
Logistic Regression

● Probabilistic linear classifier

● Logistic (sigmoid) function f(x)=1/(1+e-x)
○ Where x = w0 + ∑iwixi
○ f(x) = P(C=1|X)

● w0 + ∑iwixi = 0 defines a hyperplane where P(C=1|X) = 0.5 and P(C=0|X) = 0.5

and w0 + ∑iwixi is proportional to the distance from the hyperplane

● Learning
○ no closed form solution - optimization, e.g., with gradient descent
○ definition of a cost function (several options); -y log (y’) - (1-y) log (1-y’) ; y in {0,1}
○ updating of weights (according to optimization results); wj = wj - 𝛼 ∑i (y’i - yi)xij

for all instances, multiple times



SVM 

● Linear binary classifier (not probabilistic)

● Extension of linear classifiers to model non-linear decision boundaries

○ Transformation of the feature space using synthetic features of 
higher order

y' = w0 + w1x1 + w2x2         + w3x1
2 + w4x2

2 + w5x1x2

● But this brings problems

○ Computational complexity (a lot more parameters to learn, 
transformation operations)

○ Overfitting
● SVM algorithm deals with these (max. margin & SV, kernel trick & SV)



SVM - max. margin

● Model (linear, hyperplane) for

separation of data by using the

maximal margin principle

(MAX: robustness, SV: stability)

● Learning: maximal margin (optimal hyperplane) optimization problem

● Soft margin to allow misclassifications

○ Distance on the wrong side: 𝜉i
○ Parameter C (misclassification cost) - set with experimentation!
○ Penalty: C⋅𝜉r
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SVM - kernel trick

● Use of higher dimensions for linearly non-separable data

○ https://www.youtube.com/watch?v=3liCbRZPrZA

● Learning (optimization) involves dot products in the term to maximize:

classification too:

Dot product is needed, 
(not feature values)

~similarity

We can avoid 
representing W

https://www.youtube.com/watch?v=3liCbRZPrZA


SVM - kernel trick, here it is

● We do not need the feature values, just dot products

● Transformation would mean:

𝛷(xi) ∙ 𝛷(xi)

calculation of transformations, then the lengthy dot products…

● Instead, we can use a function such that: K(xi, xj) = 𝛷(xi) ∙ 𝛷(xi)

○ And K(xi, xj) is in original space!
■ EXAMPLE !

○ We can only calculate kernels (polynomial, Gaussian RBF, ...)
○ Simetric, positive semi-definite; similarity ; even for strings, graphs
○ The mapping 𝛷 can now be only implicitly used



Neural networks - perceptron

● Inspired by (simulation of) the human nervous system

● Can learn (converge) in linearly separable situations

● Finds (some!) linear separation 
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Learning (iterative process):
● Initialize weights
● For each training item (x,y)

○ y’ = f(w,x)
○ update all weights

wi’ = wi + 𝜼(yi-y’i)xi 
● Until convergence
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Neural networks with hidden layers

● Very powerful in capturing arbitrary functions

○ having non-linear activation functions; careful selection to facilitate learning

● Automatic generation of (higher-level) features!

○ last level is similar to logreg  on generated (relevant) high-level features, not all 
quadratic, cubic, … which easily go into hundreds of thousands.

● Drawbacks

○ computationally demanding learning (recently alleviated)

○ more layers - more power - more prone to overfitting

○ black-box models



Neural network - use (forward propagation) 

Use of a neural network
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Neural networks - learning

● Two things to learn:

○ Structure: expert knowledge and experimentation

○ Parameters/weights : backpropagation (and other optimization approaches)

■ Gradient descent (consequence: step → sigmoid; error 0/1 → (y-y’)2)

● Optimum can be local !

■ Can be done in a batch or online mode

■ Overfitting problem - stop on check with holdout, …

■ Computationally demanding

■ Nice explanation of the procedure in the Weka book CHECK!

● Activation function selection was not random ;)



Ensemble methods

● Combine results of multiple classifiers

○ Different learners
○ Different training data subsets
○ Combined predictions

■ averaging
■ weighted voting
■ model of combination

● Helps tackling error components

○ Bias
■ Model assumptions (e.g., linear separation)
■ Consistently incorrect for some instances

○ Variance
■ Data variations leading to very different models ( ~ overfitting)
■ Inconsistently classified data

○ Noise
■ Intrinsic error in target class
■ Some algorithms are more affected, some less



Bagging

● Single learning algorithm
● k data samples with replacement
● k learned (same kind) classifiers
● Majority vote
● Reduces variance (makes sense for low bias learners, e.g. deep trees)
● Models are independent, can be built in parallel



Boosting

● Single learning algorithm
● Weighted training instances

○ Adapted learning
○ Weighted data sampling

● Iterative reweighting according to classifier performance
● Focus on misclassified instances in next iteration (increased weights)

○ Various increase approaches and termination criteria
● Aggregation of weighted (according to performance) predictions
● Reduces overall bias (to be used with simple, high bias, models)
● Reduction of variance depends on intensity of reweighting scheme

○ No reweighting in iterations == bagging
● Sensitive to noise (training can focus on bad data!)
● Models depend on previous ones, sequential process



Stacking

● Combination of predictions with another machine learned model

● Two level classification, two data subsets

● k classifiers (bagged, boosted or from different learners) learned on the 

first subset

● Their outputs on second subset are k new features

● Second level classifier is trained on

○ new feature space (of size k), or
○ combined feature space (old+new)



Random forest

● Similar as bagging with decision trees, but promotes more diverse trees

○ Decision trees in bagging tend to be similar
● Randomness at splits:

○ A random subset of attributes
○ Often advised: log2(#all_atribs)+1

● Usually no or minimal pruning

● Also bootstrapped data samples (as in bagging)

● Majority vote

● Efficient (less attributes considered at splits)

● Resistant to noise, outliers and overfitting
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Gradient boosted trees

● Construct a (regression) tree and let the residuals (y-F(x)) become a new 

target for another model in the iteration

● Next model learns the residuals of the first one

○ Using original features and the new target
● Taking the two models together we get a better prediction

● Repeat m times, until stopping criterion...

● In fact: a gradient of a differentiable loss function is usually modelled 

instead of actual residuals (added parameter: step size)

● Sensitive to noise

● Sequential (cannot run in parallel)



Gradient boosted trees

● Construct a (regression) tree and let the residuals (y-F(x)) become a new 

target for another model in the iteration

● Next model learns the residuals of the first one

○ Using original features and the new target
● Taking the two models together we get a better prediction

● Repeat m times, until stopping criterion...

● In fact: a gradient of a differentiable loss function is usually modelled 

instead of actual residuals (added parameter: step size)

● Sensitive to noise

● Sequential (cannot run in parallel)
→  ESA challenge example



Active learning

● Labels are sometimes hard or expensive to get
○ Time restrictions in dynamic settings

● AL aims at getting the most of information with the least amount of labels
● Components

○ Querying system : selects the instances to be labelled
○ Oracle : provides labels

● Querying strategies
○ Highest uncertainty regions (danger: querying in low data quality areas)
○ Expected error of variance reduction
○ Representativeness

■ Equal representativeness of regions (weighted by density)
○ And many others and their mixtures...
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