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Abstract. Contrast set mining aims at finding differences between dif-
ferent groups. This paper shows that a contrast set mining task can be
transformed to a subgroup discovery task whose goal is to find descrip-
tions of groups of individuals with unusual distributional characteristics
with respect to the given property of interest. The proposed approach
to contrast set mining through subgroup discovery was successfully ap-
plied to the analysis of records of patients with brain stroke (confirmed
by a positive CT test), in contrast with patients with other neurologi-
cal symptoms and disorders (having normal CT test results). Detection
of coexisting risk factors, as well as description of characteristic patient
subpopulations are important outcomes of the analysis.

1 Introduction

Data analysis in medical applications is characterized by the ambitious goal of
extracting potentially new relationships from the data, and providing insightful
representations of detected relationships. Medical data analysis is frequently per-
formed by applying rule learning, as the induced rules are easy to be interpreted
by human experts.

The goal of standard classification rule learners [5] is to induce classifica-
tion/prediction models from labeled examples. Opposed to these predictive in-
duction algorithms which induce a model in the form of a set of rules, descriptive
induction algorithms aim to discover individual patterns in the data, described in
the form of individual rules. Descriptive induction algorithms include association
rule learners [1], and subgroup discovery systems [2, 6, 8, 11].

This paper addresses a data analysis task where groups of labeled examples
are given and the goal is to find differences between the groups. This data analysis
task, named contrast set mining, was first presented in [3]. In this paper we
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propose to solve this task by transforming the contrast set mining task to a
subgroup discovery task and to apply the subgroup discovery methodology to
solve the task. This approach solves some open issues of existing contrast set
mining approaches, like dealing with continuous valued attributes, choosing an
appropriate search heuristic, selecting the level of generality of induced rules,
avoiding of overlapping rules, and presenting the results to the end-users.

Although the goals of contrast set mining, which aims at finding differences
between contrasting groups, and subgroup discovery, which aims at finding de-
scriptions of population subgroups, seem different, this paper proves that the
goals are the same and the results can be interpreted in both ways. The pro-
posed approach of contrast set mining through subgroup discovery (presented
in Section 4) was applied to a real-life problem of analyzing patients with brain
ischaemia (presented in Section 2), where we provide insightful data analysis
helping to answer questions about the severity of the brain damage based on risk
factors obtained from physical examination data, laboratory test data, ECG data
and anamnestic data. The usefulness of the approach is shown by the achieved
results (Section 5) interpreted by medical specialists.

2 Brain Ischaemia Data

The brain ischaemia dataset consists of records of patients who were treated
at the Intensive Care Unit of the Department of Neurology, University Hospi-
tal Center “Zagreb”, Zagreb, Croatia, in year 2003. In total, 300 patients are
included in the dataset: 209 with the computed tomography (CT) confirmed
diagnosis of brain stroke, and 91 patients who entered the same hospital depart-
ment with adequate neurological symptoms and disorders, but were diagnosed
as patients with transition ischaemic brain attack (TIA, 33 patients), reversible
ischaemic neurological deficit (RIND, 12 patients), and severe headache or cer-
vical spine syndrome (46 patients). In this paper, the goal of the experiments is
to characterize brain stroke patients confirmed by a positive CT test in contrast
with the patients with a normal CT test.

Patients are described with 26 descriptors representing anamnestic, physi-
cal examination, laboratory test and ECG data, and their diagnosis. Anamnes-
tic data: aspirin therapy (asp), anticoagulant therapy (acoag), antihypertensive
therapy (ahyp), antiarrhytmic therapy (aarrh), antihyperlipoproteinaemic ther-
apy - statin (stat), hypoglycemic therapy (hypo), sex (sex), age (age), present
smoking (smok), stress (str), alcohol consumption (alcoh), family anamnesis
(fhis). Physical examination data are: body mass index (bmi), systolic blood
pressure (sys), diastolic blood pressure (dya), fundus ocular (fo). Laboratory
test data: uric acid (ua), fibrinogen (fibr), glucose (gluc), total cholesterol (chol),
triglyceride (trig), platelets (plat), prothrombin time (pt). ECG data: heart rate
(ecgfr), atrial fibrillation (af), left ventricular hypertrophy (ecghlv).1

The diagnosis of patients is based on the physical examination confirmed
by the CT test. All the patients in the control group have a normal brain CT
1 Details can be found on http://lis.irb.hr/PAKDD2007paper/.



test in contrast with the positive CT test of patients with a confirmed brain
attack. It should be noted that the group of patients with brain stroke and the
control group do not consist of healthy persons but of patients with suspected
severe neurological symptoms and disorders. In this sense, the available dataset
is particularly appropriate for studying the specific characteristics and subtle
differences that distinguish the two groups. While the detected relationships
can be accepted as the actual characteristics for these patients, the computed
evaluation measures—including probability, specificity and sensitivity of induced
rules—only reflect characteristics specific to the available data set, not necessar-
ily holding for the general population or other medical institutions.

3 Methodological Background

A common question of exploratory data analysis is “What is the difference be-
tween the given groups?” where the groups are defined by a selected property of
individuals that distinguishes one group from the others. For example, the dis-
tinguishing property that we want to investigate could be the gender of patients
and a question to be explored can be “What is the difference between males
and females affected by a certain disease?” or, if the property of interest was the
response to a treatment, the question can be “What is the difference between
patients reacting well to a selected drug and those that are not?” Searching for
differences is not limited to any special type of individuals: we can search for
differences between molecules, patients, organizations, etc.

Data analysis tasks that try to find differences between contrasting groups
are very common and the approach presented here can be applied in many
of these tasks. When the end-users ask for differences characterizing different
groups, they are usually not interested in all the differences; they may prefer a
small set of representative and interpretable patterns. Finding all the patterns
that discriminate one group of individuals from the other contrasting groups
is not appropriate for human interpretation. Therefore, as is the case in other
descriptive induction tasks, the goal is to find descriptions that are unexpected
and interesting to the end-user.

The approach presented in this paper offers this kind of analysis. From a
dataset of class labeled instances (the class label being the property of interest)
by means of subgroup discovery [7] we can find interpretable rules that offer a
good starting point for human analysis of contrasting groups.

Contrast set mining. The problem of mining contrast sets was first defined
in [3] as finding “conjunctions of attributes and values that differ meaningfully
in their distributions across groups.” They proposed the STUCCO algorithm
[3], which is based on Bayardo’s Max-Miner [4] rule discovery algorithm. In the
level-wise search for contrast sets, formed of conjunctions of attribute-value pairs
of length i, the interestingness of the conjunct is estimated by its statistical sig-
nificance, assessed using a χ2 test with a Bonferroni correction. Domain specific
parameters need to be set, like the minimum support difference between groups.
The algorithm works only on domains with nominal attributes.



It was shown in [10] that contrast set mining is a special case of a more
general rule learning task, and that a contrast set can be interpreted as an
antecedent of a rule and Groupi, for which it is characteristic, as the rule con-
sequent: ContrastSet � Groupi.

When using rule learners (OPUS-AR and C4.5 rules) for contrast set mining
[10], the user needs to select a quality measure (choosing between support, confi-
dence, lift, coverage and leverage). In this setting the number of generated rules
largely exceeds the number of rules generated by STUCCO, unless pruned by the
user-defined maximum number of rules parameter. Expert interpretation of rules
is difficult due to a large amount of rules and sometimes also their specificity.

Subgroup discovery. A subgroup discovery task is defined as follows: “Given
a population of individuals and a property of those individuals that we are in-
terested in, find population subgroups that are statistically ‘most interesting’,
e.g. are as large as possible and have the most unusual statistical (distribu-
tional) characteristics with respect to the property of interest” [11]. The result
of subgroup discovery is a relatively small set of subgroup descriptions formed of
conjunctions of features. Members of a subgroup are examples from the dataset
that correspond to the subgroup description. Good subgroups are large (descrip-
tions covering many examples with the given property of interest), and have a
significantly different distribution of examples with the given property compared
to its distribution in the entire population.

Subgroup discovery algorithms include adaptations of rule learning algo-
rithms to perform subgroup discovery [7, 8] algorithms for relational subgroup
discovery [9, 11] and algorithms for exploiting background knowledge for discov-
ering non-trivial subgroups [2], among others.

Since subgroup descriptions are conjunctions of features that are characteris-
tic for a selected class of individuals (property of interest), a subgroup description
can be seen as a condition of a rule SubgroupDescription � Class and therefore
subgroup discovery can be seen as a special case of a more general rule learning
task.

4 Contrast Set Mining through Subgroup Discovery

We present an approach to contrast set mining by means of subgroup discovery.
Even though the definitions of subgroup discovery and contrast set mining seem
different, we here provide a proof of the compatibility of the tasks. Furthermore,
by subgroup discovery means, we solve the following open issues in contrast set
mining [10]: proposing appropriate heuristics for identifying interesting contrast
sets, appropriate measures of quality of contrast sets, and appropriate methods
for presenting contrast sets to the end-users. The issue of dealing with continu-
ous attributes is also solved by subgroup discovery algorithm SD [7].

Translating contrast set mining tasks to subgroup discovery tasks.
Contrast set mining and subgroup discovery were developed in different com-

munities, each developing its own terminology that needs to be clarified before



Contrast Set Mining (CSM) Subgroup Discovery (SD) Rule Learning (RL)

contrast set subgroup description rule condition

group class (property of interest) class

attribute value pair feature condition

examples in groups examples of examples of

G1, G2 (G3 . . . Gn) Class and Class C1, C2 (C3 . . . , Cn)

examples for which subgroup covered
contrast set is true examples

support of contrast set on G1 true positive rate true positive rate

support of contrast set on G2 false positive rate false positive rate
Table 1. Table of synonyms from different communities.

proceeding. In order to show the compatibility of contrast set mining and sub-
group discovery tasks, we first define the compatibility of terms used in different
communities as follows: terms are compatible if they can be translated into
equivalent logical expressions and if they bare the same meaning, i.e., if terms
from one community can replace terms used in another community.

To show that terms used in contrast set mining (CSM) can be translated
to terms used in subgroup discovery (SD), Table 1 provides a term dictionary
through which we translate the terms used in CSM and SD into a unifying
terminology of classification rule learning.

We now wish to show that every contrast set mining task (CSM) can be
translated into a subgroup discovery task (SD). The definitions of contrast set
mining and subgroup discovery appear different: contrast set mining searches
for discriminating characteristics of groups called contrast sets, while subgroup
discovery searches for subgroup descriptions.

A contrast set is formally defined as follows: Let A1, A2, ..., Ak be a set of k
variables called attributes. Each Ai can take values from the set {vi1, vi2, ..., vim}.
A contrast set is a conjunction of attribute value pairs defined on user defined
groups G1, G2, ..., Gn of data instances, whose characteristics we wish to uncover
through contrast set mining [3]. A special case of contrast set mining considers
only two contrasting groups G1 and G2. In such cases, we wish to find charac-
teristics of one group discriminating it from the other and vice versa.

In subgroup discovery, subgroups are described as conjunctions of features
of the form Ai = vij for nominal attributes, and Al > value or Al ≤ value for
continuous attributes. The subgroup discovery task aims at finding population
subgroups that are as large as possible and have the most unusual statistical
(distributional) characteristics with respect to the property of interest [11].

Using the dictionary of Table 1 it is trivial to show that a two-group contrast
set mining task CSM(G1, G2) can be directly translated into the following two
subgroup discovery tasks: SD(Class = G1 vs. Class = G2) and SD(Class = G2

vs. Class = G1). Since this translation is possible for two-group contrast set
mining, it is—by induction—also possible for a general contrast set mining task.



Fig. 1. Contrast sets for groups (classes) brain stroke and normal, induced for
g-values 10 and 50, visualized with the bar visualization.

Solving open issues of CSM with SD.
In this paper, contrast set mining is performed by subgroup discovery algo-

rithm SD [7], an iterative heuristic beam search rule learner.
Handling continuous attributes: SD uses a feature-based data representation,

where attribute values needed for the construction of features are generated au-
tomatically from the data. In this way, the SD algorithm overcomes a deficiency
of CSM: handling of continuous attributes.

Rule quality heuristic: At each run, the SD algorithm finds subgroups for
a selected property of interest and a selected generalization parameter g. The
output of the SD algorithm is a set of rules with good covering properties on
the given example set, which is obtained by using rule quality heuristic qg(R) =

TP
FP+g , where TP (true positives) denotes the number of covered examples from
the positive class, FP (false positives) the number covered negative examples,
and generalization parameter g offers the user the opportunity to influence the
degree of specificity of rules, since with large g general rules are preferred by
the qg heuristic, while with small g each covered negative example is severely
punished thus generating specific rules.2

Rule diversity: To obtain diverse rules in different iterations, the algorithm
implements weighting of covered positive examples after selecting a rule. Instead
of the unweighted qg(R) measure, the weighted rule quality measure replaces TP
with the sum of weights of covered positive examples. Although this approach
can not guarantee the statistical independence of generated rules, it aims at
ensuring good diversity of induced rules. This can be verified also from the
results presented in the following section.

Presenting the results to end-users: In the next section we present some
visualization methods with the results of our experiments. The visualizations
proved to be intuitive and useful to the domain experts, and can help estimating
the quality of the results.

2 Generalization parameter values are usually selected in the range between 1 and 100;
in our experiments values 10 and 50 were used.



5 Results of Brain Ischaemia Data Analysis

In this section we illustrate the usage of the presented approach of contrast set
mining through subgroup discovery including the visualizations of the results.

There are several questions that medical doctors find interesting and that
can be investigated by using the presented method and dataset. Due to space
restrictions of this paper, we concentrate only on the question “What is the
difference between patients with confirmed stroke and patients with other severe
neurological disorders?” Other questions that could be addressed in a similar
manner are: “What is the difference between patients with TIA and RIND and
the confirmed stroke patients?”, “What is the difference between patients with
thrombolic ischaemia and embolic ischaemia”, and others.

For each of the two classes, Figure 1 shows three best rules induced by select-
ing g = 10 and g = 50, visualized with the bar visualization along with their TP
and FP values. The order of rules is selected by the iterative SD algorithm and
is determined by the qg rule quality value that takes into account the covering
relations between the current rule and other rules previously selected for the
same g-value.

An interesting subgroup description is rule (age>52.00) and (asp=no), which
stimulated the analysis presented in Figure 2. This analysis provides an excellent
motivation for patients to accept prevention based on aspirin therapy, as the rule
explicitly recognizes the importance of the aspirin therapy for persons older than
52 years.

In addition, the moderately sensitive and specific rules are relevant also for
the selection of appropriate boundary values for numeric descriptors included
into rule conditions. Examples are age over 58 years, and fibrinogen over 3.35.
In the case of fibrinogen, reference values above 3.7 are treated as positive while
rules induced for brain stroke domain suggest 4.45 in combination with age over
64 years, and 3.35 in combination with age over 58 years for more sensitive de-
tection of stroke. These values, if significantly different from generally accepted
reference values, can initialize research in the direction of possibly accepting
them as new decision points in medical decision making practice. Even more
importantly, the fact that various boundary points can be suggested in com-
binations with different conditions is better than the existing medical practice
which tends to define unique reference values irrespective of the disease that has
to be described and irrespective of other patient characteristics.

6 Conclusions

This work demonstrates that subgroup discovery methodology is appropriate
for solving contrast set mining tasks. It shows the results of contrast set mining
through subgroup discovery applied to the problem of distinguishing between
patients with and without brain stroke. Attention was devoted also to the se-
lection of appropriate visualizations, enabling effective presentations of obtained
results. The presented theory and experimental results show that using subgroup
discovery for contrast set mining solves many open issues of contrast set mining.



Fig. 2. The probability of brain stroke, estimated by the proportion of stroke
patients, shown in dependence of patient age presented for patients taking aspirin
as the prevention therapy, and the probability of stroke for patients without this
therapy. The percentage of patients with the aspirin therapy is presented by a
dashed line.
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