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Ljupčo Todorovski

University of Ljubljana, Faculty of Public Administration
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The Task of Machine Learning

Recall the definition from Nada’s lecture

Machine Learning: computer algorithms/machines that learn predictive
models from labeled data

Formal definition of the task

Given a data set Strain of examples of the form (x , y)

Find a model m that can estimate the value of y for a given x
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What Model to Select?

Accurate

Model has to provide estimates that accurately reconstruct the values of y

TrainError(m) =
1

|Strain|
∑

(x ,y)∈Strain

(y −m(x))2

General

Model has to generalize well to examples outside the training set Strain

TestError(m) =
1

|Stest |
∑

(x ,y)∈Stest

(y −m(x))2, Strain ∩ Stest = ∅
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Crucial Problem of Model Selection

Accurate model is not necessarily general, even more

If we choose the most accurate model m on training data

Model m typically does not generalize well

Various reasons, including

Noise in the data

Limited training data sample
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Accuracy vs Generality

With increasing the model complexity, we can accurately fit the training
data (blue line), but fail to generalize to test data (red line).
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Lecture Overview

Overfitting (Underfitting)

Bias-variance decomposition

Trade-off between bias and variance

Curse of Dimensionality

Optimal model and nearest neighbors

Empirical illustration and mathematical results

Software platforms for practical exercises

R environment for statistical computing

Python and Jypyter notebooks
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Overfitting and Underfitting An Example

Data Set: p = 1,D1,DY ⊆ R
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Overfitting and Underfitting An Example

Model Selection: Which Model is Better?

Linear Oscillatory
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Overfitting and Underfitting An Example

Model Selection: Linear (William of Ockham)
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Overfitting and Underfitting An Example

Model Selection: Oscillatory (Test Data)
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Overfitting and Underfitting An Example

Model Spaces
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Overfitting and Underfitting An Example

Model Variance

Low-variance linear model: model error highly sensitive to model
parameters (slope of the linear model)

High-variance oscillatory model: model error robust to model
parameters (oscillation amplitude)

Linear Oscillatory
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Overfitting and Underfitting An Example

Model Spaces and Data
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Overfitting and Underfitting An Example

Model Spaces and the Bias-Variance Trade-Off
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Overfitting and Underfitting An Example

Consequence: Wrong Model Selected (Underfitting)
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Overfitting and Underfitting Mathematics of the Bias-Variance Decomposition

True (Target) Model m : Y = m(X ) + ε,E [ε] = 0

Note some important properties of the true model

1 E [m(x0)] = m(x0), since m is deterministic

2 E [Y |X = x0] = E [m(x0) + ε] =[1] m(x0)

3 Var [Y |X = x0] = E [(Y − E (Y ))2|X = x0] =
= E [(Y −m(x0))2|X = x0] = E [ε2] = σ2

ε

4 E [Y 2|X = x0] = E [(m(x0)+ε)2] = E [m(x0)]2 +2E [m(x0)ε]+E [ε2] =
=[2,3] m(x0)2 + σ2

ε
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Overfitting and Underfitting Mathematics of the Bias-Variance Decomposition

Learned Model Ŷ = m̂

1 E [m̂(x0)2] = E [m̂(x0)]2 + Var [m̂(x0)],
using the well-known variance formula Var [U] = E [U2]− E [U]2

Important note

The learned model m̂ is also deterministic

However, it varies with the variation of the training set S
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Overfitting and Underfitting Mathematics of the Bias-Variance Decomposition

Decomposition of the Model Error

Err(x0) = ES [(Y –m̂(x0))2|X = x0]

= ES [Y 2 + m̂(x0)2–2Y m̂(x0)|X = x0]

= ES [Y 2|X = x0] + ES [m̂(x0)2] – 2ES [Y m̂(x0)|X = x0]

=[m2,m4] m(x0)2 + σ2
ε + ES [m̂(x0)2] – 2m(x0)ES [m̂(x0)]

=[m̂1] σ2
ε+m(x0)2+ES [m̂(x0)]2 + VarS [m̂(x0)]

– 2m(x0)ES [m̂(x0)]

= σ2
ε + (ES [m̂(x0)]–m(x0))2 + VarS [m̂(x0)]

= σ2
ε + Bias2 + Variance
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Overfitting and Underfitting Interpretation of Bias-Variance Decomposition

Components of the Model Error

Data noise term σ2
ε

The learning does not influence this component.

Bias term (ES [m̂(x0)]–m(x0))2

Average difference between the expected value of the model
prediction Ŷ = m̂(x0) and the true value Y = m(x)

For a model space tells us how close can m̂ get to m

Variance term VarS [m̂(x0)]

The variance of the prediction Ŷ around its expected value ES [Ŷ ]

For a model space tells us how stable are the predictions of m̂
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Overfitting and Underfitting Interpretation of Bias-Variance Decomposition

Bias and Variance: Graphical Interpretation
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Overfitting and Underfitting Interpretation of Bias-Variance Decomposition

Bias-Variance Trade-Off
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Overfitting and Underfitting Interpretation of Bias-Variance Decomposition

Overfitting vs Bias-Variance

Overfitting

Situation when we face low bias and high variance

Too complex model space, e.g., nearest neighbors (NN) with low k

The right-hand side of the graph on the previous slide

Underfitting

Situation when we face high bias and low variance

Too simple model space, e.g., linear models or NN with high k

The left-hand side of the graph on the previous slide

Optimal model

Ideal compromise between the model bias and variance

Perfect level of the model space complexity
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Overfitting and Underfitting Interpretation of Bias-Variance Decomposition

Overfitting vs Bias-Variance

Low bias High bias

Low variance

High variance
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Overfitting and Underfitting Interpretation of Bias-Variance Decomposition

Control over Bias and Variance

Reducing bias

Linear models: add non-linear (higher order/degree) terms

Nearest neighbors: lowering the number of neighbors

Reducing variance

Linear models: regularization and variable selection

Nearest neighbors: increasing the number of neighbors

General method: ensembles of models

Problem: Often reducing variance increases bias and vice-versa.
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Overfitting and Underfitting Interpretation of Bias-Variance Decomposition

Lecture Overview

Overfitting (Underfitting)

Bias-variance decomposition

Trade-off between bias and variance

Curse of Dimensionality

Optimal model and nearest neighbors

Empirical illustration and mathematical results

Software platforms for practical exercises

R environment for statistical computing

Python and Jypyter notebooks
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The Curse of Dimensionality Optimal Predictive Model

Optimal Predictive Model m∗

m∗(x) = E [Y |X = x ] minimizes the mean squared error E [(Y −m(X ))2].

Model estimate on a training data set S

m∗(x0) =
1

|S0|
∑

(x ,y)∈S0

y , S0 = {(x , y) ∈ S : x = x0}

Obvious problem: training data set S contains too few (if any) examples
(x , y), such that x = x0, i.e., S0 is a useless empty set for most x0.
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The Curse of Dimensionality Optimal Predictive Model

Obvious Solution: Nearest Neighbors Method

We slightly change the definition of S0

It includes k examples that are the closest to the example x0

Assumes a measure of distance between the examples, e.g., Euclidean

How close are the nearest neighbors?

In mathematical terms: what is the radius (volume) of S0?
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The Curse of Dimensionality Empirical Illustration

Empirically Measured Radius for k = 10 in 1-D and 2-D
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The Curse of Dimensionality Empirical Illustration

The Change of Radius/Volume with Dimensions (k = 10)
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The Curse of Dimensionality Mathematical Background

Distance D of a Random Point

Distance is observed from the center of a unit ball.

Volume of a p-dimensional ball with radius r

V = rpπ
p
2 /Γ(p/2 + 1)

Note: only the first term rp depends on the radius

The distribution of the random variable D

FD(x) = P(D ≤ x) = xp/1p = xp, 0 ≤ x ≤ 1

fD(x) = P(D = x) = F ′D(x) = p xp−1
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The Curse of Dimensionality Mathematical Background

Minimal distance M of n random points

Distance is observed from the center of a unit ball.

The distribution of the random variable M

fM(x) = P(M = x) = n (1− FD(x))n−1 fd(x) = n (1− xp)n−1 p xp−1

By integrating the above function wrt x, we get

FM(x) = P(M ≤ x) = 1− (1− xp)n
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The Curse of Dimensionality Mathematical Background

The integration from the previous slide

FM(x) =

∫ x

−∞
n (1− yp)n−1 p yp−1 dy

=x≥0

∫ x

0
n (1− yp)n−1 p yp−1 dy

=z=yp ,dz=pyp−1 dy

∫ xp

0
n (1− z)n−1 dz

= −(1− z)n
∣∣∣xp
0

= 1− (1− xp)n
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The Curse of Dimensionality Mathematical Background

Median xm of the minimal distance M

FM(x) = 1− (1− xm
p)n =

1

2

xm =

(
1− 1

2
1
n

) 1
p

Curse of dimensionality

The median of the minimal distance of a random sample of n points
increases (exponentially) with increasing dimensionality p.
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Back to the Course

Addressing the Challenges

Bias-Variance Trade-Off Curse of Dimensionality

Ensembles (reducing variance) Dealing with Complex Data
Support Vector Machines (reducing bias) Embeddings

Neural networks, Deep Learning Autoencoders (dim reduction)
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Back to the Course

Lecture Overview

Overfitting (Underfitting)

Bias-variance decomposition

Trade-off between bias and variance

Curse of Dimensionality

Optimal model and nearest neighbors

Empirical illustration and mathematical results

Software platforms for practical exercises

R environment for statistical computing

Python and Jypyter notebooks
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Software Platforms for Practical Exercises

R Environment for Statistical Computing

www.r-project.org

Recommended environment for using R: RStudio, rstudio.com.

Exercises involve various CRAN packages

Implementing the machine learning methods in the course

Ensembles, Support Vector Machines, Kernels, Neural Networks

Second part of the course

Specific packages to be announced later on the Web site
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Software Platforms for Practical Exercises

Python and Jypyter Notebooks

www.python.org

And support for using Jypyter notebooks, jupyter.org.

Exercises involve prepared Jypyter notebooks

The notebooks include example running code

Can be reused in your own future projects

First part of the course

Links to the notebooks will be published on the Web site
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