Data Mining and Knowledge Discovery: Practice Notes

Discussion about decision trees

> dr. Petra Kralj Novak $\begin{aligned} & \text { Petra.Kralj.Novak@ijs.si } \\ & 15.11 .2018\end{aligned}$

Discussion

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses
- What would be the classification accuracy of our decision tree if we pruned it at - the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
How do we compute entropy for a target variable that has three values? Lenses
$=\{$ hard $=4$, soft $=5$, none $=13\}$
What would be the cl
the node Astigmatic?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it
perform on the test set?

How do we compute entropy for a target variable that has three values? Lenses \{hard=4, soft=5, none=13\}
What would be the classification accuracy of our decision tree if we pruned it at de Astigmatic?
What are the stopping criteria for building a decision tree?

- How would you compute the information gain for a numeric attribute?

Information gain of the "attribute" Person
${ }^{(1)}$

On training set

- As many values as there are example
- Each leaf has exactly one example
- $E(1 / 1,0 / 1)=0$ (entropy of each leaf is zero)
- The weighted sum of entropies is zero
- The information gain is maximum (as much as the entropy of the entire training set)
On testing set
The values from the testing set
do not appear in the tree
ncinowite

Entropy $\{$ hard $=4$, soft=5, none $=13\}=$
$=\mathrm{E}(4 / 22,5 / 22,13 / 22)$
$=-\Sigma \mathrm{p}_{\mathrm{i}}{ }^{*} \log _{2} \mathrm{p}_{\mathrm{i}}$
$=-4 / 22 * \log _{2} 4 / 22-5 / 22 * \log _{2} 5 / 22-13 / 22 * \log _{2} 13 / 22$
$=1.38$

Discussion about decision trees

How much is the information gain for the "attribute" Person? How would it
perform on the test set
How do we compute entropy for a target variable that has three values? Lenses

- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
-What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

These two trees are equivalent

nciniowied

Decision tree pruning

Classification accuracy of the pruned tree

$\mathrm{Ca}=(3+2) /(3+2+2+0)=71 \%$

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it
perform on the test set?
How do we compute entropy for a target variable that has three values? Lenses
$=\{$ hard $=4$, soft $=5$, none $=13\}$
What would be the classification accuracy of our decision tree if we pruned it at
\rightarrow - What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Stopping criteria for building a decision tree

- ID3
- "Pure" nodes (entropy $=0$)
- Out of attributes
- J48 (C4.5)
- Minimum number of instances in a leaf constraint

Discussion about decision trees

How much is the information gain for the "attribute" Person? How would it
perform on the test set?

- How do we compute entropy for a target variable that has three values? Lenses
none=13
What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- How would you compute the information gain for a numeric attribute?

Information gain of a numeric attribute

\section*{ncinioubirg
 | Age | Lenses | | Ays
 8
 8 | ${ }_{\text {Lerses }}^{\text {Lers }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 52 | YES | | 23 | YES |
| 63 | NO | | ${ }^{25}$ | YES |
| 26 | YES | Sort | ${ }^{26}$ | YES |
| 65 | NO | by | ${ }^{26}$ | YES |
| ${ }^{23}$ | YES | Age | ${ }_{82}^{29}$ | YES NO No |
| 65
 65
 25 | No | | $\stackrel{32}{8}$ | No |
| ${ }_{25}^{25}$ | Yes | | ${ }^{9}$ | NO |
| 57
 7 | No | | 99 | no |
| 49 23 | no | | ${ }^{44}$ | YES |
| ${ }_{39}^{23}$ | YES | | ${ }^{45}$ | YES |
| 39
 56 | no | | 46 | NO |
| ${ }_{63}^{55}$ | No | | 49 | NO |
| ${ }_{38}^{63}$ | No | | 52 | YES |
| 36 67 | No | | 53
 8 | no |
| 67 54 | Yes | | 54 | NO |
| 54
 29
 29 | No | | $\stackrel{\square}{78}$ | NO NO Nor |
| 46 | No | | ${ }^{6}$ | NO |
| ${ }^{44}$ | YES | | ${ }^{65}$ | No |
| 32
 39 | NO | | E5 | NO |
| 39 45 | NOO | | ${ }_{6}^{6}$ | ¢ YES |

Information gain of a numeric attribute

Age	Lenses
52	YES
63	
26	YES
65	NO
23	VES
65	no
$\begin{array}{r}25 \\ \hline 26 \\ \hline 25\end{array}$	
- ${ }_{57}^{26}$	No
49	No
23	YES
${ }^{39}$	no
${ }^{55}$	No
53	no
${ }^{38}$	NO
${ }^{67}$	YES
54	No
29	YES NO
46 4 4	No
32	No
${ }^{39}$	NO
45	YES

Information gain of a numeric attribute
ncimodider

$\frac{\text { Age }}{68}$	${ }_{\text {Lenses }}^{\text {Lent }}$	
52	YES	
63 6 26	NO	Sort
${ }^{265}$	NO	by
23 25 6	YES NO	Age
25	VES	
25 7	YES No NO	
49	no	
${ }^{23}$	YES	
39 65	No	
63	no	
${ }^{38}$	No	
67 54	YES No	
29	YES	
46	no	
${ }_{32}^{44}$	YES No Nos	
39	NO	
45	VES	

${ }_{\text {A }}{ }^{\text {a }}$	Lenses	Define possiblesplitting points	$\mathrm{A}_{\mathrm{g}} \mathrm{L}^{\text {Lenses }}$	
${ }_{23} 2$	YES		${ }_{23}^{23}$	Yes
- 25	Yes YES		${ }^{25}$	Yes
26 26 26	YES YES		${ }_{26} 8$	Yes
${ }_{29}^{29}$	Yes		29	Yes
${ }^{32}$	No			
	no		${ }^{8}$	No
${ }^{39}$	No		9	NO
${ }^{39}$	No		9	No
4_{4}^{4}	YES		44	YES
45	YES		45	YES
46	no		46	NO
${ }^{49}$	NO		49	NO
52	YES		52	YES
53	No		${ }_{5}^{53}$	NO
54	No		54	No
${ }_{5}^{55}$	NO		${ }_{5}^{65}$	NO
57	NO		${ }^{67}$	No
63	NO		${ }^{6}$	No
${ }^{65}$	No		${ }^{65}$	No
${ }_{57}^{67}$	YES		${ }^{6}$	¢ $\begin{gathered}\text { Yes } \\ \text { YES }\end{gathered}$

Information gain of a numeric attribute

Ays	Lenses
${ }_{28}^{23}$	Yes
${ }_{2}$	Yes
${ }_{79}^{26}$	YES YES Yes
${ }_{2}$	Yes
${ }^{\text {® }}$	NO
${ }^{9}$	NO
${ }^{9}$	no
${ }^{44}$	YES
45	YES
46	NO
${ }_{5}$	
${ }^{6}$	No
54	NO
${ }^{65}$	NO
5	No
${ }^{6}$	No
65	no
${ }_{6}^{67}$	YES

Information gain of a numeric attribute

$A_{\text {ge }}$	Lenses	30.5
${ }_{23}^{23}$	YES	
25	YES	
${ }_{26}^{28}$	YES YES V	
29	YES	
32	NO	
${ }^{38}$	No	41.5
39	NO	
18	No	
${ }_{45}^{44}$	YES	
46	no	45.5
		52.5
${ }_{5}^{52}$	Nos	
54	No	
${ }^{65}$	No	
57	NO	
${ }^{6}$	NO	
E6	NO	
皆	NO	66
${ }_{6}$	YES	

Information gain of a numeric attribute
(cimoivibe

$E(S)=E(11 / 24,13 / 24)=0.99$

\quad| $\quad<30.5$ |
| :--- |
| $\mathrm{E}(6 / 6,6 / 6)=0 \quad \mathrm{E}(5 / 18,13 / 18)=0.85$ |
| InfoGain $\left(\mathrm{S}, \mathrm{Age}_{30.5}\right)=$ |
| $=\mathrm{E}(\mathrm{S})-\sum \mathrm{p}_{\mathrm{E}} \mathrm{E}(\mathrm{pv})$ |
| $=0.99-\left(6 / 24^{*} 0+18 / 24^{*} 0.85\right)$ |
| $=0.35$ |

Information gain of a numeric attribute

$$
\begin{aligned}
& <30.5{ }_{>} \text {Age }>=30.5 \\
& \text { InfoGain }\left(\mathbf{S}, \text { Age }_{30.5}\right)=0.35
\end{aligned}
$$

Decision trees

- Many possible decision trees

$$
\sum_{i=0}^{k} 2^{i}(k-i)=-k+2^{k+1}-2
$$

$-k$ is the number of binary attributes

- Heuristic search with information gain
- Information gain is short-sighted
ncinuotion

Trees are shortsighted (2)

attribute C alone

π nemoivieg
Attribute C has the highest information gain!

Trees are shortsighted (1)

A	B	C	A xor B
1	1	0	0
0	0	1	0
1	0	0	1
0	0	0	0
0	1	0	1
1	1	1	0
1	0	1	1
0	0	1	0
0	1	0	1
0	1	0	1
1	0	1	1
1	1	1	0

Three attributes:
A, B and C

- Target variable is a logical combination attributes A and B class = A xor B
- Attribute C is random w.r.t. the target variable

Trees are shortsighted (3)

- Decision tree by ID3

- The real model behind the data

Overcoming shortsightedness of decision trees

- Random forests
(Breinmann \& Cutler, 2001)
- A random forest is a set of decision trees
- Each tree is induced from a bootstrap sample of examples
- For each node of the tree, select among a subset of attributes
- All the trees vote for the classification
- See also ansemble learning
- ReliefF for attribute estimation
(Kononenko el al., 1997)
mentowidite

