Discussion

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
 How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 What are the stopping criteria for building a decision tree?
 How would you compute the information gain for a numeric attribute?

KNOWLEDGE TECHNOLOGIES

- →• How much is the information gain for the "attribute" Person? How would it perform on the test set?
 How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 What are the stopping criteria for building a decision tree?
 How would you compute the information gain for a numeric attribute?

Data Mining and Knowledge Discovery: Practice Notes Discussion about decision trees

> dr. Petra Kralj Novak Petra.Kralj.Novak@ijs.si 15.11.2018

KNOWLEDGE

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- perform on the test set?
 How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
 What are the stopping criteria for building a decision tree?
 How would you compute the information gain for a numeric attribute?

Entropy{hard=4, soft=5, none=13}=

- = E(4/22, 5/22, 13/22)
- $= -\Sigma p_i * \log_2 p_i$
- = -4/22 * log₂4/22 5/22 * log₂5/22 13/22*log₂13/22
- = 1.38

KNOWLEDGE

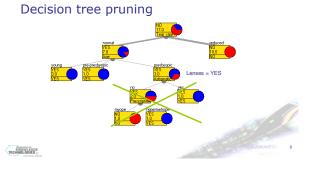
KNOWLEDGE TECHNOLOGIES

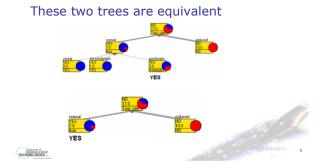
Information gain of the "attribute" Person

On training set • As many values as there are examples • Each leaf has exactly one example • E(1/1, 0/1) = 0 (entropy of each leaf is zero) • The weighted sum of entropies is zero • The information equin is maximum (as much as the entropy of the On testing set) entire training set)
On testing set
The values from the testing set do not appear in the tree KNOWLEDGE

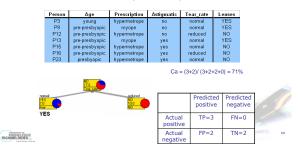
Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
 How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 What are the stopping criteria for building a decision tree?
 How would you compute the information gain for a numeric attribute?





Classification accuracy of the pruned tree



Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- → What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Stopping criteria for building a decision tree

• ID3

KNOWLEDGE

- "Pure" nodes (entropy =0)
- Out of attributes
- J48 (C4.5)
 - Minimum number of instances in a leaf constraint

KNOWLEDGE TECHNOLOGIES

KNOWLEDGE TECHNOLOGIES

2

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
 How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}.
 What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 What are the stopping criteria for building a decision tree?
 How would you compute the information gain for a numeric attribute?

KNOWLEDGE

Lenses YES NO YES NO YES NO YES NO YES NO NO NO NO YES NO YES NO YES NO YES NO YES Age 67 52 63 26 65 26 25 26 25 26 57 49 23 39 55 57 49 23 39 55 53 8 67 54 29 46 44 39 45 KNOWLEDGE TECHNOLOGIES

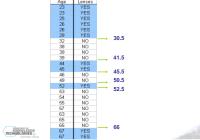
Information gain of a numeric attribute

Information gain of a numeric attribute

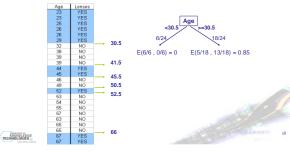
Information gain of a numeric attribute

	Age	Lenses		Age	Lenses		Age	Lenses	
	67	YES		23	YES		23	YES	
	52	YES		23	YES		23	YES	
	63	NO		25	YES	Define	25	YES	
	26	YES	Sort	26	YES		26	YES	
	65	NO	by	26	YES	possible	26	YES	
	23	YES	Age	29	YES	splitting	29	YES	
	65	NO	Age	32	NO	points	32	NO	
	25	YES		38	NO	pointa	38	NO	
	26	YES		39	NO		39	NO	
	57	NO		39	NO		39	NO	
	49	NO		44	YES		44	YES	
	23	YES		45	YES		45	YES	
	39	NO		46	NO		46	NO	
	55	NO		49	NO		49	NO	
	53	NO		52	YES		52	YES	100
	38	NO		53	NO	_	53	NO	
	67	YES		54	NO		54	NO	
	54	NO		55	NO		55	NO	
	29	YES		57	NO		57	NO	
	46	NO		63	NO		63	NO	
	44	YES		65	NO		65	NO	
	32	NO		65	NO		65	NO	RHED 16
KNOWLEDGE	39	NO		67	YES		67	YES	10
And a finder mathing	45	YES		67	YES		67	YES	

Information gain of a numeric attribute



Information gain of a numeric attribute



Decision trees

KNOWLEDGE

Many possible decision trees

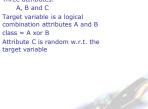
$$\sum_{i=0}^{k} 2^{i} (k-i) = -k + 2^{k+1} - 2$$

- k is the number of binary attributes

- Heuristic search with information gain
- Information gain is short-sighted

Trees are shortsighted (1)

Α	В	С	A xor B	•	Three attributes:
1	1	0	0		A, B and C
0	0	1	0		Target variable is
1	0	0	1		combination attril
0	0	0	0		class = A xor B
0	1	0	1		Attribute C is ran
1	1	1	0		target variable
1	0	1	1		
0	0	1	0		
0	1	0	1		
0	1	0	1		
1	0	1	1		
1	1	1	0		
_				-	



KNOWLEDGE

Overcoming shortsightedness of decision trees

- Random forests
 (Breinmann & Cutler, 2001)
 A random forest is a set of decision trees
 Each tree is induced from a bootstrap sample of examples
 For each node of the tree, select among a subset of attributes
 All the trees vote for the classification
 See also ansemble learning
 DecliseE for attribute octimation
- ReliefF for attribute estimation
- (Kononenko el al., 1997)

More on 14.12.2018 by Martin Žnidaršič

KNOWLEDGE