early regression tree learners CART (Breiman et al. 1984), …

Machine Learning

knowlodad	Lenses	Tear prod.	Astigm.	Spect. presc.	Age	Person
knowledge	NONE	reduced	no	myope	17	01
from data	SOFT	normal	no	myope	23	O2
	NONE	reduced	yes	myope	22	O3
	HARD	normal	yes	myope	27	O4
	NONE	reduced	no	hypermetrope	19	O5
Machin						06-013
Machin	SOFT	normal	no	hypermetrope	35	014
	NONE	reduced	yes	hypermetrope	43	O15
	NONE	normal	yes	hypermetrope	39	O16
	NONE	reduced	no	myope	54	017
	NONE	normal	no	myope	62	O18
						019-023
	NONE	normal	yes	hypermetrope	56	O24



data

Given: class-labeled data (e.g., transaction data table, relational database, text documents, Web pages, ...) **Find:** a classification model, able to predict new instances

Machine learning: An illustrative example

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	
O1	17	myope	no	reduced	NONE	
O2	23	myope	no	normal	SOFT	Machine learning
O3	22	myope	yes	reduced	NONE	Maonino ioannig
O4	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	
06-013						tear prod.
O14	35	hypermetrope	no	normal	SOFT	SPEECH
O15	43	hypermetrope	yes	reduced	NONE	reduced
O16	39	hypermetrope	yes	normal	NONE	NONE
017	54	myope	no	reduced	NONE	NONE
O18	62	myope	no	normal	NONE	no yes
019-023						
O24	56	hypermetrope	yes	normal	NONE	SOFT spect. pre.
						myope hypermetrope

- lenses=NONE ← tear production=reduced
- lenses=NONE ← tear production=normal AND astigmatism=yes AND spect. pre.=hypermetrope
- **lenses=SOFT** ← tear production=normal AND astigmatism=no
- lenses=HARD ← tear production=normal AND astigmatism=yes AND spect. pre.=myope

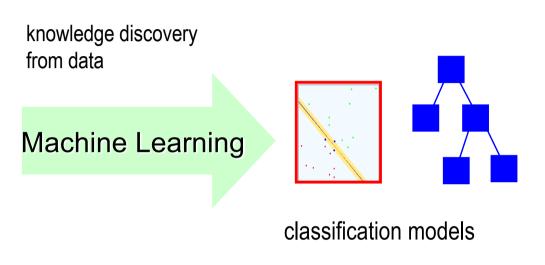
 $\mathsf{lenses} = \mathsf{NONE} \leftarrow$

HARD

NONE

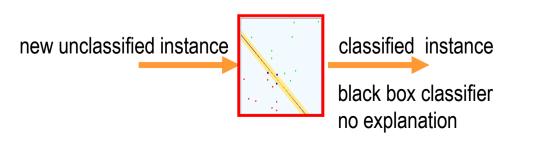
Machine Learning

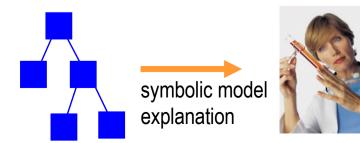
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
O6-O13					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
O24	56	hypermetrope	yes	normal	NONE



data

Given: class-labeled data (e.g., transaction data table, relational database, text documents, Web pages, ...) Find: a classification model, able to predict new instances





Why learn and use black-box models

Given: the learned classification model (e.g., linear classifier, deep neural network, ...)

Find: - the class label for a new unlabeled instance

new unclassified instance

classified instance

Advantages:

- best classification results in image recognition and other complex classification tasks

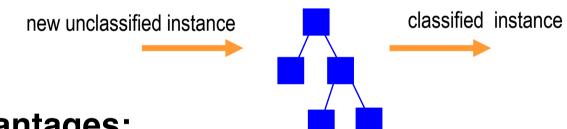
Drawbacks:

- poor interpretability of results
- can not be used for pattern analysis

Why learn and use symbolic models

Given: the learned classification model (a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance



Advantages:

- use the model for the explanation of classifications of new data instances
- use the discovered patterns for data exploration

Drawbacks:

- lower accuracy than deep NNs

First Generation Machine Learning

First machine learning algorithms for

Decision tree and rule learning in 1970s and early 1980s
 by Quinlan, Michalski et al., Breiman et al., ...

Characterized by

- Learning from data stored in a single data table
- Relatively small set of instances and attributes

Lots of ML research followed in 1980s

- Numerous conferences ICML, ECML, ... and ML sessions at AI conferences IJCAI, ECAI, AAAI, ...
- Extended set of learning tasks and algorithms addressed

Multi-class Learning Task

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
O17	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023			no		
O24	56	hypermetrope	no	normal	NONE

Several class labels of training examples of a single Target attribute

Binary Classification

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
O17	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

Binary classes

- positive vs. negative examples of Target class
- Concept learning binary classification and class description
 - for Subgroup discovery exploring patterns characterizing groups of instances of target class

Multi-target Classification

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	Pilot
01	17	myope	no	reduced	NO	NO
O2	23	myope	no	normal	YES	NO
O3	22	myope	yes	reduced	NO	NO
O4	27	myope	yes	normal	YES	NO
O5	19	hypermetrope	no	reduced	NO	NO
O6-O13						
O14	35	hypermetrope	no	normal	YES	YES
O15	43	hypermetrope	yes	reduced	NO	NO
O16	39	hypermetrope	yes	normal	NO	NO
017	54	myope	no	reduced	NO	NO
O18	62	myope	no	normal	NO	YES
019-023						
O24	56	hypermetrope	yes	normal	NO	NO

Multi target classification

each example belongs to several Target classes

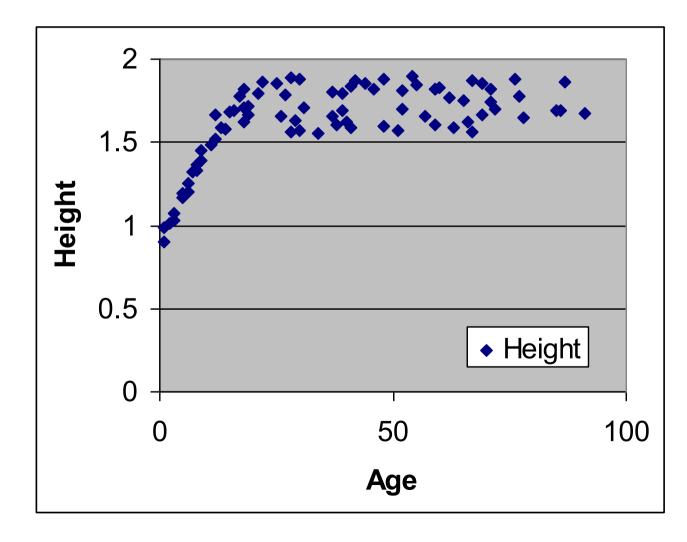
Learning from Numeric Class Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	LensPrice
01	17	myope	no	reduced	0
O2	23	myope	no	normal	8
O3	22	myope	yes	reduced	0
O4	27	myope	yes	normal	5
O5	19	hypermetrope	no	reduced	0
06-013					
O14	35	hypermetrope	no	normal	5
O15	43	hypermetrope	yes	reduced	0
O16	39	hypermetrope	yes	normal	0
O17	54	myope	no	reduced	0
O18	62	myope	no	normal	0
019-023					
O24	56	hypermetrope	yes	normal	0

Numeric class values – regression analysis

Example regression problem

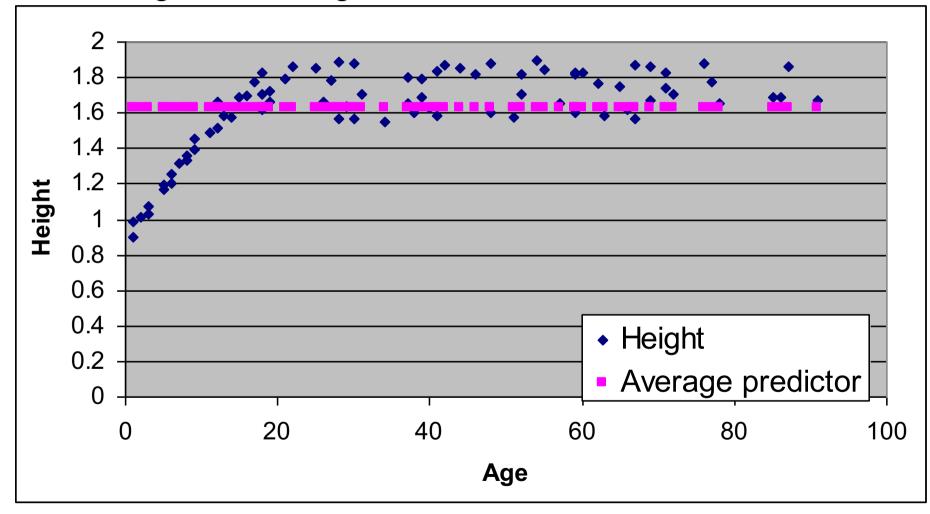
data about 80 people: Age and Height



Age	Height
3	1.03
5	1.19
6	1.26
9	1.39
15	1.69
19	1.67
22	1.86
25	1.85
41	1.59
48	1.60
54	1.90
71	1.82

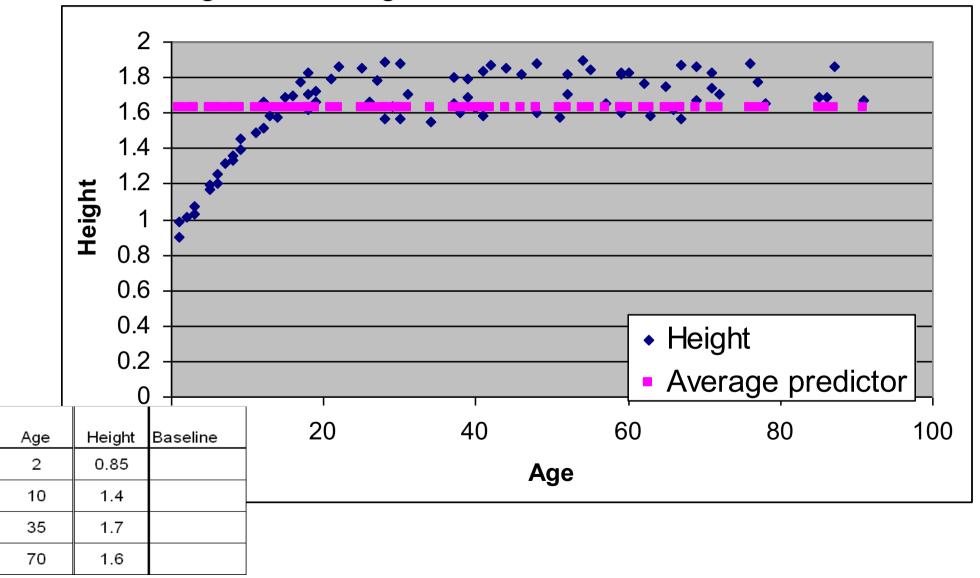
Baseline numeric model

• Average of the target variable



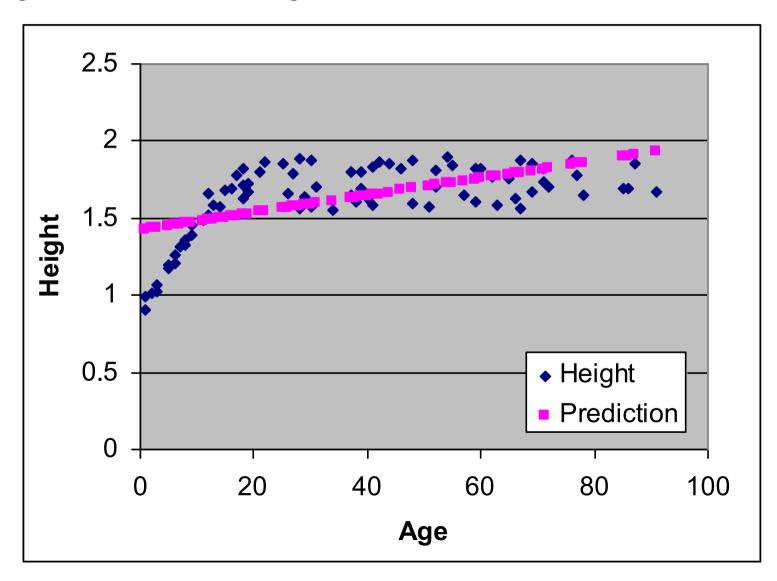
Baseline numeric predictor

• Average of the target variable is 1.63

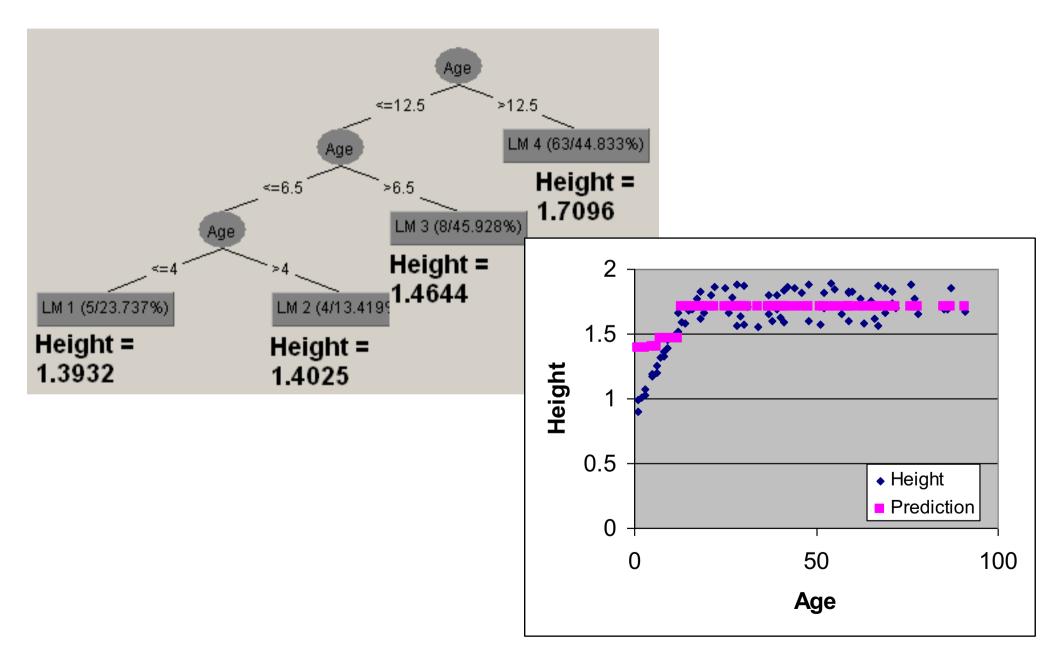


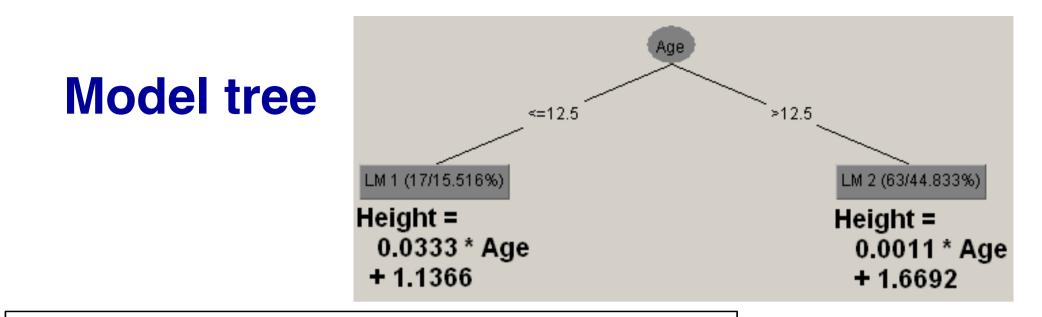
Linear Regression Model

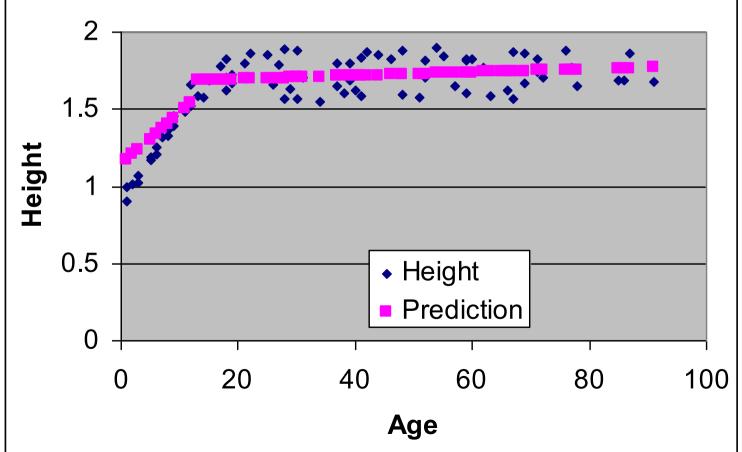
Height = 0.0056 * Age + 1.4181



Regression tree

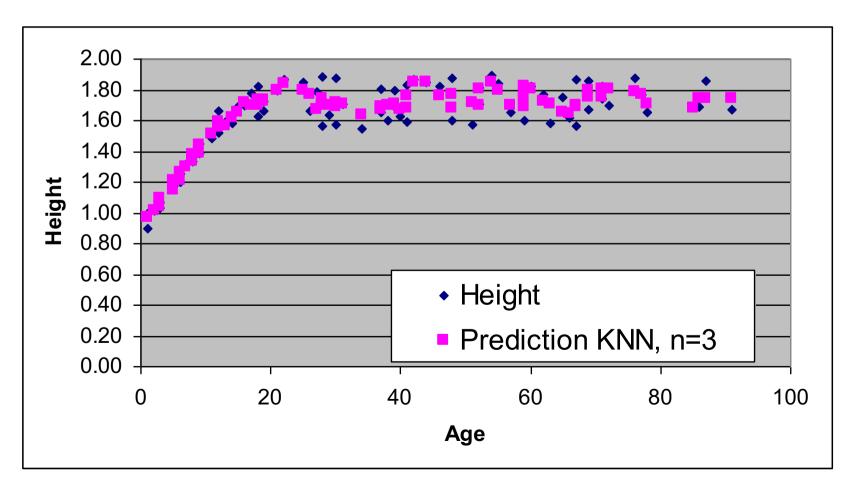






kNN – K nearest neighbors

- Looks at K closest examples (by age) and predicts the average of their target variable
- K=3



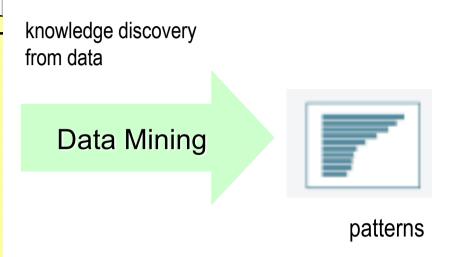
Machine Learning and Data Mining

- Machine Learning (ML) computer algorithms/machines that learn predictive models from class-labeled data
- Data Mining (DM) extraction of useful information from data: discovering relationships and patterns that have not previously been known,
 - sometimes used to denote the use of ML techniques applied to solving real-life data analysis problems

Data Mining

data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
O24	56	hypermetrope	yes	normal	NONE



data

Given: class labeled or non-labeled data **Find:** a set of interesting patterns, explaining the data

Knowledge Discovery in Databases

- Buzzword since 1996
- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models/patterns in data." *

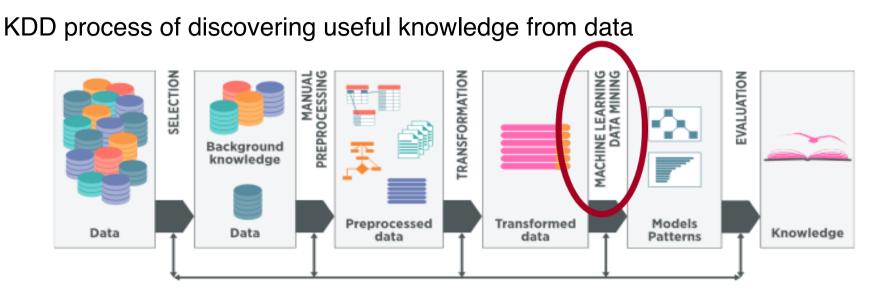
Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

KDD Process

KDD process of discovering useful knowledge from data

- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models or patterns in data."
- KDD process involves several phases:
 - data preparation
 - machine learning, data mining, statistics, ...
 - evaluation and use of discovered patterns

KDD Process



- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models or patterns in data."
- Machine Learning (ML) / Data Mining (DM) is the key step in the KDD process
 - performed using machine learning or pattern mining techniques for extracting classification models or interesting patterns in data
 - this key step represents only 15%-25% of entire KDD process

Second Generation Machine Learning

Developed since 1990s:

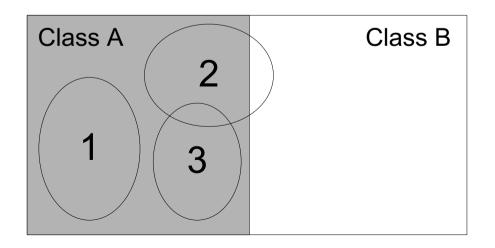
- Focused on data mining tasks characterized by large datasets described by large numbers of attributes
- Industrial standard: CRISP-DM methodology (1997)

- New conferences on practical aspects of data mining and knowledge discovery: KDD, PKDD, ...
- New learning tasks and efficient learning algorithms:
 - Learning descriptive patterns: association rule learning, subgroup discovery, ...
 - Learning predictive models: Bayesian network learning,, relational data mining, statistical relational learning, SVMs, ...

Subgroup Discovery

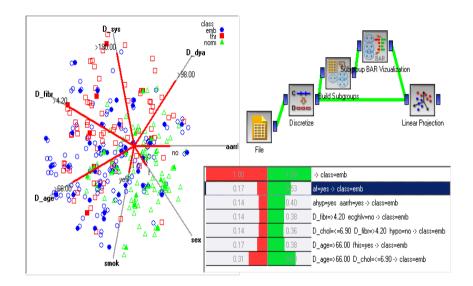
- Data transformation:
 - binary class values (positive vs. negative examples of Target class)
- Subgroup discovery:
 - a task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples
 - subgroups must be large and significant

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
04	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO



SD algorithms in Orange DM Platform

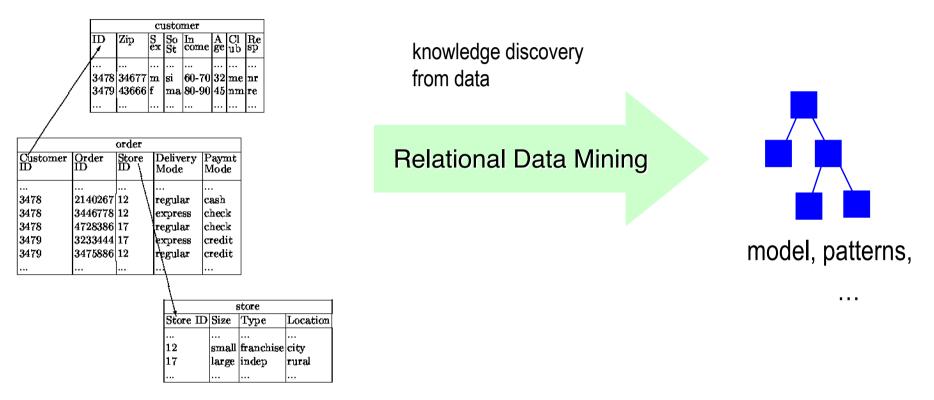
- Orange data mining toolkit
 - classification and subgroup discovery algorithms
 - data mining workflows
 - visualization



SD Algorithms in Orange

- SD (Gamberger & Lavrač, JAIR 2002)
- Apriori-SD (Kavšek & Lavrač, AAI 2006)
- CN2-SD (Lavrač et al., JMLR 2004)

Relational Data Mining



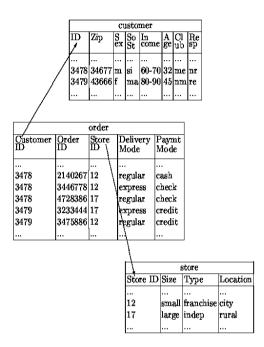
Relational representation of customers, orders and stores.

Given: a relational database, a set of tables, sets of logical facts, a graph, ...

Find: a classification model, a set of patterns

Relational Data Mining

- ILP, relational learning, relational data mining
 - Learning from complex relational databases

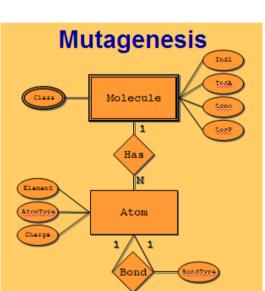


Relational representation of customers, orders and stores.

Relational Data Mining

ILP, relational learning, relational data mining

- Learning from complex relational databases
- Learning from complex structured data, e.g. molecules and their biochemical properties



				С	usto	mer					
		ID /	Zip	S ex	$_{\rm St}^{\rm So}$		ne	A ge	Cl ub	$_{\rm sp}^{\rm Re}$	
	/	 3478	 34677	 m	 si	 60-	70	 32	 me	 nr	
/			43666		ma						
						•••		•••			
			order								
Customer ID	Or ID	der	$\stackrel{\text{Store}}{\mathbb{D}}$)eliv Aode			ayı Aod			
			\					• .			
3478		0267		11	egula		1.	ash			
3478	1° .	6778			xpre			hec			
3478		28386		- N	egula			hec			
3479		3444			xpre		1.	red			
3479	347	5886	12	ľ	egul	J.	c	red	it		
					4			•			
					\downarrow						
					4	-	-			tore	-
					Sto	re I	D	Siz	e '	Гуре	Location
								•••			
					12					ranchise	
					17			lar,	ge i	indep	rural

Relational representation of customers, orders and stores.

Relational and Semantic Data Mining

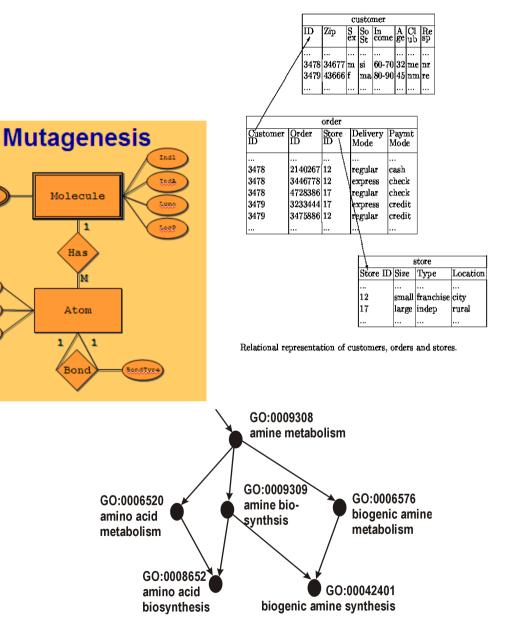
Class

Elemen

AtomTyp

Charge

- ILP, relational learning, relational data mining
 - Learning from complex relational databases
 - Learning from complex structured data, e.g. molecules and their biochemical properties
 - Learning by using domain knowledge in the form of ontologies = semantic data mining

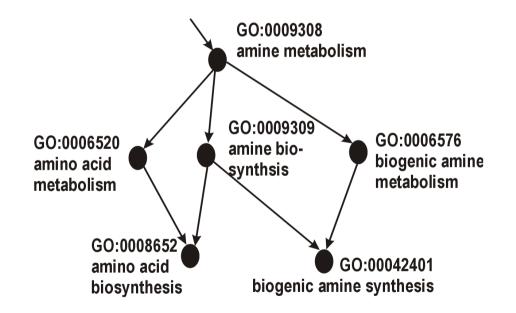


Using domain ontologies

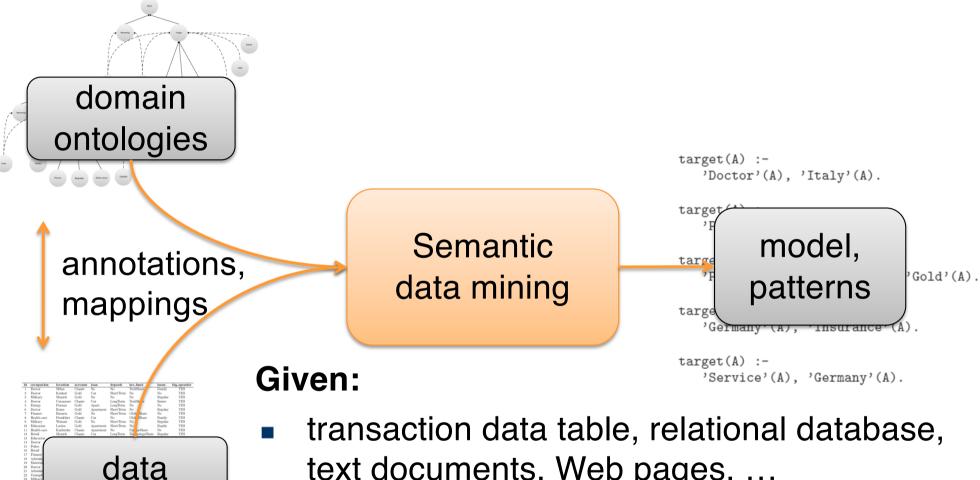
Using domain ontologies as background knowledge, e.g., using the Gene Ontology (GO)

 GO is a database of terms, describing gene sets in terms of their

- functions (12,093)
- processes (1,812)
- components (7,459)
- Genes are annotated to GO terms
- Terms are connected (is_a, part_of)
- Levels represent terms generality



Semantic Data Mining: Using ontologies as background knowledge in RDM

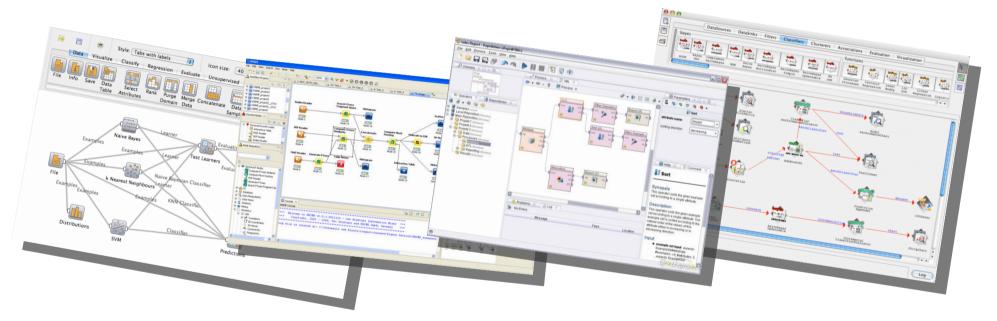


- text documents, Web pages, ...
- one or more domain ontologies

Find: a classification model, a set of patterns

Second Generation Data Mining Platforms

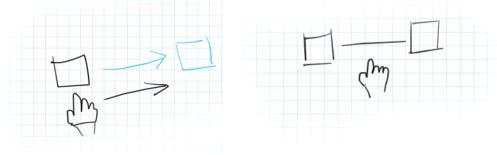
Orange, WEKA, KNIME, RapidMiner, ...



- include numerous data mining algorithms
- enable data and model visualization
- like Orange, Taverna, WEKA, KNIME, RapidMiner, also enable complex workflow construction

Data Mining Workflows for Open Data Science

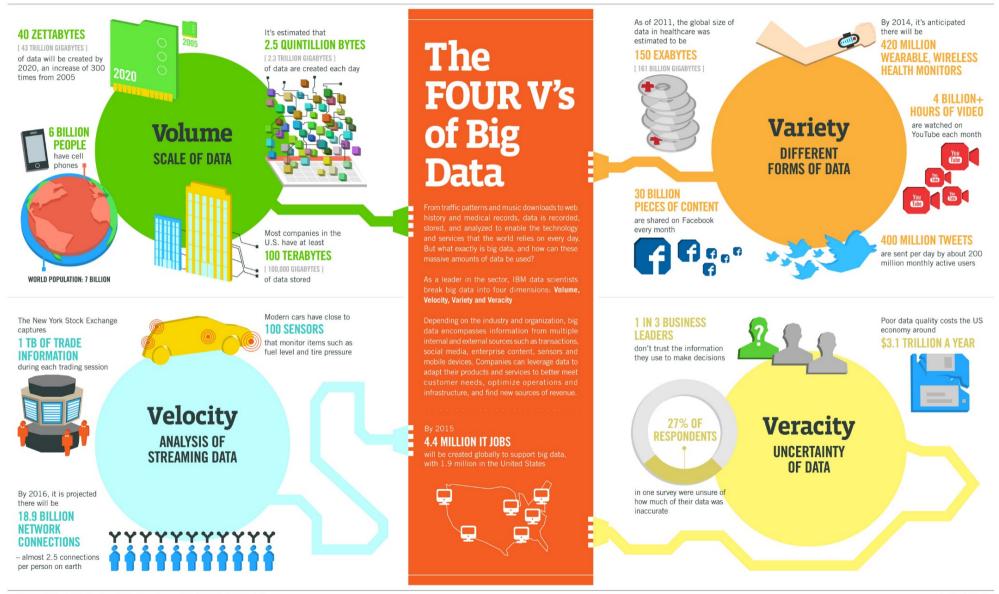
- Workflows are executable visual representations of procedures
 - divided into smaller chunks of code (components)
 - organized as sequences of connected components.
- Suitable for representing complex scientific pipelines
 - by explicitly modeling dependencies of components
- Building scientific workflows consists of simple operations on workflow elements (drag, drop, connect), suitable for nonexperts



Big Data

- Big Data Buzzword since 2008 (special issue of Nature on Big Data)
 - data and techniques for dealing with very large volumes of data, possibly dynamic data streams
 - requiring large data storage resources, special algorithms for parallel computing architectures.

The 4 Vs of Big Data



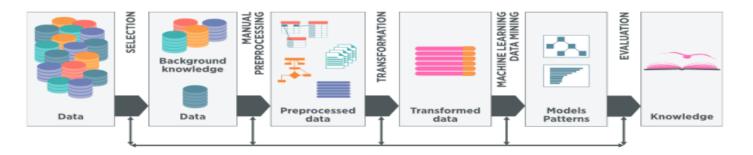
Data Science

- Data Science buzzword since 2012 when Harvard Business Review called it "The Sexiest Job of the 21st Century"
 - an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from data in various forms, both structured and unstructured, similar to data mining.
 - used interchangeably with earlier concepts like business analytics, business intelligence, predictive modeling, and statistics.

Third Generation Machine Learning

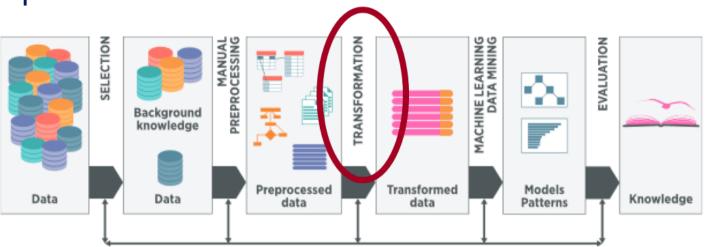
• Developed since 2010s:

- Focused on big data analytics
- Addressing complex data mining tasks and scenarios
- New conferences on data science and big data analytics; e.g., IEEE Big Data, Complex networks, ...
- New learning tasks and efficient learning algorithms:
 - Analysis of dynamic data streams, Network analysis, Text mining, Semantic data analysis, ...
- Lots of emphasis on automated data transformation,
 i.e. representation learning



Representation Learning

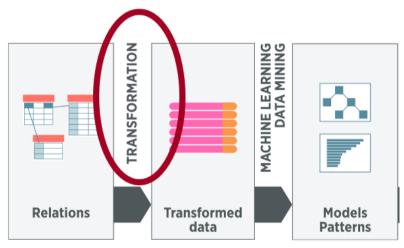
• KDD process:



- Representation learning = Automated data transformation, performed on manually preprocessed data
- Transformation requires handling heterogeneous data
 - Data (feature vectors, documents, pictures, data streams, ...)
 - Background knowledge (multi-relational data tables, networks, text corpora, ...)

Representation Learning in Relation Learning setting

 Representation learning = automated transformation of multirelational data



- Two main approaches:
 - Propositionalization of relational data, of heterogeneous information networks, …
 - Embeddings of texts, networks, knowledge graphs, entities (features),
 ... is highly popular in the last few years

Propositionalization: Data transformation for Relational Learning

			C	usto	mer					
	ID /	Zip	Sex	So St	\lim_{com}	ie į	ie (Cl 1b	$_{ m sp}^{ m Re}$	
	1						.			
	/ 3478	34677	\mathbf{m}	si	60-7	70 3	2 1	ne	nr	
/	3479 3	43666	f	ma	80-9	90 4	15 r	ım	ге	
							.			
								_		
		order								
Customer ID	Order	Store ID \)eliv		Ρa				
ш	ш	$ \mathbf{m} $	- IN	lode	-	Mc	de			
		\								
3478	2140267	12	1 10	egula	ar	cas	h			
3478	3446778	12	\ e:	xpre	ss	che	\mathbf{x} k			
3478	4728386		p.	egula	ar	che	\mathbf{ck}			
3479	3233444	17	- le:	xpre	ss	сте	dit	:		
3479	3475886	12	Πr	egula	ar	сте	dit	:		
				ł						
				Ц				st	ore	
				Sto	те П	S	ize	1	Гуре	Location
						. .		-		
				12		s	na	11 f	ranchise	city
				17		la	urge	e i	ndep	rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

- 1. constructing relational features
- 2. constructing a propositional table

	f1	f2	f3	f4	f5	f 6		1/-				\mathbf{fn}
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	ro l o	0	0	1	1	1	0
g5	1	1	1	0	0 /	01	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Propositionalization: Data transformation for Relational Learning

					usto					_	
		ID /	Zip	S ex	So St	\lim_{con}	ıe	A ge	Cl ub	$_{ m sp}^{ m Re}$	
	/		 34677		 si	 60-'	70				
	/		43666			00- 80-9					
										_	
-/-			order								
Customer D	Or ID	der	Store ID \)eliv 4ode			'ayı lod			
			\		•						
3478		10267		\ r	egula	ar	c	ash			
3478	344	6778	12	∖∣e	xpre	SS	c.	hec	k		
3478	472	8386	17	ŀr	egula	ar	c	hec	k		
3479	323	3444	17	- Ne	xpre	ss		red	it		
3479	347	5886	12	- 1 1	egul			red			
]	<u> </u>	1						
					Γ				S	tore	
					Sto	re I	D	Siz	e /	Туре	Loc
					12			\mathbf{sm}	all	franchise	city

Relational representation of customers, orders and stores.

17

large indep

Location

rural

'n													
		f1	f2	f3	f4	f5	f 6		1/2				fn
	g1	1	0	0	1	1	1	0	0	1	0	1	1
	g2	0	1	1	0	1	1	0	0	0	1	1	0
	g3	0	1	1	1	0	0	1	1	0	0	0	1
	g4	1	1	1	0	1	10 ² 0	0	0	1	1	1	0
	g5	1	1	1	0	0 /	0010	0	1	1	0	1	0
	g1	0	0	1	1	0	0	0	1	0	0	0	1
	g2	1	1	0	0	1	1	0	1	0	1	1	1
	g3	0	0	0	0	1	0	0	1	1	1	0	0
U	g4	1	0	1	1	1	0	1	0	0	1	0	1

Step 1

Propositionalization

									and the second			
	f1	f2	f3	f4	f5	f 6		1		1		\mathbf{fn}
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	nto	0	0	1	1	1	0
g5	1	1	1	0	0 /	01	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

model, patterns, ...

Propositionalization: Data transformation for Relational Learning

				c	usto:	mer				
		ID 1	Zip	S ex		In con		A ge	Cl ub	$_{ m sp}^{ m Re}$
		3478	34677	m	si	60-	70	32	me	nr
/	/	3479	43666	f	ma	80-	90	45	nn	1 re
$-\!\!-$			order							
Customer		ler	Store ID $\$	T)eliv	ery	$ \mathbf{P} $	ayı	\mathbf{nt}	
D	ID		шļ	N	lode	, ľ	M	lód	e	
			\							
3478	214	0267	12	(r	egula	ar	c	ash		
3478	344	6778	12	\ e	xpre	SS	[c]	hec	k	
3478	472	8386	17	h	egula	ar	[c]	hec	k	
3479	323	3444	17	le	xpre	SS	c	red	it	
3479	347	5886	12	h	egula	ar	c	red	it	
					1		 			
					ГŢ				S	tore
					Sto	re I	D	Siz	e	Туре
					1		I			
					12			\mathbf{sm}	all :	franc

Relational representation of customers, orders and stores.

Location

city rural

	f1	f2	f3	f4	f5	f6				1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 ² 0	0	0	1	1	1	0
g5	1	1	1	0	0 4	0010	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Step 1

Propositionalization

- 1. construct relational features
- 2. construct a propositional table

Step 2

Subgroup discovery

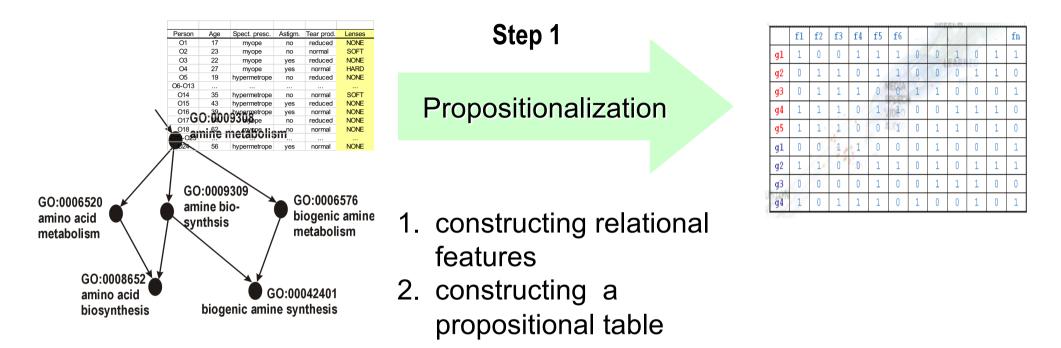
f1 f2 f3 f4 f5 f6 ... fn g1 1 0 0 1 1 1 0 0 1 1 g2 0 1 1 1 1 0 0 1 1 1 g3 0 1 1 0 0 1 1 0 0 1 1 0 g3 0 1 1 0 0 1 1 0 0 1 1 0 g4 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0

```
target(A) :-
    'Doctor'(A), 'Italy'(A).
target(A) :-
    'Public'(A), 'Gold'(A).
target(A) :-
    'Poland'(A), 'Deposit'(A), 'Gold'(A).
target(A) :-
    'Germany'(A), 'Insurance'(A).
target(A) :-
```

'Service'(A), 'Germany'(A).

patterns (set of rules)

Propositionalization: Data transformation for Semantic Data Mining



The approach: Using relational subgroup discovery in the SDM context

- General purpose system RSD for Relational Subgroup Discovery, using a propositionalization approach to relational data mining
- Applied to semantic data mining in a biomedical application by using the Gene Ontology as background knowledge in analyzing microarray data

Železny and Lavrac, MLJ 2006

56

Text mining: Viewed in propositionalization context: BoW data transformation

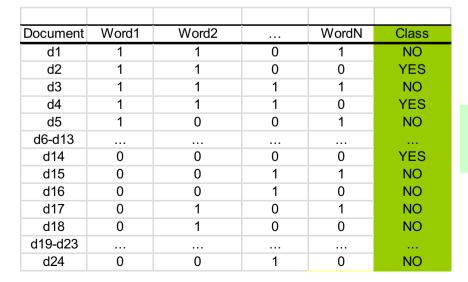
Step 1

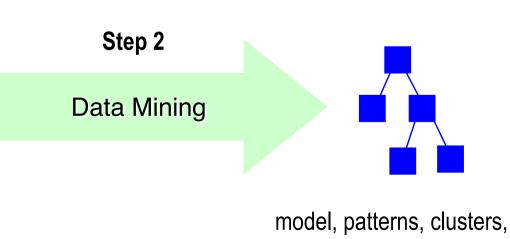
BoW vector construction

- 1. BoW features construction
- 2. Table of BoW vectors construction

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

. . .





BoW construction: Feature weights and Cosine similarity between document vectors

Each document D is represented as a vector of TF-IDF weights

$$tfidf(w) = tf.\log(\frac{N}{df(w)})$$

• Similarity between two vectors is estimated by the similarity between their vector representations (cosine of the angle between the two vectors):

Similarity(D₁, D₂) =
$$\frac{\sum_{i} x_{1i} x_{2i}}{\sqrt{\sum_{j} x_{j}^{2}} \sqrt{\sum_{k} x_{k}^{2}}}$$

Embeddings-based Data Transformation for Text mining

- Corpus embedding,
 Document embedding,
 Sentence embedding,
 word embedding (e.g.,
 word2vec)
 - Transforming documents by projecting documents into vectors (rows of a data table)

			1		
Document	Dim1	Dim2		DimN	Class
d1	0.378	0.222	0.333	0.95	NO
d2					YES
d3					NO
d4					YES
d5					NO
d6-d13					
d14					YES
d15					NO
d16					NO
d17					NO
d18					NO
d19-d23					
d24	0.198	0.523	0.715	0.263	NO

Embeddings-based Data Transformation for Text mining

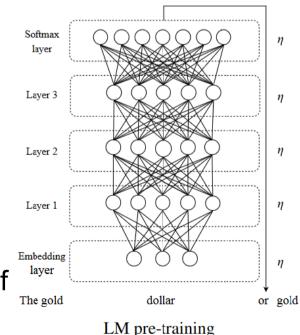
 Corpus embedding, Document embedding, Sentence embedding, word embedding

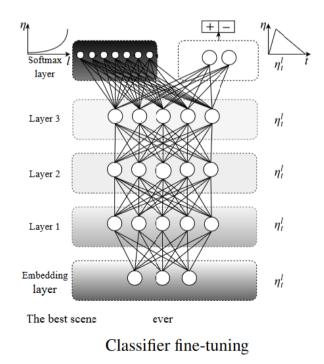
(e.g., word2vec)

 Transforming documents by projecting documents into vectors (rows of a data table)

 Table values correspond to weights in the embedding layer of a neural network

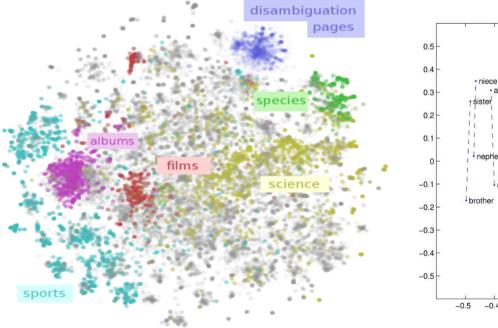
Document	Dim1	Dim2		DimN	Class
d1	0.378	0.222	0.333	0.95	NO
d2					YES
d3					NO
d4					YES
d5					NO
d6-d13					
d14					YES
d15					NO
d16					NO
d17					NO
d18					NO
d19-d23					
d24	0.198	0.523	0.715	0.263	NO

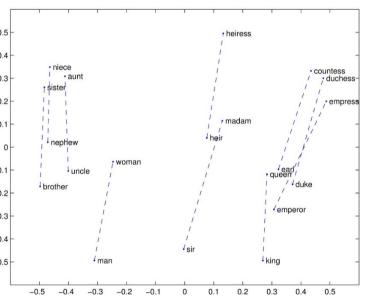




Embedding-based Data Transformation for Text mining

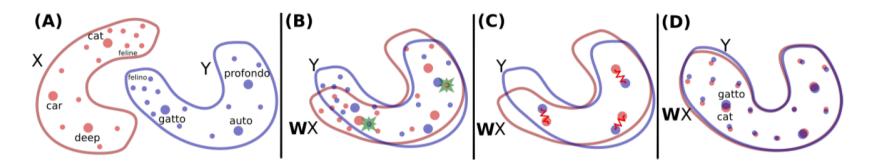
- Corpus embedding, Document embedding, Sentence embedding, word embedding, ...
 - Representations of word meaning obtained from corpus statistics
 - Spatial relationships correspond to linguistic relationships





Cross-domain or cross-lingual Embeddingsbased Data Transformation for Text mining

Aligning embedding spaces across domains or languages



- EMBEDDIA H2020 project (2019-2021) coordinated by Jožef Stefan Institute: Cross-lingual embeddings for less-represented languages in news media industry
 - developing new language models for less represented languages

 using advanced embedding models like GloVe and contextual embedding models like Bert in news analysis applications and in UGC commentary filtering

Course Outline

- 1. Introduction to machine learning
- 2. Rule learning
- 3. Text mining
- 4. Relational and Semantic machine learning

- 5. Ensemble learning
- 6. Support Vector Machines and Kernels
- 7. Artificial neural networks and deep learning
- 8. Complex data types and embeddings
- 9. Autoencoders

Course Outline

- 1. Introduction to machine learning
- 2. Rule learning
- 3. Text mining
- 4. Relational and Semantic machine learning

- 5. Ensemble learning
- 6. Support Vector Machines and Kernels
- 7. Artificial neural networks and deep learning
- 8. Complex data types and embeddings
- 9. Autoencoders