Handwritten Digit Recognition using Convolutional Neural Networks in Python with Keras

Dr. Petra Kralj Novak

10.1.2019

Neural networks
Neuron, perceptron
The **perceptron** is a mathematical model of a biological neuron.

- A single perceptron can separate linearly.

Output of $P =$

- \(1 \) if $Ax + By > C$
- \(0 \) if $Ax + By \leq C$

\[
f(x) = \begin{cases}
1 & \text{if } Ax + By > C \\
0 & \text{if } Ax + By \leq C
\end{cases}
\]
Neural network
Predictive model

- Architecture
 - Define
 - Compile

- Train (fit)
 - Forward
 - Backward
 - Optimize

- Predict (evaluate)
 - Forward
Train

- **Forward propagation** (check performance)
 - loss function is an error metric between actual and predicted
 - absolute error, sum of squares
- **Backpropagation** (direction of parameter/weight change)
 - how much the total error will change if we change the internal weight of the neural network with a certain small value Δw (gradient)
 - backpropagate the errors using the derivatives of these functions: auto-differentiation
- **Optimization** (change weights based on learning rate, gradient descent)
 - New weight = old weight — Derivative Rate * learning rate
 - **Batch size** is a hyperparameter that controls the number of training samples to work through before the model’s internal parameters are updated.
 - The number of **epochs** is a hyperparameter that controls the number of complete passes through the training dataset.
Keras: The Python Deep Learning library

• Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano.

• Google’s Tensorflow: is a low-level framework that can be used with Python and C++.

 • Install packages: tensorflow, keras
MINST – handwritten digits

• Each image is a 28 by 28 pixel square (784 pixels total).
• Normalized in size and centered
• A standard split of the dataset is used to evaluate and compare models, where 60,000 images are used to train a model and a separate set of 10,000 images are used to test it.
Exercise

• Load the MNIST dataset in Keras.
• Train and evaluate a **baseline neural network** model for the MNIST problem.
• Train and evaluate a simple **Convolutional Neural Network** for MNIST.
• Implement a **close to state-of-the-art deep learning** model for MNIST.
Load the data: 9_neural_nets-0-load_data.py

```python
from keras.datasets import mnist
import matplotlib.pyplot as plt

# Plot ad hoc mnist instances

(X_train, y_train), (X_test, y_test) = mnist.load_data()  # Dataset of 60,000 28x28
grayscale images of the 10 digits, along with a test set of 10,000 images.
# plot 4 images as gray scale
plt.subplot(221)
plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))
plt.subplot(222)
plt.imshow(X_train[1], cmap=plt.get_cmap('gray'))
plt.subplot(223)
plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))
plt.subplot(224)
plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))
# show the plot
plt.show()
```
Prepare data: 9_neural_nets-1-perceptron.py

```
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)

# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# flatten 28*28 images to a 784 vector for each image
X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')

# train-validation split
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=0.1, random_state=42)

# normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255

# one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_validation = np_utils.to_categorical(y_validation)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
```
One-hot Encoding for Multi-label and multi-target prediction

```python
# one-hot encoding class labels
from keras.utils import np_utils
ty_train[:10]
array([[5, 0, 4, 1, 9, 2, 1, 3, 1, 4], dtype=uint8])
y_train_OneHotEncoding = np_utils.to_categorical(y_train)
y_train_OneHotEncoding[:10]
array([[ 0.,  0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.],
       [ 1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  1.],
       [ 0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
```
Define baseline model

def baseline_model():
 # Create model
 model = Sequential()
 model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu'))
 model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax'))
 # Compile model
 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
 return model

Build the model
model = baseline_model()
Fit the model
model.fit(X_train, y_train, validation_data=(X_validation, y_validation), epochs=10, batch_size=200)

Final evaluation of the model
print("Final evaluation of the model")
scores = model.evaluate(X_test, y_test, verbose=1)
print("Baseline Error: %.2f%%" % (100 - scores[1] * 100))
Architecture

• Layers: type, initialization, regularization
 • Dense
 • Convolutional
 • Pooling
 • Dropout – for regularization
 • Recurrent
 • Embedding

• Activation functions
 • relu
 • softmax (output layer)

• Loss function
 • Classification
 • categorical_crossentropy, categorical_hinge, sparse_categorical_crossentropy, binary_crossentropy, ...
 • Numeric prediction
 • mean_squared_error, mean_absolute_error, mean_absolute_percentage_error, mean_squared_logarithmic_error, cosine_proximity, ...

• Model.compile
Types of layers (1)

Dense

Fully connected.

Dropout

During training, some neurons on a particular layer will be deactivated. This improves generalization because it forces the layer to learn with different neurons the same "concept".

Convolutional

The convolution layer comprises of a set of independent filters. Each filter is independently convolved with the image.

Example: [link](#)

Pooling

A max-pooling layer takes the maximum of features over small blocks of a previous layer.
Types of layers (2)

Flatten

Fully connected.
def baseline_model():
 # create model
 model = Sequential()
 model.add(Conv2D(32, (5, 5), input_shape=(1, 28, 28), activation='relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.2))
 model.add(Flatten())
 model.add(Dense(128, activation='relu'))
 model.add(Dense(num_classes, activation='softmax'))
 # Compile model
 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
 return model