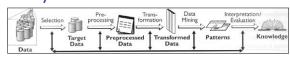
Data Mining and Knowledge Discovery: Practice Notes

Petra Kralj Novak

Petra.Kralj.Novak@ijs.si
8.11.2018

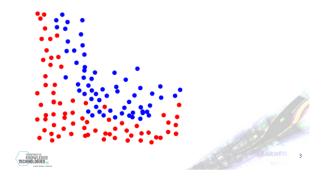
Keywords



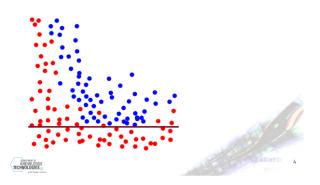
- Data
 - Attribute, example, attribute-value data, target variable, class, discretization
- Algorithms
 - Decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, naïve Bayes classifier, KNN, association rules, support, confidence, numeric prediction, regression tree, model tree, heuristics vs. exhaustive search, predictive vs. descriptive DM
- Evaluation
 - Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, ROC space, AU error, precision, recall

LEARNED

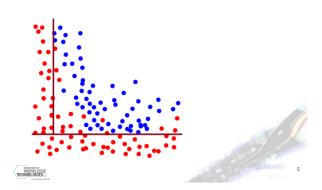
DT induction graphically



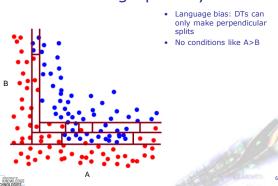
DT induction graphically



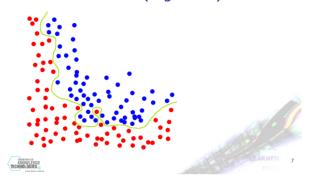
DT induction graphically



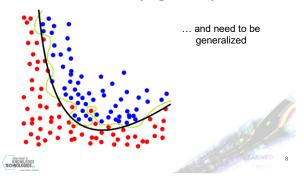
DT induction graphically



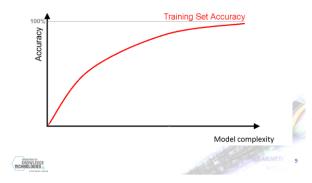
Models with other language biases can also overfit (e.g. SVM)



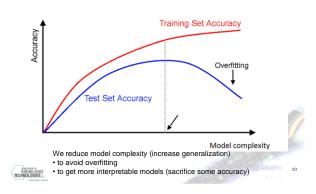
Models with other language biases can also overfit (e.g. SVM)



Model complexity and performance on train set

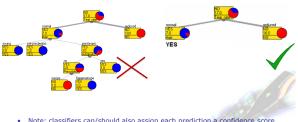


Performance on train and test set



Occam's raisor

 Suppose there exist more explanations for a phenomena. In this case, the simpler one is usually better.



Note: classifiers can/should also assign each prediction a confidence score.

| Confidence | Confidence

Prediction confidence

- belong to the class Lenses=YES

 1/7 belongs to the class
- 1/7 belongs to the class Lenses=NO
- P(YES) = 6/7 = 0.86 $P_{Laplace}(YES) = \frac{6+1}{7+2} = 0.78$
- P(YES) = 0/10 = 0 $P_{Laplace}(YES) = \frac{0}{10+2} = 0.08$

KNOWLEDGE TECHNOLOGIES * Laplace probability estimate is explained at "Naïve Bayes".

How confident P(YES) = 0.78 P(YES) = 0.08Prescription Tear Rate Lenses P3 young hypermetrope no normal YES P9 YES pre-presbyopi myope no normal P12 pre-presbyopio hypermetrope reduced NO no pre-presbyopio P13 yes normal YFS P15 pre-presbyopio hypermetrope yes normal NO hypermetrope pre-presbyopic reduced yes presbyopic Assign to each example in the test set a confidence score* of assigning it to the class "Lenses=YES".

How confident P(YES) = 0.08 P(YES) = 0.78 Prescription Astigmatic Tear_rate young hypermetrope normal pre-presbyopic hypermetrope YES pre-presbyopic myope yes normal pre-presbyopic hypermetrope normal 0.78 pre-presbyopic hypermetrope yes presbyopic hypermetrope yes Sort descending Prescription Astigmatic Tear_rate young hypermetrope no normal e-presbyopic myope no normal e-presbyopic myope yes normal pre-presbyopic pre-presbyopic pre-presbyopic hypermetrope yes normal presbyopic hypermetrope 0.78 pre-presbyopic hypermetrope

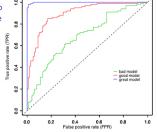
ROC curve and AUC

- Receiver Operating Characteristic curve (or ROC curve) is a plot of the true positive rate (TPr=Sensitivity=Recall) against the false positive rate (FPr) for different possible cutpoints.
- It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity).
- . The closer the curve to the top left corner, the more accurate the classifier.
- The diagonal represents a baseline classifier.

* Use Laplace estimate

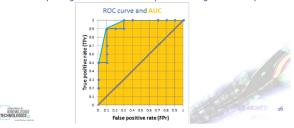
KNOWLEDGE TECHNOLOGIES

KNOWLEDGE TECHNOLOGIES



AUC - Area Under (ROC) Curve

- Performance is measured by the area under the ROC curve (AUC). An area of 1 represents a perfect classifier; an area of 0.5 represents a worthless classifier.
- The area under the curve (AUC) is equal to the probability that a classifier will rank a randomly chosen positive example higher than a randomly chosen negative example.



How confident P(YES) = 0.78P(YES) = 0.08

					Actual	Predicted
Person	Age	Prescription	Astigmatic	Tear_rate	Lenses	P(Lenses=YES)
P3	young	hypermetrope	no	normal	YES	0.78
P9	pre-presbyopic	myope	no	normal	YES	0.78
P13	pre-presbyopic	myope	yes	normal	YES	0.78
P15	pre-presbyopic	hypermetrope	yes	normal	NO	0.78
P23	presbyopic	hypermetrope	yes	normal	NO	0.78
P12	pre-presbyopic	hypermetrope	no	reduced	NO	0.08
P16	pre-presbyopic	hypermetrope	yes	reduced	NO	0.08

Possible classifiers:

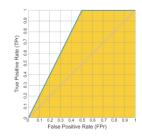
- 100 % confident \rightarrow TP=0, FP=0 \rightarrow TPr= 0, FPr=0
- 78 % confident \rightarrow TP=3, FP=2 \rightarrow TPr= 3/3 = 1, FPr= 2/4 = 0.5
- 8 % confident \rightarrow TP=3, FP=4 \rightarrow TPr= 3/3 = 1, FPr= 4/4 = 1
- 0 % confident \rightarrow TP=3, FP=4 \rightarrow TPr= 3/3 = 1, FPr= 4/4 = 1
- TPr = |correctly classified positives| / |all positives| FPr = |negatives classified as positives| / |all negatives|

Classifier to ROC

Possible classifiers:

- 100 % confident \rightarrow TP=0, FP=0 \rightarrow TPr= 0, FPr=0
- 78 % confident \rightarrow TP=3, FP=2 \rightarrow TPr= 3/3 = 1, FPr= 2/4 = 0.5
- 8 % confident \rightarrow TP=3, FP=4 \rightarrow TPr= 3/3 = 1, FPr= 4/4 = 1
- 0 % confident \rightarrow TP=3, FP=4 \rightarrow TPr= 3/3 = 1, FPr= 4/4 = 1

An AUC close to 0.5 is a bad AUC

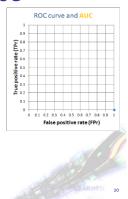


ROC curve and AUC

C (curv		a A	UC				
	Actual class	Confidence classifier forclass Y	FP	TP	FPr	TPr		
P1	Y	1						
P2	Υ	1						
Р3	Υ	0.95						
P4	Υ	0.9						
P5	Υ	0.9						
P6	N	0.85						
P7	Y	0.8						
P8	Y	0.6						
P9	Υ	0.55						
P10	Υ	0.55						
P11	N	0.3						
P12	N	0.25						
P13	Υ	0.25					/	
P14	N	0.2					100	
P15	N	0.1				1		
P16	N	0.1					1 1	
P17	N	0.1				11	23	
P18	N	0			1000	1	PARMER	
P19	N	0		1		5.00	EARNED	19
P20	N	0	l	_	2010/2010		MICHAEL	

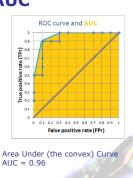
ROC curve and AUC

	Actual class	Classifier confidence forclass Y	FP	TP	FPr	TPr
P1	Υ	1	0	2	0	0.2
P2	Υ	1	0	2	0	0.2
P3	Y	0.95	0	3	0	0.3
P4	Υ	0.9	0	5	0	0.5
P5	Υ	0.9	0	5	0	0.5
P6	N	0.85	1	5	0.1	0.5
P7	Υ	0.8	1	6	0.1	0.6
P8	Υ	0.6	1	7	0.1	0.7
P9	Υ	0.55	1	9	0.1	0.9
P10	Υ	0.55	1	9	0.1	0.9
P11	N	0.3	2	9	0.2	0.9
P12	N	0.25	3	9	0.3	0.9
P13	Y	0.25	3	10	0.3	- :
P14	N	0.2	4	10	0.4	1
P15	N	0.1	7	10	0.7	- :
P16	N	0.1	7	10	0.7	- 1
P17	N	0.1	7	10	0.7	- :
P18	N	0	8	10	0.8	1
P19(NOV	N	0	9	10	0.9	1
P20	N	0	10	10	1	1



ROC curve and AUC

		Confidence classifier		
	Actual class	forclass Y	FPr	TPr
P1	Υ	1	0	0.2
P2	Υ	1	0	0.2
P3	Υ	0.95	0	0.3
P4	Y	0.9	0	0.5
P5	Υ	0.9	0	0.5
P6	N	0.85	0.1	0.5
P7	Υ	0.8	0.1	0.6
P8	Υ	0.6	0.1	0.7
P9	Υ	0.55	0.1	0.9
P10	Υ	0.55	0.1	0.9
P11	N	0.3	0.2	0.9
P12	N	0.25	0.3	0.9
P13	Y	0.25	0.3	1
P14	N	0.2	0.4	1
P15	N	0.1	0.7	1
P16	N	0.1	0.7	1 1
P17	N	0.1	0.7	1
P18	N	0	0.8	1
P19 KN	N	0	0.9	1
P20	N	0	1	1



Predicting with Naïve Bayes

Given

Attribute-value data with nominal attributes and target variable

Classify new instances with a Naïve Bayes classifier and estimate its performance on new data

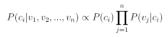
Naïve Bayes classifier

Assumption: conditional independence of attributes given the class.

$$\text{classification} = \operatorname{argmax}_{c_i} P(c_i) \prod_{j=1}^n P(v_j | c_i)$$

$$P(c_i|v_1,v_2,...,v_n) \propto P(c_i) \prod^n P(v_j|c_i)$$

Naïve Bayes classifier



Assumption: conditional independence of attributes given the class.

Will the spider catch these two ants?

- Color = white, Time = night
- Color = black, Size = large, Time = day

\mathbf{Size}	Time	Caught
large	day	YES
small	night	YES
small	day	YES
large	night	NO
large	night	NO
large	night	NO
	large small small large large	large day small night small day large night large night

Naïve Bayes

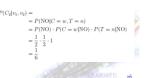
 $P(c_i|v_1,v_2,...,v_n) \propto P(c_i) \prod_{i=1}^n P(v_j|c_i)$

Color	Size	Time	Caught
black	large	day	YES
white	small	night	YES
black	small	day	YES
red	large	night	NO
black	large	night	NO
white	large	night	NO

Naïve Bayes classifier -example

Colo	or Siz	e Tin	ne Caught
blac	k larg	e day	YES
whit	e sma	ll nigh	nt YES
blac	k sma	ll day	YES
red	larg	e nigh	nt NO
blac	k larg	e nigh	nt NO
whit	e larg	e nigh	nt NO

$$\begin{aligned} v_1 &= \text{``Color} = \text{white''} \\ v_2 &= \text{``Time} = \text{night''} \\ c_1 &= YES \\ c_2 &= NO \end{aligned}$$



Estimating probability

Relative frequency

- P(e) = |e| /n
- A disadvantage of using relative frequencies for probability estimation arises with small sample sizes, especially if they are either very close to zero, or very close to one.
- In our spider example: P(Time=day|Class=NO) = = 0/3 = 0

 $|e|\dots$ number times an event e happened $n\dots$ number of trials

k ... number of possible outcomes

KNOWLEDGE TECHNOLOGIES

Relative frequency vs. Laplace estimate

Relative frequency

- P(c) = n(c) / N
- A disadvantage of using relative frequencies for probability estimation arises with small sample sizes, especially if they are either very close to zero, or very close to one.
- In our spider example: P(Time=day|caught=NO) = = 0/3 = 0

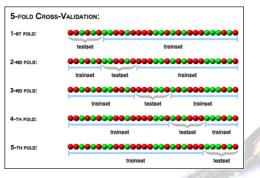
 $\begin{array}{l} n(c) \ ... \ number of examples \ where \ c \ is \ true \\ N \ ... \ number of \ all \ examples \\ k \ ... \ number of \ possible \ events \end{array}$

Laplace estimate

- Assumes uniform prior distribution over the probabilities for each possible event
- P(c) = (n(c) + 1) / (N + k)
- In our spider example: P(Time=day|caught=NO) = (0+1)/(3+2) = 1/5
- With lots of evidence approximates relative frequency
- If there were 300 cases when the spider didn't catch ants at night: P(Time=day|caught=NO) = (0+1)/(300+2) = 1/302 = 0.003
- With Laplace estimate probabilities can never be 0.

K-fold cross validation

- 1. The sample set is partitioned into K subsets ("folds") of about equal size
- A single subset is retained as the validation data for testing the model (this subset is called the "testset"), and the remaining K - 1 subsets together are used as training data ("trainset").
- 3. A model is trained on the trainset and its performance (accuracy or other performance measure) is evaluated on the testset
- 4. Model training and evaluation is repeated K times, with each of the K subsets used exactly once as the testset.
- 5. The average of all the accuracy estimations obtained after each iteration is the resulting accuracy estimation.



KNOWLEDGE TECHNOLOGIES

LARNED 31

Discussion

- 1. Compare na $\~{}$ na $\~{}$ bayes and decision trees (similarities and differences) .
- 2. Compare cross validation and testing on a separate test set.
- 3. Why do we prune decision trees?
- 4. What is discretization.
- 5. Why can't we always achieve 100% accuracy on the training set?
- 6. Compare Laplace estimate with relative frequency.
- 7. Why does Naïve Bayes work well (even if independence assumption is clearly violated)?
- 8. What are the benefits of using Laplace estimate instead of relative frequency for probability estimation in Naïve Bayes?

