
Extracting Constraints for Process Modeling

Will Bridewell
Computational Learning

Laboratory, CSLI
Stanford University

Stanford, CA 94305 USA

willb@csli.stanford.edu

Stuart R. Borrett
∗

Computational Learning
Laboratory, CSLI
Stanford University

Stanford, CA 94305 USA

borretts@uncw.edu

Ljupčo Todorovski
†

Computational Learning
Laboratory, CSLI
Stanford University

Stanford, CA 94305 USA

ljupco.todorovski@ijs.si

ABSTRACT
In this paper, we introduce an approach for extracting
constraints on process model construction. We begin
by clarifying the type of knowledge produced by our
method and how one may apply it. Next, we review
the task of inductive process modeling, which provides
the required data. We then introduce a logical formal-
ism and a computational method for acquiring scientific
knowledge from candidate process models. Results sug-
gest that the learned constraints make sense ecologically
and may provide insight into the nature of the modeled
domain. We conclude the paper by discussing related
and future work.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Induction,
Knowledge Acquisition

General Terms
Experimentation

Keywords
declarative bias, inductive process modeling

1. INTRODUCTION
Science is about knowledge; indeed, the English word
‘science’ derives from the Latin term for ‘knowledge’.
This knowledge takes many forms, two of the most fa-
miliar being empirical laws and theoretical principles.
∗Currently affiliated with the Department of Biology and
Marine Biology at the University of North Carolina Wilm-
ington, Wilmington, NC
†Also affiliated with the Faculty of Administration at the
University of Ljubljana, Ljubljana, Slovenia

K-CAP’07, October 28–31, 2007, Whistler, British Columbia, Canada.
Copyright 2007 ACM 978-1-59593-643-1/07/0010 ...$5.00

However, in mature disciplines, scientists typically work
at the intermediate level of models that combine theo-
retical principles with concrete assumptions to explain
particular observations [29]. Models play an especially
important role in fields like biology and geology, where
one explains phenomena in terms of interactions among
unobserved processes.

There is a growing literature on computational methods
for constructing scientific process models. Early work
on ‘compositional modeling’ [8] provided software envi-
ronments for the manual creation of such models. More
recently, researchers have reported automated or semi-
automated systems for inferring process models in fields
like medicine [18], ecology [28], and genetics [9]. These
approaches combine a set of candidate processes into a
coherent model that accounts for observations.

Elsewhere [3], we have argued that processes are an
important form of knowledge both because they ex-
plain phenomena in terms familiar to scientists and
because they limit the search for explanatory models.
However, our experience suggests that other structures
are equally important in guiding search through the
model space. We claim that scientists also utilize con-
straints among processes to make model construction
more tractable, and that these constraints constitute
another important type of scientific knowledge. One
example from ecology is the constraint that, if a model
includes a birth process for an organism, it should also
include a death process.

Although few traditions formalize process knowledge,
scientific papers abound with terms that reveal their
authors’ commitment to a process ontology. Unfortu-
nately, the situation is quite different with constraints
on process models, which appear to be more implicit.
Scientists can easily identify models that violate intu-
itive constraints, but they are far less able to state them
in the formal and general way needed for automated
model construction. The need to infer such constraints
poses the technical challenge addressed in this paper.

Sinking

Growth

Mortality

Grazing

Respiration

Remineralization

Growth
Rate

Nutrient
Uptake

Exudation

Ecosystem

Grazing
Rate Ivlev

Nutrient

Light
Photoinhibition

No Photoinhibition

2nd Order
Monod

1st Order
Monod

Exponential

Nutrient Mixing

1st Order
Exponential

2nd Order
Exponential

Lotka–Volterra

Watts

Resource &
Temperature Limitation

Pearl–Verhulst

Gompertz

...
Figure 1: This figure shows the structure of a generic process library for aquatic ecosystems. The
nodes of the hierarchy are generic processes. A solid line indicates that the parent process requires
the presence of the subprocesses. A dotted line indicates that the children form a mutually exclusive
choice point. We show a reduced set of the fourteen alternative forms of the grazing rate process.

Our approach builds on previous work in inductive pro-
cess modeling [16], which carries out search through a
space of quantitative process models to explain time-
series data. This activity produces many candidate
models, some that match the observations well and some
that fare poorly. We use these models to generate posi-
tive and negative training cases, which we pass to a sys-
tem that induces constraints among processes to distin-
guish between successful and unsuccessful models. We
then present the inferred constraints to domain scien-
tists for acceptance or rejection.

In the remaining pages, we report this approach in more
detail. We start by reviewing our earlier research on in-
ductive process modeling and how constraints on the
model space could aid it. Next, we introduce a logical
formalism for specifying constraints among processes,
along with an algorithm for inducing these constraints
from successful and unsuccessful models. After this,
we report results on modeling aquatic ecosystems and
present an ecologist’s (Stuart Borrett) analysis of the
constraints that the system infers. We conclude by dis-
cussing related research and directions for future work.

2. INDUCTIVE PROCESS MODELING
The approach described in this paper works with the
background knowledge and models relevant to HIPM
[28], an inductive process modeler. This program takes
as input observed trajectories of key variables, a list of
entities operating in the modeled system, and domain
knowledge in the form of a hierarchy of process tem-
plates that defines plausible model structures. As out-

put, HIPM produces quantitative process models whose
simulated behavior fits the input trajectories.

The generated models comprise entities and the pro-
cesses that relate them. Both classes of objects may
contain constants that take on fixed numerical values,
but only the entities have variables. One can define the
system variables either with an equation or, in the case
of exogenous terms, with a time series. Unlike entities,
processes may contain Boolean conditions that control
their activity and equations, either algebraic or differen-
tial, that define their effects. When multiple processes
influence a single variable, HIPM assembles their equa-
tion elements according to that variable’s combining
scheme (e.g., addition, multiplication). This procedure
converts the process model into a system of differential
equations that one can solve numerically. HIPM uses
CVODE [5] for this purpose, which lets one compare
simulated trajectories with available measurements.

To learn quantitative process models, HIPM requires a
library of process templates, or generic processes, each
of which resembles its instantiated counterpart with
three notable exceptions. First, instead of entities, generic
processes relate entity roles that must be filled by ob-
jects having a specific type. For instance, the grazing
process requires an entity that is a primary producer
(e.g., a plant) and one that is an animal. Second, the
constants in the library have acceptable ranges that con-
strain them to plausible values. And third, the pro-
cesses contain subprocesses and have types which let
one impose constraints on candidate model structures.

Table 1: A model structure generated by HIPM.

entities
P: phytoplankton, Z: zooplankton, N: nitrate,
F: iron, E: environment, D: detritus

ecosystem(P, Z, E, D, [N,F])
growth(P, E, D, [N, F])

pearl verhulst(P, E, [N, F])
exudation(P)
nutrient uptake(P, N)
nutrient uptake(P, F)

mortality exp(P, E, D)
mortality exp(Z, E, D)
grazing(P, Z, E, D)

ivlev(P, Z)
remineralization(D, N)
remineralization(D, F)
respiration(Z)
sinking(P)
sinking(D)
nutrient mixing(E, N)
nutrient mixing(E, F)

Figure 1 illustrates a hierarchical generic process library
for aquatic ecosystems. The left most node, Ecosys-
tem, is the root of the tree and comprises processes for
remineralization, grazing, and so on. The grazing sub-
process includes a single subprocess with type Grazing
Rate, which expands to one of Lotka–Volterra, Ivlev, or
any of twelve others. In the figure, the dotted lines
represent mutually exclusive branches in the tree and
the solid lines are required ones. HIPM supports op-
tional processes, but this library specifies only required
ones. When combined with entities representing two
nutrients, a primary producer, a grazer, a detrital pool,
and the general environment, this library leads to 1,120
unique model structures. To illustrate how the struc-
tural space grows, specifying Remineralization as op-
tional would double the number of candidate models.

To induce models, HIPM performs two types of search—
one symbolic, the other numeric. The symbolic search
systematically generates model structures, such as the
one in Table 1, that conform to the hierarchical con-
straints. By default, HIPM performs an exhaustive
search, but when optional processes exist in the library,
the program can apply a beam search that refines ac-
ceptable structures by adding a single instantiated op-
tion at a time. After generation, each candidate struc-
ture passes through a parameter estimation routine,
which uses the data of observed variables to determine
the values of the model constants. Since most models
considered by HIPM are nonlinear, this step is non-
trivial and requires a significant amount of computa-
tion (generally over 99% of the total computation time).

Table 2: The logical predicates for describing a
generic process library.

process(generic process)
process type(process type)
process is a(generic process, process type)
entity(generic entity)

The program currently uses the least-squares algorithm
developed by Bunch et al. [4] coupled with random
restarts in the parameter space. The learning system
can optimize the sum of squared error or the relative
mean squared error, which provides normalization for
variables of different scales. In the next section, we de-
scribe how to extract generalizable domain knowledge
from the candidate models evaluated during search.

3. EXTRACTING KNOWLEDGE
FROM CANDIDATEMODELS

Here we introduce a knowledge extraction method that
learns high-level constraints by inducing classifiers for
candidate structures. The program’s input consists of
three main elements: a description of the relevant pro-
cess library, descriptions of each of the models, and
background predicates for interpreting and relating the
descriptions. As output, the program produces Horn
clauses where the consequent asserts that a matching
structure is either accurate or inaccurate. Given these
rules, one can present the output to domain experts for
validation. After describing the logical formalism, we
discuss the learning task in greater detail.

3.1 Logical Representation
Table 2 shows the predicates associated with the li-
brary, which define the relations process, process type,
process is a, and entity. Using these predicates, one can
describe most, but not all, of the structural information
in the library. For instance, the formalism says nothing
about the roles that generic entities play in the pro-
cesses. However, each instantiated process produced by
HIPM contains only those entities that match the as-
sociated role information captured in the library. Simi-
larly, we leave out information about the AND branches
in the hierarchy, since every model will respect these
constraints as well.

In addition to the library predicates, we created those
shown in Table 3 for instantiated process models. These
relations differ from those for generic processes in that
they must connect the processes to individual models,
and they must associate the entities with process in-
stantiations. To address these requirements, we label
every model and every process with a unique identifier
using the model and process instance predicates, respec-

Table 3: The logical predicates for describing an
instantiated model.

model instance(model id)
process instance id(process id)
entity instance(entity instance)
instance of(entity instance, generic entity)
process instance(model id, process id, generic process)
parameter(model id, process id, entity instance)
performance(model id, metric, numeric value)

tively. Just as the process instance predicate associates
an instantiated process with a particular model, the pa-
rameter predicate associates an entity instance with a
process within a model.

Although the predicates from Tables 2 and 3 suffice to
describe the structure both of generic process libraries
and of models, our experience has shown that they lead
to knowledge that is difficult to interpret. To increase
comprehensibility, we introduced higher level predicates
that define properties of the models in terms of their
components. Presented in Table 4, these predicates
combine the lower level ones to explicitly infer that
a model includes an instance of a particular generic
process, that it includes a process having a specific
type, and so forth. For example, the predicate in-
cludes process(m1, ivlev) asserts the conjunction mo-
del instance(m1) ∧ process(ivlev) ∧ process instance(m1,
, ivlev) where the underscore is an anonymous variable
in Prolog. The definition of the explicit negation of
this predicate, does not include process(model id, gen-
eric process) looks similar except that process instance
is enveloped by not(·).

Whereas most of the predicates describe model struc-
ture, the performance relation serves a different pur-
pose. During knowledge extraction, the system uses
this value to determine the threshold for labeling mod-
els as either accurate or inaccurate. In particular, we
assign models to one of these two classes with the rules
accurate model(model id) :– performance(model id, r2,
X) ∧ (X ≥ threshold) and inaccurate model(model id)
:– performance(model id, r2, X) ∧ (X < threshold). By
explicitly associating the performance measures with a
model, we can alter the threshold more easily and ex-
plore the sensitivity of the knowledge produced to the
threshold value.

As HIPM generates models, it produces various mea-
sures of fitness for each one by comparing simulation
results with the training data. In the context of this
paper, we measure performance with the coefficient of
determination (r2), which falls in the [0,1] interval and

Table 4: The domain-general predicates for
model interpretation. Each predicate also has
an explicitly defined negation.

includes process(model id, generic process)
includes process type(model id, process type)
includes entity instance(model id, entity instance)
includes entity(model id, generic entity)
includes process entity instance(model id,
generic process, entity instance)

includes process entity(model id, generic process,
generic entity)

includes process type entity instance(model id,
process type, entity instance)

includes process type entity(model id, process type,
generic entity)

indicates how well the shapes of the simulated behaviors
match those of the observed trajectories.

3.2 Generalization
For knowledge extraction, we require examples labeled
as either accurate or inaccurate. To generate these
examples, we run an inductive process modeler and
store the logical representation of every model consid-
ered during search along with its r2 score. We then
run a program that identifies candidate thresholds for
labeling. Intuitively, we select thresholds by viewing
the models ranked by their accuracy and drawing a line
between distinct clusters. We automate this procedure
with software that ranks the models according to their
r2 values and divides them into ten bins. The program
then selects the point of maximal gradient in each bin.
If two such points are close to each other, we keep only
one as a candidate threshold. Figure 2 displays the re-
sults of this procedure on a set of models learned in the
course of the experiments described in the next section.

After generating the examples, we can use a standard
implementation of inductive logic programming [17] to
extract domain knowledge. For instance, the system
could learn the Horn clause, accurate model(M) :– in-
cludes process(M, photoinhibition) and report the num-
ber of positive and negative examples covered by this
rule. From the perspective of learning constraints, one
can prune the model space by only considering accurate
models or by filtering out inaccurate ones. As we men-
tioned in Section 2, HIPM spends roughly 99% of its
time fitting the parameters of each candidate structure,
so pruning models based on their structure alone sub-
stantially reduces runtime. Of equal importance, these
rules can identify those process combinations that best
explain observed system dynamics.

4. LEARNING CONSTRAINTS FOR
AQUATIC ECOSYSTEMS

We applied the approach described in Section 3 to an
ecological domain. Specifically, we considered the Ross
Sea ecosystem, which includes the phytoplankton species
Phaeocystis antarctica as the dominant primary pro-
ducer, some of its required nutrients, and the zooplank-
ton that graze on it. Next we describe the experimental
methodology, which includes details of the data and the
learning system. Afterward, we present an ecological
analysis of some of the extracted knowledge.

4.1 Experiments
To generate the model structures for analysis, we gave
HIPM two separate data sets from the Ross Sea ecosys-
tem, which is in the Southern Ocean, and the generic
process library summarized in Figure 1. In addition
we instantiated entities for phytoplankton, zooplank-
ton, nitrate, iron, and the physical environment, which
includes properties for light and temperature. The data
cover phytoplankton blooms that occurred during the
austral summer seasons of 1996–1997 and 1997–1998.
We used average daily values taken from satellite mea-
surements for three exogenous variables: photosynthet-
ically usable radiation (light), temperature, and ice cov-
erage all at the surface level. We also used data from
three cruises that recorded the amount of chlorophyll a,
which is assumed to be mostly P. antarctica, and ni-
trate. Unlike the satellite measurements, these data
were smoothed and interpolated to give average daily
values of the two system variables.

Given these five trajectories, we ran HIPM in its ex-
haustive search mode. The library contained no op-
tional processes, and we required each model to use all
of the five instantiated entities. In addition, we allowed
32 random restarts for the parameter estimation rou-
tine and had it minimize the relative mean squared er-
ror. HIPM produced 1,120 models for each of the two
data sets. Figure 2 shows the distribution of the r2 val-
ues for the 1996–1997 data; the corresponding figure for
1997–1998 looks similar.

We enlisted the Aleph [25] system for inductive logic
programming to extract knowledge from the models.
As input, we provided the generic process library en-
coded as described in Section 3.1. We also provided
both collections of models produced by HIPM labeled
according to the three highest r2 thresholds. This pro-
cedure yielded six total example sets for knowledge dis-
covery. We then applied Aleph to each of these sets
using the program’s default parameters, with a few ex-
ceptions. Specifically, we increased the noise parameter
to 10, which lets a rule cover up to 10 negative exam-
ples; we increased the minpos parameter to 2 so that
the program would not add ground facts to the theory;
and we increased the nodes parameter to 10,000, which
enables a greater search space complexity. As output,

0

0.25

0.5

0.75

1

r2 r2

0 250 500 750 1000

model rankmodel rank

r2

Figure 2: This figure shows the distribution
of models with respect to r2 along with pro-
posed thresholds, as circles, for class assignment.
HIPM induced these models for the 1996–1997
Ross Sea data.

the program reported relational theories that classified
models as accurate or inaccurate. We reinterpret the
individual clauses as general characteristics of the two
classes that impose constraints on the structures.

4.2 Resulting Rules and Analysis
Our experiments produced a total of 28 unique rules of
which 7 were both well supported by the examples and
judged scientifically interesting by an ecologist familiar
with the Ross Sea (i.e., Stuart Borrett). In this section,
we list these rules along with their positive and negative
coverage and describe their ecological relevance.

Rule 1: A model that includes a second or-
der exponential mortality process for phyto-
plankton will be inaccurate.1 (positive:560,
negative: 0)

Steele and Henderson proposed the second order expo-
nential mortality process [26] as a formulation to cap-
ture both the natural mortality of a population as well
as predation on that population that their ecosystem
models did not explicitly include [7]. Rule 1 suggests
that this formulation is inappropriate for the phyto-
plankton in our system, which is logical because we are
explicitly modeling its grazing mortality.

Rule 2: A model that includes the Lotka–
Volterra grazing formulation will be inaccu-
rate. (positive: 80, negative: 0)

1We give a natural language interpretation of the rules
that corresponds to the induced Horn clauses. With very
little orientation, the ecologist understood the Horn clause
formalism. As an example, the original form of Rule
1 was inaccurate(M) :- includes process entity(M,
death exp2, phytoplankton).

Rule 3: A model that includes the general-
ized Lotka–Volterra grazing formulation will
be inaccurate. (positive: 76, negative: 8)

The Lotka–Volterra grazing formulation assumes a lin-
ear increase in the predator’s consumption rate as prey
density increases, which means that a predator’s capac-
ity to consume additional prey is never limited. Holling
[13] termed this relationship between grazing rate and
prey density a Type I functional response. The gen-
eralized Lotka–Volterra form expands the original al-
ternative with an exponent that controls whether the
Type I functional response is concave or convex. With
this context in mind, Rules 2 and 3 suggest that models
with an asymptotic functional response better explain
the observed Ross Sea dynamics. This finding coheres
with biological evidence that P. antarctica, the dom-
inant component of the phytoplankton community, is
difficult for grazers to consume [11, 24].

Rule 4: A model that includes the Hassell–
Varley I grazing formulation will be inaccu-
rate. (positive: 74, negative: 4)

Rule 5: A model that includes the Hassell–
Varley II grazing formulation will be inaccu-
rate. (positive: 76, negative: 8)

The role of predator interference with their own ability
to graze prey is a long running debate in the ecological
literature [12, 15, 1]. Seven of the fourteen alterna-
tive grazing processes in the ecosystem library explic-
itly model predator interference and include the two
Hassell–Varley type formulations as presented by Jost
and Ellner [15]. Rules 4 and 5 state that these two
grazing alternatives are inappropriate for the Ross Sea
data. However, we did not find rules that exclude the
remaining five formulations with predator interference.

Rule 6: A model that does not include the
first or second order Monod formulation of
iron limitation of phytoplankton growth will
be inaccurate. (positive: 448, negative: 0)

The generic process library contains three alternatives
for limiting phytoplankton growth via nutrients. Rule
6 strongly implies that the accurate models include an
iron limitation of phytoplankton growth expressed as a
type of Monod function, effectively excluding the third
formulation. Although we lack a clear biological rea-
son to expect one formulation over another in this case,
there is substantial empirical evidence to support the
hypothesis that iron is the nutrient resource that most
limits phytoplankton growth in the Ross Sea [19, 22].

Rule 7: A model that does not include the
second order exponential mortality process
(for either the phytoplankton or zooplank-
ton entities) and does include a Monod type
growth limitation by iron will be accurate.
(positive: 74, negative: 10)

Rule 7 differs from the first six in that it states condi-
tions that tend to make a model accurate rather than
inaccurate. The first conjunct excludes the second or-
der mortality process from the model for either phyto-
plankton or zooplankton. Thus, this assertion general-
izes the constraint from Rule 1 and the same biologi-
cal reasoning applies for its application to the phyto-
plankton. The extension to zooplankton implies that
the first order natural mortality process in conjunction
with the zooplankton respiration process sufficiently ac-
counts for all necessary zooplankton loss. However,
this finding appears to generalize only when the basic
Monod process limits phytoplankton growth by iron. As
we described in Rule 6, iron limitation of phytoplankton
growth is biologically reasonable.

Interestingly, four of the rules we discovered exclude
one of the fourteen grazing formulations. This finding
is surprising because our previous experience in this do-
main and other research on this ecosystem [27] suggest
that grazing should be relatively unimportant to the
overall system dynamics. We intend to explore this re-
sult further, and we suspect that the excluded process
alternatives generate more grazing activity than the ob-
servations can allow.

The preceding analyses are thick with domain relevant
language, but they primarily indicate that the selected
rules make sense from an ecological standpoint. Impor-
tantly, we make no claims regarding the verity of the ex-
tracted knowledge, only that it is supported both by the
results of an intensive modeling exercise and by appeal
to related findings about the modeled organisms and
ecosystem. Nevertheless, the approach that we present
revealed unexpected characteristics of the models that
warrant further examination. Moreover, we have shown
elsewhere [2] that the extracted rules make plausible
constraints on future modeling problems that reduce
the search space by an order of magnitude.

5. DISCUSSION
Since we apply a learning algorithm to analyze the out-
put of an induction system, our work falls within the
scope of metalearning [10]. However, most existing met-
alearning research takes as its goal, the ability to predict
how classification algorithms will perform so that one
can select an appropriate learning system or assemble
an optimal ensemble of classification algorithms. Our
goal differs from this in that we endeavor to extract in-
formation about the application domain that may serve

as a novel discovery or as a new search constraint. That
is, we would like a learning system to develop a richer
understanding of the problems that it solves, whereas
the metalearning research that we described could give
the system a better understanding of its capabilities.

Other research shares a similar goal to our own. For in-
stance, McCreath and Sharma [20] used inductive logic
programming to learn meta-level information about the
background knowledge used by systems for inductive
logic programming. Their goal was to specify, or con-
strain, the ways in which one can integrate a predicate
into the clauses thereby restricting the search space.
Notably, their program produced syntactic constraints
that were independent from any specific domain. In
contrast, our approach induces semantic constraints that
are interpretable within the context of the domain. Com-
ing from a different field, research on learning control
rules for planning [14] also reflects our goal. That is, the
developed algorithms analyze the output of a planning
system to improve its future performance. One impor-
tant distinction is that such systems extract knowledge
from individual operators and the context of their ap-
plication instead of analyzing the complete structure of
the plan.

These related endeavors suggest that our approach to
knowledge extraction has relevance beyond inductive
process modeling. For example, one could adapt the
presented system to inductive logic programming by
treating each considered clause as an individual model
and identifying structural characteristics of those that
have high predictive accuracy. To generalize, we believe
that our system can extract knowledge from any appli-
cation that searches a space of model structures as long
as it evaluates and stores each one considered.

Beyond incorporating our work into other artificial in-
telligence tools, there is substantial room for future re-
search. First, our colleagues in ecology would like to
know the commonalities among the most accurate mod-
els. To meet this request, we need either an inductive
logic programming system that generalizes from posi-
tive examples only [21] or a method for mining frequent
patterns in relational data [6]. Second, we should in-
vestigate the effects of iteratively extracting constraints
and using them to limit induction. We expect that
we will need a method for creating and updating soft
constraints to avoid excessive rigidity in the inductive
learner. Third, since process models also contain nu-
meric parameters, we would like to modify our approach
to identify meaningful bounds on their values.

In addition to the above, we note Pazzani and Kibler’s
[23] research that shows how using domain knowledge to
bias search can both reduce overfitting and improve pre-
dictive accuracy. With this finding in mind, we should
determine whether automatically induced knowledge can

lead to the same benefits. Due to the problem of overfit-
ting, we should also compare our current system with
one that judges a model’s accuracy on separate test
data. We expect that the form and quality of the con-
straints will change but are uncertain about the degree.

In this paper, we showed how to extract domain knowl-
edge from the models considered during induction. One
can use this knowledge to characterize the domain, to
constrain future modeling tasks [2], and to uncover novel
relationships. We have also shown that this approach
can lead to interesting and plausible generalizations in
the context of inductive process modeling, and we have
suggested its applicability to other areas of artificial in-
telligence. We believe that this research can strengthen
the field as a whole by enabling intelligent systems both
to improve themselves over time within a problem do-
main and eventually to transfer knowledge across re-
lated domains.

6. ACKNOWLEDGMENTS
This research was supported by Grant No. IIS-0326059
from the National Science Foundation. We thank Kevin
Arrigo and Gert van Dijken for the use of the Ross Sea
data and their expertise in this ecosystem. We also
thank Pat Langley and Tolga Könik for discussions rel-
evant to the paper.

7. REFERENCES
[1] R. Arditi and L. R. Ginzburg. Coupling in

predator–prey dynamics — ratio-dependence.
Journal of Theoretical Biology, 139:311–326, 1989.

[2] W. Bridewell and L. Todorovski. Learning
declarative bias. Proceedings of the Seventeenth
International Conference on Inductive Logic
Programming, to appear, 2007.

[3] W. Bridewell, J. Sánchez, P. Langley, and
D. Billman. An interactive environment for the
modeling and discovery of scientific knowledge.
International Journal of Human–Computer
Studies, 64:1099–1114, 2006.

[4] D. S. Bunch, D. M. Gay, and R. E. Welsch.
Algorithm 717: Subroutines for maximum
likelihood and quasi-likelihood estimation of
parameters in nonlinear regression models. ACM
Transactions on Mathematical Software,
19:109–130, 1993.

[5] S. Cohen and A. Hindmarsh. CVODE, a
stiff/nonstiff ODE solver in C. Computers in
Physics, 10:138–143, 1996.

[6] L. Dehaspe and H. Toivonen. Discovery of
relational association rules. In Relational Data
Mining, pages 189–212. Springer, Berlin,
Germany, 2001.

[7] A. M. Edwards. Adding detritus to a
nutrient–phytoplankton–zooplankton model: A
dynamical systems approach. Journal of Plankton
Research, 23:389–413, 2001.

[8] B. Falkenhainer and K. D. Forbus. Compositional
modeling: Finding the right model for the job.
Artificial Intelligence, 51:95–143, 1991.

[9] S. Fröhler and S. Kramer. Logic-based
information integration and machine learning for
gene regulation prediction. In Proceedings of the
Ninth International Conference on Molecular
Systems Biology, 2006. Available online at
http://www.icmsb06.org/.

[10] C. Giraud-Carrier, R. Vilalta, and P. Brazdil.
Introduction to the special issue on meta-learning.
Machine Learning, 54:187–193, 2004.

[11] K. L. Haberman, R. M. Ross, L. B. Quetin,
M. Vernet, G. A. Nevitt, and W. Kozlowski.
Grazing by antarctic krill Euphausia superba on
Phaeocystis antarctica: An immunochemical
approach. Marine Ecology Progress Series,
241:139–149, 2002.

[12] M. P. Hassell and G. C. Varley. New inductive
population model for insect parasites and its
bearing on biological control. Nature,
223:1133–1137, 1969.

[13] C. S. Holling. The components of predation as
revealed by a study of small mammal predation of
the European pine sawfly. Canadian
Entomologist, 91:293–320, 1959.

[14] Y. Huang, B. Selman, and H. A. Kautz. Learning
declarative control rules for constraint-based
planning. In Proceedings of the Seventeenth
International Conference on Machine Learning,
pages 415–422, Stanford, CA, 2000. Morgan
Kaufmann.

[15] C. Jost and S. P. Ellner. Testing for predator
dependence in predator–prey dynamics: A
non-parametric approach. Proceedings of the
Royal Society of London Series B-Biological
Sciences, 267:1611–1620, 2000.

[16] P. Langley, J. Sánchez, L. Todorovski, and
S. Džeroski. Inducing process models from
continuous data. In Proceedings of the Nineteenth
International Conference on Machine Learning,
pages 347–354, Sydney, 2002. Morgan Kaufmann.

[17] N. Lavrac and S. Džeroski. Inductive Logic
Programming: Techniques and Applications. Ellis
Horwood, New York, 1994.

[18] A. Mahidadia and P. Compton. Assisting
model-discovery in neuroendocrinology. In

Proceedings of the Fourth International
Conference on Discovery Science, pages 214–227,
Washington DC, 2001. Springer.

[19] J. H. Martin, R. M. Gordon, and S. E. Fitzwater.
The case for iron. Limnology and Oceanography,
36:1793–1802, 1991.

[20] E. McCreath and A. Sharma. Extraction of
meta-knowledge to restrict the hypothesis space
for ILP systems. In Proceedings of the Eighth
Australian Joint Conference on Artificial
Intelligence, pages 75–82, Canberra, Australia,
1995. World Scientific Publishers.

[21] S. Muggleton. Learning from positive data. In
Proceedings of the Sixth International Workshop
on Inductive Logic Programming, pages 358–376,
Stockholm, Sweden, 1996. Springer.

[22] R. J. Olson, H. M. Sosik, A. M. Chekalyuk, and
A. Shalapyonok. Effects of iron enrichment on
phytoplankton in the Southern Ocean during late
summer: Active fluorescence and flow cytometric
analyses. Deep-Sea Research Part II-Topical
Studies in Oceanography, 47:3181–3200, 2000.

[23] M. J. Pazzani and D. F. Kibler. The utility of
knowledge in inductive learning. Machine
Learning, 9:57–94, 1992.

[24] V. Schoemann, S. Becquevort, J. Stefels,
W. Rousseau, and C. Lancelot. Phaeocystis
blooms in the global ocean and their controlling
mechanisms: A review. Journal of Sea Research,
53:43–66, 2005.

[25] A. Srinivasan. The Aleph Manual. Computing
Laboratory, Oxford University, 2000.

[26] J. H. Steele and E. W. Henderson. A simple
plankton model. American Naturalist,
117:676–691, 1981.

[27] A. Tagliabue and K. R. Arrigo. Anomalously low
zooplankton abundance in the Ross Sea: An
alternative explanation. Limnology and
Oceanography, 48:686–699, 2003.

[28] L. Todorovski, W. Bridewell, O. Shiran, and
P. Langley. Inducing hierarchical process models
in dynamic domains. In Proceedings of the
Twentieth National Conference on Artificial
Intelligence, pages 892–897, Pittsburgh, PA, 2005.
AAAI Press.

[29] J. M. Żytkow. Model construction: Elements of a
computational mechanism. In AISB’99
Symposium on AI and Scientific Creativity,
Edinburgh, Scotland, 1999.

