MPS logo Data and Text Mining

professor: prof. dr. Nada Lavrač

professor: doc. dr. Petra Kralj Novak

professor: prof. dr. Bojan Cestnik

professor: prof. dr. Dunja Mladenić


Course

Scheduled lectures and course materials in school year 2020/2021

The lectures will be held by Zoom video conference.

4.11.2020 15:00 - 18:00 prof. dr. Nada Lavrač
11.11.2020 15:00 - 18:00 doc. dr. Petra Kralj Novak
18.11.2020 15:00 - 18:00 prof. dr. Nada Lavrač
25.11.2020 15:00 - 18:00 doc. dr. Petra Kralj Novak
2.12.2020 15:00 - 18:00 prof. dr. Bojan Cestnik
9.12.2020 15:00 - 18:00 prof. dr. Dunja Mladenić
10.12.2020 15:00 - 18:00 doc. dr. Petra Kralj Novak - Oral partial exam on Data mining
16.12.2020 15:00 - 18:00 Erik Novak
23.12.2020 15:00 - 18:00 prof. dr. Bojan Cestnik
6.1.2021 15:00 - 18:00 prof. dr. Dunja Mladenić
13.1.2021 15:00 - 18:00 prof. dr. Dunja Mladenić
20.1.2021 15:00 - 18:00 prof. dr. Nada Lavrač - Data mining seminar presentations (partial exam)
3.2.2021 15:00 - 17:00 Erik Novak


The course is divided into three parts:

The rest of this page focuses on the data mining part of the course.

Materials:

Video lectures

Practice materials: dr. Petra Kralj Novak

Literature:

  1. Bramer, Max: Principles of Data Mining (2007)
  2. J. Fuernkranz, D. Gamberger and N. Lavrač, Book: Foundations of Rule Learning, Chapter: Machine Learning and Data Mining, Springer, 2012
  3. Loh, Wei‐Yin: Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1.1 (2011): 14-23.
  4. Fawcett, Tom. "An introduction to ROC analysis." Pattern recognition letters 27.8 (2006): 861-874.
  5. Aggarwal, Charu C. Data mining: the textbook . Springer, 2015. Chapter 6 : cluster analysis, pgs 195 and 201
  6. Nielsen, Michael: Neural Networks and Deep Learning, Chapter 1: Using neural nets to recognize handwritten digits

Course requirements, data mining part:

  1. Data mining seminar

Examples of data mining seminars:

Ideas for seminars

  1. Analyze some data where you are the domain expert, use at least two algorithms
  2. Find some interesting data to analyze, possible sources:

Templates

Useful links

Link to last year's web page - Data and Text Mining 2019/2020
Last update: January 12, 2021