Data Mining and Knowledge Discovery: Practice Notes

dr. Petra Kralj Novak

http://kt.ijs.si/petra_kralj/dmkd.html

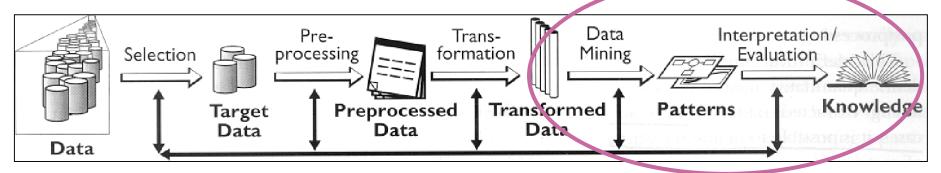
Petra.Kralj.Novak@ijs.si 8.11.2018

Course

- Prof. Bojan Cestnik
 - Data preparation
- Prof. Nada Lavrač:
 - Data mining overview
 - Advanced topics
- Dr. Petra Kralj Novak
 - Data mining basis
 - Hand on Weka
 - Written exam
 - Reading clubs:
 - Basic: Max Bramer: Principles of Data Mining (2007)
 - Advanced: Charu C. Aggarwal: Data Mining: The Textbook
- Prof. Dunja Mladenić
 - Text mining

6.11.2018	17h-19h	MPS	Nada Lavrač	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
7.11.2018	16h-19h	MPS	Bojan Cestnik	ICT2 Data and text mining	
8.11.2018	17h-19h	Oranžna	Petra Kralj Novak Exercises and Hands on Weka	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
13.11.2018	15h-17h	MPS	Nada Lavrač	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
15.11.2018	15h-18h	Oranžna	Petra Kralj Novak Exercises and Hands on Weka Book club Bramer ch. 1-5	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
21.11.2018	15h-19h	MPŠ	Dunja Mladenić	ICT2 Data and text mining	
22.11.2018	17h-19h	Oranžna	Nada Lavrač	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
28.11.2018	16h-18h	Oranžna	Bojan Cestnik	ICT2 Data and text mining	
29.11.2018	15h-18h	Oranžna	Petra Kralj Novak Exercises and Hands on Weka Book club Bramer ch. 6-10	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
6.12.2018	15h-17h	Oranžna	Petra Kralj Novak Hands on Exercises Book club Bramer ch. 11-15	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
10.12.2018	16h-18h	Oranžna	Dunja Mladenic	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
14.12.2018	15h-18h	Oranžna	Martin Žnidaršič	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
19.12.2018	16h-18h	MPŠ	Petra Kralj Novak Written test Seminar proposals	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
10.1.2019	15h-17h	Oranžna	Petra Kralj Novak Advanced Hands-on	ICT2 Data and text mining	ICT3 Data Mining and Knowledge Discovery
14.1.2019	17h-19h	MPŠ	Dunja Mladenić	ICT2 Data and text mining	

Keywords



Data

Attribute, example, attribute-value data, target variable, class, discretization

Algorithms

 Decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, naïve Bayes classifier, KNN, association rules, support, confidence, numeric prediction, regression tree, model tree, heuristics vs. exhaustive search, predictive vs. descriptive DM

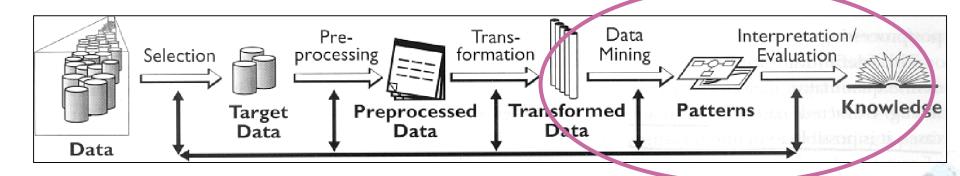
Evaluation

 Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, ROC space, AUC, error, precision, recall

Decision tree induction

Given

- Attribute-value data with nominal target variable
 Induce
- A decision tree and estimate its performance



Attribute-value data

(nominal) target variable

reduced

yes

NO

examples

_							
	Person	Āge	Prescription	Astigmatic	Tear_Rate	Lenses	
•	P1	young	myope	no	normal	YES	
	P2	young	myope	no	reduced	NO	
4	P3	young	hypermetrope	no	normal	YES	
4	P4	young	hypermetrope	no	reduced	NO	
	P5	young	myope	yes	normal	YES	
	P6	young	myope	yes	reduced	NO	
	P7	young	hypermetrope	yes	normal	YES	
	P8	young	hypermetrope	yes	reduced	NO	
	P9	pre-presbyopic	myope	no	normal	YES	
	P10	pre-presbyopic	myope	no	reduced	NO	
	P11	pre-presbyopic	hypermetrope	no	normal	YES	
	P12	pre-presbyopic	hypermetrope	no	reduced	NO	
	P13	pre-presbyopic	myope	yes	normal	YES	
	P14	pre-presbyopic	myope	yes	reduced	NO	
	P15	pre-presbyopic	hypermetrope	yes	normal	NO	
	P16	pre-presbyopic	hypermetrope	yes	reduced	NO	
	P17	presbyopic	myope	no	normal	NO	
	P18	presbyopic	myope	no	reduced	NO	
	P19	presbyopic	hypermetrope	no	normal	YES	
	P20	presbyopic	hypermetrope	no	reduced	NO	
	P21	presbyopic	myope	yes	normal	YES	
	P22	presbyopic	myope	yes	reduced	NO	
1	P23	presbyopic	hypermetrope	yes	normal	NO	

hypermetrope

attributes

classes

values of the (nominal) target variable

P24

presbyopic

ARNED

Section 1

Training and test set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P1	young	myope	no	normal	YES
P2	young	myope	no	reduced	NO
P3	young	hypermetrope	no	normal	YES
P4	young	hypermetrope	no	reduced	NO
P5	young	myope	yes	normal	YES
P6	young	myope	yes	reduced	NO
P7	young	hypermetrope	yes	normal	YES
P8	young	hypermetrope	yes	reduced	NO
P9	pre-presbyopic	myope	no	normal	YES
P10	pre-presbyopic	myope	no	reduced	NO
P11	pre-presbyopic	hypermetrope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P14	pre-presbyopic	myope	yes	reduced	NO
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P17	presbyopic	myope	no	normal	NO
P18	presbyopic	myope	no	reduced	NO
P19	presbyopic	hypermetrope	no	normal	YES
P20	presbyopic	hypermetrope	no	reduced	NO
P21	presbyopic	myope	yes	normal	YES
P22	presbyopic	myope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO
P24	presbyopic	hypermetrope	yes	reduced	NO

Put 30% of examples in a separate test set

Test set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Put these data away and do not look at them in the training phase!

Training set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P1	young	myope	no	normal	YES
P2	young	myope	no	reduced	NO
P4	young	hypermetrope	no	reduced	NO
P5	young	myope	yes	normal	YES
P6	young	myope	yes	reduced	NO
P7	young	hypermetrope	yes	normal	YES
P8	young	hypermetrope	yes	reduced	NO
P10	pre-presbyopic	myope	no	reduced	NO
P11	pre-presbyopic	hypermetrope	no	normal	YES
P14	pre-presbyopic	myope	yes	reduced	NO
P17	presbyopic	myope	no	normal	NO
P18	presbyopic	myope	no	reduced	NO
P19	presbyopic	hypermetrope	no	normal	YES
P20	presbyopic	hypermetrope	no	reduced	NO
P21	presbyopic	myope	yes	normal	YES
P22	presbyopic	myope	yes	reduced	NO
P24	presbyopic	hypermetrope	yes	reduced	NO

Decision tree induction

Given

- Attribute-value data with nominal target variable
 Induce
- A decision tree and estimate its performance

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- Compute the entropy E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the **information gain** of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root
- 7. Divide the set S into subsets S_i according to the values of A
- 8. Repeat steps 1-7 on each S_i

Test the model on the test set T

Information gain

number of examples in the subset S_v

(probability of the branch)

$$Set S \qquad \text{attribute A} \qquad \qquad |S_v| \\ Gain(S,A) = E(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} \cdot E(S_v)$$

number of examples in set S

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

```
E(0,1) =
E(1/2, 1/2) =
E(1/4, 3/4) =
E(1/7, 6/7) =
E(6/7, 1/7) =
E(0.1, 0.9) =
E(0.001, 0.999) =
```


$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

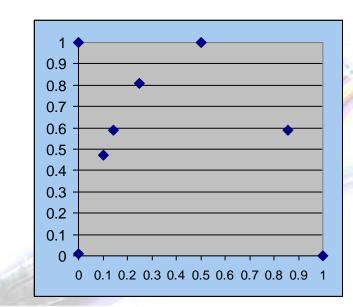
E
$$(0,1) = 0$$

E $(1/2, 1/2) = 1$
E $(1/4, 3/4) = 0.81$
E $(1/7, 6/7) = 0.59$
E $(6/7, 1/7) = 0.59$
E $(0.1, 0.9) = 0.47$
E $(0.001, 0.999) = 0.01$

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

E
$$(0,1) = 0$$

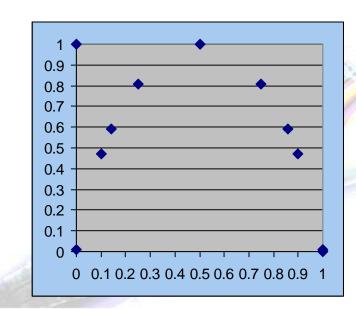
E $(1/2, 1/2) = 1$
E $(1/4, 3/4) = 0.81$
E $(1/7, 6/7) = 0.59$
E $(6/7, 1/7) = 0.59$
E $(0.1, 0.9) = 0.47$
E $(0.001, 0.999) = 0.01$



$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

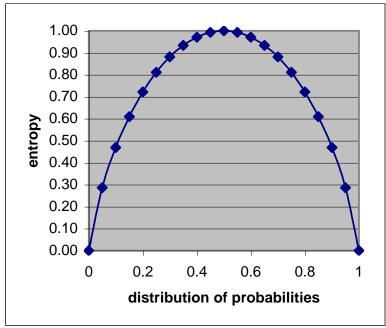
E
$$(0,1) = 0$$

E $(1/2, 1/2) = 1$
E $(1/4, 3/4) = 0.81$
E $(1/7, 6/7) = 0.59$
E $(6/7, 1/7) = 0.59$
E $(0.1, 0.9) = 0.47$
E $(0.001, 0.999) = 0.01$



Entropy and information gain

		• •		
	antrony F/n	probability of class 2	probability of class 1	
$p_1, p_2 =$	entropy E(p	Class 2	<u> </u>	
$p_2*log_2(p_2)$	-p ₁ *log ₂ (p ₁) - p	$p_2 = 1 - p_1$	p ₁	
)	0.00	1	0	
)	0.29	0.95	0.05	
,	0.47	0.90	0.10	
	0.61	0.85	0.15	
)	0.72	0.80	0.20	
	0.81	0.75	0.25	
}	0.88	0.70	0.30	
3	0.93	0.65	0.35	
,	0.97	0.60	0.40	
)	0.99	0.55	0.45	
)	1.00	0.50	0.50	
)	0.99	0.45	0.55	
,	0.97	0.40	0.60	
3	0.93	0.35	0.65	
at	0.88	0.30	0.70	
	0.81	0.25	0.75	
Gair	0.72	0.20	0.80	
	0.61	0.15	0.85	
•	0.47	0.10	0.90	
)	0.29	0.05	0.95	
)	0.00	0	1	



number of examples in the subset probability of the "branch" attribut A $En(S,A) = E(S) - \sum_{v \in Values} \frac{|S_v|}{|S|} E(S_v)$ set S number of examples in set S

Decision tree induction (ID3)

Given:

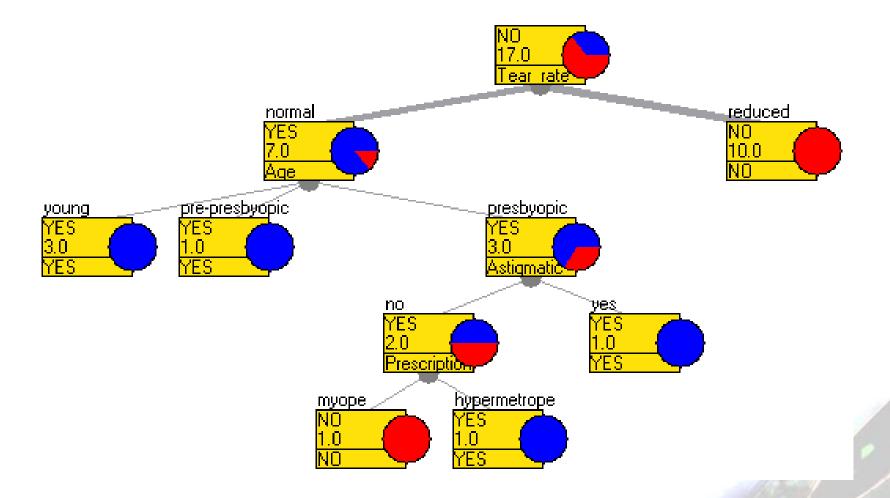
Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- Compute the entropy E(S) of the set S
- 2. **IF** E(S) = 0
- 3. The current set is "clean" and therefore a leaf in our tree
- 4. **IF** E(S) > 0
- 5. Compute the information gain of each attribute Gain(S, A)
- 6. The attribute A with the highest information gain becomes the root
- 7. Divide the set S into subsets S_i according to the values of A
- 8. Repeat steps 1-7 on each Si

Test the model on the test set T

Decision tree



Confusion matrix

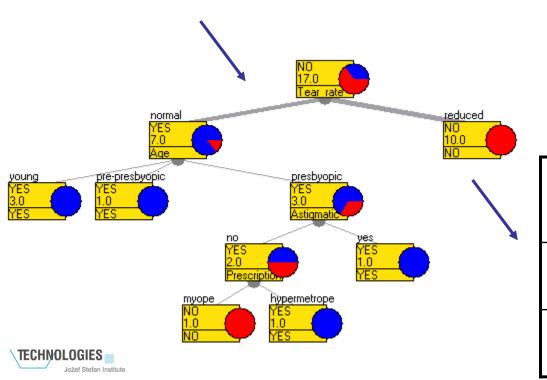
predicted

		Predicted positive	Predicted negative
ctual	Actual positive	TP	FN
act	Actual negative	FP	TN

- Confusion matrix is a matrix showing actual and predicted classifications
- Classification measures can be calculated from it, like classification accuracy
 - = #(correctly classified examples) / #(all examples)
 - = (TP+TN) / (TP+TN+FP+FN)

Evaluating decision tree accuracy

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO



$$Ca = (3+2)/(3+2+2+0) = 71\%$$

	Predicted positive	Predicted negative
Actual positive	TP=3	FN=0
Actual negative	FP=2	TN=2

Is 71% good classification accuracy?

- Depends on the dataset!
- Compare to the majority class classifier (ZeroR in Weka)
 - Classifies all the data in the most represented class
- In our Lenses example, the majority class is "Lenses=NO".
 - Accuracy on train set = 11/17 = 65%
 - Accuracy on test set = 4/7 = 57%
 - If we had bigger sets, these two numbers would be almost the same
- Since 71% > 57%, there is some improvement from the majority class classifier

Discussion

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

