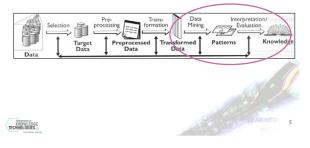



#### Course

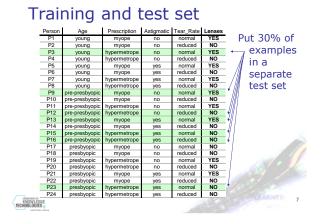
| •         | Prof. Bojan Cestnik                                                                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
|           | <ul> <li>Data preparation</li> </ul>                                                                                                     |
| •         | Prof. Nada Lavrač:                                                                                                                       |
|           | <ul> <li>Data mining overview</li> </ul>                                                                                                 |
|           | <ul> <li>Advanced topics</li> </ul>                                                                                                      |
| •         | Dr. Petra Kralj Novak                                                                                                                    |
|           | - Data mining basis                                                                                                                      |
|           | - Hand on Weka                                                                                                                           |
|           | - Written exam                                                                                                                           |
|           | <ul> <li>Reading clubs:</li> </ul>                                                                                                       |
|           | <ul> <li>Basic: Max Bramer: Principles of Data Mining (2007)</li> <li>Advanced: Charu C. Aggarwal : Data Mining: The Textbook</li> </ul> |
|           | Prof. Dunja Mladenić                                                                                                                     |
|           |                                                                                                                                          |
|           | - Text mining                                                                                                                            |
|           |                                                                                                                                          |
| KNOWL     | DGE                                                                                                                                      |
| IEUHNOLOG | IED INC.                                                                                                                                 |

| 6.11.2018  | 17h-19h | MPS      | Nada Lavral                                                                   | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
|------------|---------|----------|-------------------------------------------------------------------------------|---------------------------|------------------------------------------|-----|
| 7.11.2018  | 16h-19h | MPS      | Bojan Cestnik                                                                 | ICT2 Data and text mining |                                          |     |
| 8.11.2018  | 17h-19h | Oranžna  | Petra Kralj Novak<br>Exercises and Hands on Weka                              | ICT2 Data and text mining | ICT3 Data Wining and Knowledge Discovery |     |
| 13.11.2018 | 15h-17h | MPS      | Nada Lavrač                                                                   | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
| 15.11.2018 | 15h-18h | Oranžna  | Petra Kralj Novak<br>Exercises and Hands on Weka<br>Book club Bramer ch. 1-5  | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
| 21.11.2018 | 15h-19h | MPŠ      | Dunja Madenić                                                                 | ICT2 Data and text mining |                                          |     |
| 22.11.2018 | 17h-19h | Oranžina | Nada Lavrač                                                                   | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
| 28.11.2018 | 16h-18h | Oranžna  | Bojan Cestnik                                                                 | ICT2 Data and text mining |                                          |     |
| 29.11.2018 | 15h-18h | Oranžna  | Petra Kralj Novak<br>Exercises and Hands on Weka<br>Book club Bramer ch. 6-10 | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
| 6.12.2018  | 15h-17h | Oranžna  | Petra Kralj Novak<br>Hands on Exercises<br>Book club Bramer ch. 11-15         | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
| 10.12.2018 | 16h-18h | Oranžna  | Dunja Madenic                                                                 | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
| 14.12.2018 | 15h-18h | Oranžna  | Martin Žnidaršič                                                              | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
| 19.12.2018 | 16h-18h | MPŠ      | Petra Kralj Novak<br>Written test<br>Seminar proposals                        | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery |     |
| 10.1.2019  | 15h-17h | Oranžna  | Petra Kralj Novak<br>Advanced Hands-on                                        | ICT2 Data and text mining | ICT3 Data Mining and Knowledge Discovery | ARH |
| 14.1.2019  | 17h-19h | MPŠ      | Dunja Mladenk                                                                 | ICT2 Data and text mining |                                          |     |

| Keywords                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selection<br>Target<br>Data<br>Data<br>Selection<br>Target<br>Data<br>Preprocessed<br>Preprocessed<br>Transformed<br>Data<br>Transformed<br>Patterne<br>Preprocessed<br>Transformed<br>Patterne<br>Transformed<br>Patterne<br>Transformed<br>Patterne<br>Transformed<br>Patterne<br>Transformed<br>Patterne<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Transformed<br>Tra |
| <ul> <li>Data         <ul> <li>Attribute, example, attribute-value data, target variable, class,<br/>discretization</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Algorithms         <ul> <li>Decision tree induction, entropy, information gain, overfitting,<br/>Occam's razor, model pruning, naïve Bayes classifier, KNN,<br/>association rules, support, confidence, numeric prediction,<br/>regression tree, model tree, heuristics vs. exhaustive search,<br/>predictive vs. descriptive DM</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Evaluation         <ul> <li>Train set, test set, accuracy, confusion matrix, cross<br/>validation, true positives, false positives, ROC space, AUC,<br/>error, precision, recall</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |


KNOWLEDGE TECHNOLOGIES


## Decision tree induction


#### Given

KNOWLED

- Attribute-value data with nominal target variable
- Induce
- A decision tree and estimate its performance







#### Test set

| Person | Age            | Prescription | Astigmatic | Tear_Rate | Lenses |
|--------|----------------|--------------|------------|-----------|--------|
| P3     | young          | hypermetrope | no         | normal    | YES    |
| P9     | pre-presbyopic | myope        | no         | normal    | YES    |
| P12    | pre-presbyopic | hypermetrope | no         | reduced   | NO     |
| P13    | pre-presbyopic | myope        | yes        | normal    | YES    |
| P15    | pre-presbyopic | hypermetrope | yes        | normal    | NO     |
| P16    | pre-presbyopic | hypermetrope | yes        | reduced   | NO     |
| P23    | presbyopic     | hypermetrope | yes        | normal    | NO     |

Put these data away and do not look at them in the training phase!

| LON . |  | 1000 |
|-------|--|------|

#### Training set

| P1<br>P2<br>P4 | young<br>young | myope        | no  | normal  | 1/50 |  |
|----------------|----------------|--------------|-----|---------|------|--|
|                | vound          |              | 110 | normal  | YES  |  |
| P4             |                | myope        | no  | reduced | NO   |  |
|                | young          | hypermetrope | no  | reduced | NO   |  |
| P5             | young          | myope        | yes | normal  | YES  |  |
| P6             | young          | myope        | yes | reduced | NO   |  |
| P7             | young          | hypermetrope | yes | normal  | YES  |  |
| P8             | young          | hypermetrope | yes | reduced | NO   |  |
| P10 p          | re-presbyopic  | myope        | no  | reduced | NO   |  |
| P11 p          | re-presbyopic  | hypermetrope | no  | normal  | YES  |  |
| P14 p          | re-presbyopic  | myope        | yes | reduced | NO   |  |
| P17            | presbyopic     | myope        | no  | normal  | NO   |  |
| P18            | presbyopic     | myope        | no  | reduced | NO   |  |
| P19            | presbyopic     | hypermetrope | no  | normal  | YES  |  |
| P20            | presbyopic     | hypermetrope | no  | reduced | NO   |  |
| P21            | presbyopic     | myope        | yes | normal  | YES  |  |
| P22            | presbyopic     | myope        | yes | reduced | NO   |  |
| P24            | presbyopic     | hypermetrope | yes | reduced | NO   |  |



## Decision tree induction (ID3)

#### Given:

#### Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

#### Induce a decision tree on training set S:

- Compute the **entropy** E(S) of the set S IF E(S) = 0The current set is "clean" and therefore a leaf in our tree 1.
- 2.
- 4.
- **IF** E(S) > 0Compute the **information gain** of each attribute Gain(S, A) The attribute A with the highest information gain becomes the root
- 6. 7. Divide the set S into subsets S, according to the values of A Repeat steps 1-7 on each S,

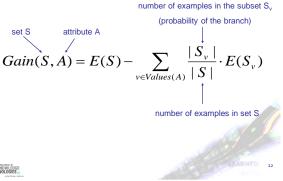
Test the model on the test set T

KNOWLEDGE Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106

## Decision tree induction

Given

KNOWLEDGE


- Attribute-value data with nominal target variable
- Induce
- A decision tree and estimate its performance

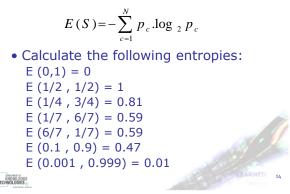


KNOWLEDGE



## Information gain




KNOWLEDGI

### Entropy

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

• Calculate the following entropies: E(0,1) =E(1/2, 1/2) =E(1/4, 3/4) =E(1/7, 6/7) =E(6/7, 1/7) =E(0.1, 0.9) =E(0.001, 0.999) =

Entropy



### Entropy

KNOWLEDGE

KNOWLEDGE

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

 Calculate the following entropies: E(0,1) = 0E(1/2, 1/2) = 1

| E (1/4 , 3/4) = 0.81   |
|------------------------|
| E (1/7,6/7) = 0.59     |
| E (6/7 , 1/7) = 0.59   |
| E(0.1, 0.9) = 0.47     |
| E(0.001, 0.999) = 0.01 |

| 4   |                                         |
|-----|-----------------------------------------|
| 0.9 |                                         |
| 0.8 |                                         |
| 0.7 |                                         |
| 0.6 |                                         |
| 0.5 |                                         |
| 0.4 | •                                       |
| 0.3 |                                         |
| 0.2 |                                         |
| 0.1 |                                         |
| 0   | • • • • • • • • • • • • • • • •         |
|     | 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 |

## Entropy

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

 Calculate the following entropies: E(0,1) = 0E(1/2, 1/2) = 1E(1/4, 3/4) = 0.811 🕈 E(1/7, 6/7) = 0.59E(6/7, 1/7) = 0.59E(0.1, 0.9) = 0.47

| 0.9                                     |
|-----------------------------------------|
| 0.8                                     |
| 0.7                                     |
| 0.6                                     |
| 0.5                                     |
| 0.4                                     |
| 0.3                                     |
| 0.2                                     |
| 0.1                                     |
| 0 • • • • • • • • • • • •               |
| 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 |

KNOWLEDGE

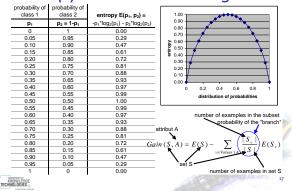
## Decision tree induction (ID3)

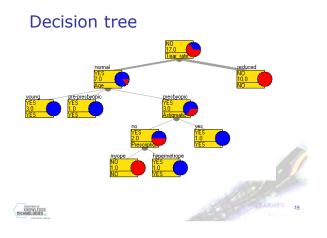


Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

E(0.001, 0.999) = 0.01


- Compute the entropy E(S) of the set S IF E(S) = 01. 2.
- The current set is "clean" and therefore a leaf in our tree


- The content of the first of the Divide the set S into subsets S, according to the values of A Repeat steps 1-7 on each Si

Test the model on the test set T

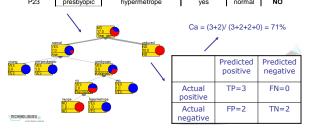


# Entropy and information gain





#### Confusion matrix


|        |                 | predi              | icted              |
|--------|-----------------|--------------------|--------------------|
|        |                 | Predicted positive | Predicted negative |
| actual | Actual positive | ТР                 | FN                 |
|        | Actual negative | FP                 | TN                 |

- · Confusion matrix is a matrix showing actual and predicted classifications
- Classification measures can be calculated from it, like classification accuracy
  - = #(correctly classified examples) / #(all examples) = (TP+TN) / (TP+TN+FP+FN)

| 20 |
|----|
|    |

#### Evaluating decision tree accuracy

|   | Person | Age            | Prescription | Astigmatic | Tear_Rate | Lenses |
|---|--------|----------------|--------------|------------|-----------|--------|
|   | P3     | young          | hypermetrope | no         | normal    | YES    |
|   | P9     | pre-presbyopic | myope        | no         | normal    | YES    |
| 1 | P12    | pre-presbyopic | hypermetrope | no         | reduced   | NO     |
|   | P13    | pre-presbyopic | myope        | yes        | normal    | YES    |
| 1 | P15    | pre-presbyopic | hypermetrope | yes        | normal    | NO     |
| 1 | P16    | pre-presbyopic | hypermetrope | yes        | reduced   | NO     |
|   | P23    | presbyopic     | hypermetrope | ves        | normal    | NO     |



#### Is 71% good classification accuracy?

- Depends on the dataset!
- · Compare to the majority class classifier (ZeroR in Weka)
  - Classifies all the data in the most represented class
- · In our Lenses example, the majority class is "Lenses=NO".
  - Accuracy on train set = 11/17 = 65%
  - Accuracy on test set = 4/7 = 57%
  - If we had bigger sets, these two numbers would be almost the same
- Since 71% > 57%, there is some improvement from the majority class classifier

KNOWLEDGE

KNOWLEDGE

Discussion

- How much is the information gain for the "attribute" Person? How would it perform on the test set? How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13} What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*? What we stopping criteria for building a decision tree? How would you compute the information gain for a numeric attribute?



