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Data Mining: PhD Credits and Coursework

• Attending lectures

• Attending practical exercises 

– Theory exercises and hands-on (intro to WEKA by dr. 

Petra Kralj Novak)

• Written exam (40%) 

• Seminar (60%):

– Data analysis of your own data (e.g., using WEKA for 

questionnaire data analysis)

– Implementing a selected data mining workflow in the 

ClowdFlows data mining platform

– …. own initiative is welcome …
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Data Mining: PhD Credits and coursework

Exam: Written exam (60 minutes) - Theory 

Seminar: topic selection + results presentation

• One hour available for seminar topic discussion – one page 

written proposal defining the task and the selected dataset

• Deliver written report + electronic copy (4 pages in 

Information Society paper format, instructions on the web) 

– Report on data analysis of own data needs to follow the  

CRISP-DM methodology

– Report on DM SW development needs to include SW 

compatible with the ClowdFlows I/O requirements

– Presentation of your seminar results (15 minutes each: 10 

minutes presentation + 5 minutes discussion)
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Data Mining: ICT2 Credits and Coursework

• 20 credits (8 Lavrač + 4 Cestnik + 8 Mladenić)
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Course Outline

I. Introduction

– Data Mining and KDD process

– Introduction to Data Mining 

– Data Mining platforms

II. Predictive DM Techniques

– Decision Tree learning

- Bayesian classifier 

– Classification rule learning

– Classifier Evaluation 

III. Regression 

IV. Descriptive DM

– Predictive vs. descriptive induction

– Subgroup discovery

– Association rule learning 
Hierarchical clustering

V. Relational Data Mining

– RDM and Inductive Logic 
Programming

– Propositionalization

– Semantic data mining

VI. Advanced Topics
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Part I. Introduction

• Data Mining and the KDD process

• Introduction to Data Mining 

• Data Mining platforms



Machine Learning and Data Mining

• Machine Learning (ML) – computer 

algorithms/machines that learn predictive 

models from class-labeled data

• Data Mining (DM) – extraction of useful 

information from data: discovering 

relationships and patterns that have not 

previously been known, and use of ML

techniques applied to solving real-life data 

analysis problems

• Knowledge discovery in databases (KDD) –

the process of knowledge discovery

9
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Machine Learning and Data Mining

• Machine Learning (ML) – computer 

algorithms/machines that learn predictive 

models from class-labeled data

• Data Mining (DM) – extraction of useful 

information from data: discovering 

relationships and patterns that have not 

previously been known, and use of ML

techniques applied to solving real-life data 

analysis problems

• Knowledge Discovery in Databases (KDD) –

the process of knowledge discovery
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Data Mining and KDD

• Buzzword since 1996

• KDD is defined as “the process of identifying 
valid, novel, potentially useful and ultimately 
understandable models/patterns in data.” *

• Data Mining (DM) is the key step in the KDD 
process, performed by using data mining 
techniques for extracting models or interesting 
patterns from the data. 

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting 
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11
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KDD Process: CRISP-DM

KDD process of discovering useful knowledge from data

• KDD process involves several phases:

• data preparation

• data mining (machine learning, statistics)

• evaluation and use of discovered patterns

• Data mining is the key step, but represents only 
15%-25% of the entire KDD process
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Big Data

• Big Data – Buzzword since 2008 (special 

issue of Nature on Big Data)

– data and techniques for dealing with very 

large volumes of data, possibly dynamic 

data streams

– requiring large data storage resources, 

special algorithms for parallel computing 

architectures.



The 4 Vs of Big Data

14
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Data Science

• Data Science – buzzword since 2012 when 

Harvard Business Review called it "The 

Sexiest Job of the 21st Century"

– an interdisciplinary field that uses scientific 

methods, processes, algorithms and 

systems to extract knowledge and insights 

from data in various forms, both structured 

and unstructured, similar to data mining. 

– used interchangeably with earlier concepts 

like business analytics, business 

intelligence, predictive modeling, and 

statistics.
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Data Mining in a Nutshell

data

Data Mining

knowledge discovery 

from data

model, patterns, …

Given: transaction data table, relational database, text

documents, Web pages

Find: a classification model, a set of interesting patterns 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Data Mining in a Nutshell

data

Data Mining

knowledge discovery 

from data

model, patterns, …

Given: transaction data table, relational database, text

documents, Web pages

Find: a classification model, a set of interesting patterns 

new unclassified instance classified  instance

black box classifier 

no explanation

symbolic model  

symbolic patterns 

explanation

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Simplified example: Learning a classification 

model from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Simplified example: Learning a classification 

model from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data Mining
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Task reformulation: Binary Class Values

Binary classes (positive vs. negative examples of Target class) 

- for Concept learning – classification and class description 

- for Subgroup discovery – exploring patterns 

characterizing groups of instances of target class

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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Learning from Numeric Class Data

Numeric class values – regression analysis

Person Age Spect. presc. Astigm. Tear prod. LensPrice

O1 17 myope no reduced 0

O2 23 myope no normal  8

O3 22 myope yes reduced 0

O4 27 myope yes normal 5

O5 19 hypermetrope no reduced 0

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal 5

O15 43 hypermetrope yes reduced 0

O16 39 hypermetrope yes normal 0

O17 54 myope no reduced 0

O18 62 myope no normal 0

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal 0
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Learning from Unlabeled Data

Unlabeled data - clustering: grouping of similar instances 

- association rule learning

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Data Mining, ML and Statistics

• All three areas have a long tradition of developing 
inductive techniques for data analysis.

– reasoning from properties of a data sample to 
properties of a population

• DM vs. ML - Viewpoint in this course: 

– Data Mining is the application of Machine Learning 
techniques to  hard real-life data analysis problems
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Data Mining, ML and Statistics

• All three areas have a long tradition of developing 
inductive techniques for data analysis.

– reasoning from properties of a data sample to 
properties of a population

• DM vs. Statistics:

– Statistics

• Hypothesis testing when certain theoretical 
expectations about the data distribution, 
independence, random sampling, sample size, etc. 
are satisfied

• Main approach: best fitting all the available data

– Data mining

• Automated construction of understandable 
patterns, and structured models

• Main approach: structuring the data space, 
heuristic search for decision trees, rules, …  
covering (parts of) the data space



Why learn and use symbolic models

Given: the learned classification model

(a decision tree or a set of rules)

Find: the class label for a new unlabeled instance



Why learn and use symbolic models

Given: the learned classification model

(a decision tree or a set of rules)

Find: the class label for a new unlabeled instance

classified  instancenew unclassified instance



Why learn and use symbolic models

Given: the learned classification model

(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

- use the model for the explanation of classifications of 

new data instances

- use the discovered patterns for data exploration

classified  instancenew unclassified instance
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Data Mining

data

Data Mining

knowledge discovery 

from data

model, patterns, …

Given: transaction data table, relational database, text

documents, Web pages

Find: a classification model, a set of interesting patterns 

new unclassified instance classified  instance

black box classifier 

no explanation

symbolic model  

symbolic patterns 

explanation

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Pattern discovery in Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

IF  

Tear prod. = 

reduced  

THEN   

Lenses = 

NONE 

PATTERN

Rule:
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Learning a classification model from 

contact lens data
Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data Mining



Decision tree classification model 

learned from contact lens data

nodes: attributes

arcs: values of attributes

leaves: classes



Learning a classification model

from contact lens data

Data Mining

lenses=NONE ← tear production=reduced 

lenses=NONE ← tear production=normal AND astigmatism=yes AND

spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal AND astigmatism=no 

lenses=HARD ← tear production=normal AND astigmatism=yes AND

spect. pre.=myope 

lenses=NONE ←

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE



Classification rules model learned

from contact lens data

lenses=NONE ← tear production=reduced 

lenses=NONE ← tear production=normal AND 

astigmatism=yes AND

spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal AND 

astigmatism=no 

lenses=HARD ← tear production=normal AND 

astigmatism=yes AND

spect. pre.=myope 

lenses=NONE ←



Task reformulation: Binary Class Values

Binary classes (positive vs. negative examples of Target class) 

- for Concept learning tasks

- classification and class description

- “one vs. all” multi-class learning 

- for Subgroup discovery tasks

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO



Learning from Numeric Class Data

Numeric class values – regression analysis

Person Age Spect. presc. Astigm. Tear prod. LensPrice

O1 17 myope no reduced 0

O2 23 myope no normal  8

O3 22 myope yes reduced 0

O4 27 myope yes normal 5

O5 19 hypermetrope no reduced 0

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal 5

O15 43 hypermetrope yes reduced 0

O16 39 hypermetrope yes normal 0

O17 54 myope no reduced 0

O18 62 myope no normal 0

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal 0



Learning from Unlabeled Data

Unlabeled data - clustering: grouping of similar instances 

- association rule learning

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE



Why learn and use symbolic models

Given: the learned classification model

(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

- use the model for the explanation of classifications of 

new data instances

- use the discovered patterns for data exploration

classified  instancenew unclassified instance



First Generation Data Mining

• First machine learning algorithms for 

– Decision tree and rule learning in 1970s and early 1980s 

by Quinlan, Michalski et al., Breiman et al., …

• Characterized by

– Learning from data stored in a single data table

– Relatively small set of instances and attributes

• Lots of ML research followed in 1980s 

– Numerous conferences ICML, ECML, … and ML 

sessions at AI conferences IJCAI, ECAI, AAAI, …

– Extended set of learning tasks and algorithms 

addressed



Second Generation Data Mining

• Developed since 1990s:
– Focused on data mining tasks characterized by large 

datasets described by large numbers of attributes 

– Industrial standard: CRISP-DM methodology (1997)



Second Generation Data Mining

• Developed since 1990s:
– Focused on data mining tasks characterized by large 

datasets described by large numbers of attributes 

– Industrial standard: CRISP-DM methodology (1997)

– New conferences on practical aspects of data mining 
and knowledge discovery: KDD, PKDD, …

– New learning tasks and efficient learning algorithms:
• Learning predictive models: Bayesian network learning,, 

relational data mining, statistical relational learning, SVMs, …

• Learning descriptive patterns: association rule learning, 
subgroup discovery, …



Second Generation Data Mining 

Platforms

Orange, WEKA, KNIME, RapidMiner, …



Second Generation Data Mining 

Platforms

Orange, WEKA, KNIME, RapidMiner, …

– include numerous data mining algorithms

– enable data and model visualization

– like Orange, Taverna, WEKA, KNIME, RapidMiner,  

also enable complex workflow construction 



Third Generation Data Mining

• Orange4WS (Podpečan et al. 2009), ClowdFlows (Kranjc et 

al. 2012) and TextFlows (Perovšek et al. 2016)

– are service oriented (DM algorithms as web services)

– user-friendly HCI: canvas for workflow construction

– include functionality of standard data mining platforms

• WEKA algorithms, implemented as Web services

– Include new functionality

• relational data mining

• semantic data mining

• NLP processing and text mining

– enable simplified construction of Web services from 

available algorithms

– ClowdFlows and TextFlows run in a browser – enables 

data mining, workflow construction and sharing on the web



ClowdFlows platform

• Large algorithm repository

– Relational data mining 

– All Orange algorithms

– WEKA algorithms as web services

– Data and results visualization

– Text analysis

– Social network analysis

– Analysis of big data streams

• Large workflow repository

– Enables access to our 

technology heritage



ClowdFlows platform

• Large repository of algorithms

• Large repository of workflows

Example workflow: 

Propositionalization with RSD 

available in ClowdFlows at 

http://clowdflows.org/workflow/611/



TextFlows

• Motivation: 

– Develop an online text mining platform for 

composition, execution and sharing of text mining 

workflows

• TextFlows platform – fork of ClowdFlows.org:

– Specialized on text mining

– Web-based user interface

– Visual programming

– Big roster of existing workflow (mostly text mining) 

components

– Cloud-based service-oriented architecture



“Big Data” Use Case

• Real-time analysis of big data streams

• Example: semantic graph construction from news 

streams. http://clowdflows.org/workflow/1729/.

• Example: news monitoring by graph

visualization (graph of CNN RSS feeds)

http://clowdflows.org/streams/data/31/15524/.
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Part I: Summary

• KDD is the overall process of discovering useful 

knowledge in data

– many steps including data preparation, cleaning, 

transformation, pre-processing

• Data Mining is the data analysis phase in KDD

– DM takes only 15%-25% of the effort of the overall KDD 

process

– employing techniques from machine learning and statistics

• Predictive and descriptive induction have different 

goals: classifier vs. pattern discovery

• Many application areas, many powerful tools 

available
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Course Outline

I. Introduction

– Data Mining and KDD process

– Introduction to Data Mining 

– Data Mining platforms

II. Predictive DM Techniques

– Decision Tree learning

- Bayesian classifier 

– Classification rule learning

– Classifier Evaluation 

III. Regression 

IV. Descriptive DM

– Predictive vs. descriptive induction

– Subgroup discovery

– Association rule learning 
Hierarchical clustering

V. Relational Data Mining

– RDM and Inductive Logic 
Programming

– Propositionalization

– Semantic data mining

VI. Advanced Topics
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Part II. Predictive DM techniques

• Decision tree learning

• Bayesian Classifier

• Rule learning

• Evaluation
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Predictive DM - Classification

• data are objects, characterized with attributes -

they belong to different classes (discrete labels)

• given objects described with attribute values, 

induce a model to predict different classes

• decision trees, if-then rules, discriminant 

analysis, ...
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Predictive DM - classification  

formulated as a machine learning task

• Given a set of labeled training examples (n-tuples of 
attribute values, labeled by class name) 

A1        A2        A3         Class

example1     v1,1 v1,2           v1,3                C1

example2     v2,1 v2,2           v2,3                C2

. . 

• Performing generalization from examples (induction) 

• Find a hypothesis (a decision tree or classification rules) 
which explains the training examples, e.g. decision trees 
or classification rules of the form:

IF (Ai = vi,k) & (Aj = vj,l) & ... THEN Class = Cn 
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Decision Tree Learning 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data Mining



Decision Tree classifier
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Decision tree learning algorithm

• ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, 

J48 in WEKA, ...

– create the root node of the tree

– if all examples from S belong to the same class Cj

• then label the root with Cj

– else

• select the ‘most informative’ attribute A with values 

v1, v2, … vn

• divide training set S into S1,… , Sn according to 

values v1,…,vn

• recursively build sub-trees

T1,…,Tn for S1,…,Sn

A

...

...T1 Tn

vnv1
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Decision tree search heuristics

• Central choice in decision tree algorithms: Which 
attribute to test at each node in the tree ? The 
attribute that is most useful for classifying 
examples. 

• Define a statistical property, called information 
gain, measuring how well a given attribute 
separates the training examples w.r.t their target 
classification.

• First define a measure commonly used in 
information theory, called entropy, to characterize 
the (im)purity of an arbitrary collection of examples.
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Entropy

• S - training set, C1,...,CN - classes

• Entropy E(S) – measure of the impurity of 
training set S





N

c

cc ppSE
1

2log.)( pc - prior probability of class Cc 

(relative frequency of Cc in S)

E(S) = - p+ log2p+ - p- log2p-

• Entropy in binary classification problems 
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Entropy

• E(S) = - p+ log2p+ - p- log2p-

• The entropy function relative to a Boolean 

classification, as the proportion p+ of positive 

examples varies between 0  and 1

0
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Entropy – why ?

• Entropy E(S) = expected amount of information (in 

bits) needed to assign a class to a randomly drawn 

object in S (under the optimal, shortest-length 

code)

• Why ?

• Information theory: optimal length code assigns      

- log2p bits to a message having probability p

• So, in binary classification problems, the expected 

number of bits to encode + or – of a random 

member of S is:

p+ ( - log2p+ ) + p- ( - log2p- ) = - p+ log2p+  - p- log2p-
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Entropy – example calculation

• Training set S: 14 examples (9 pos., 5 neg.)

• Notation: S = [9+, 5-] 

• E(S) = - p+ log2p+ - p- log2p-

• Computing entropy, if probability is estimated by 
relative frequency

• E([9+,5-]) = - (9/14) log2(9/14) - (5/14) log2(5/14)        

= 0.940 
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Information gain 

search heuristic

• Information gain measure is aimed to minimize the 

number of tests needed for the classification of a new 

object

• Gain(S,A) – expected reduction in entropy of S due to 

sorting on A 

• Most informative attribute: max Gain(S,A)
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Information gain 

search heuristic

• Which attribute is more informative, A1 or A2 ?

• Gain(S,A1) = 0.94 – (8/14 x 0.811 + 6/14 x 1.00) = 0.048

• Gain(S,A2) = 0.94 – 0 = 0.94                 A2 has max Gain

A1

[9,5],  E  0.94 

[3, 3][6, 2]

E0.811 E1.00

A2

[0, 5][9, 0]

E0.0 E0.0

[9,5],  E  0.94 
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Heuristic search in ID3

• Search bias: Search the space of decision trees 
from simplest to increasingly complex (greedy 
search, no backtracking, prefer small trees)

• Search heuristics: At a node, select the attribute 
that is most useful for classifying examples, split 
the node accordingly

• Stopping criteria: A node becomes a leaf

– if all examples belong to same class Cj, label the 
leaf with Cj

– if all attributes were used, label the leaf with the 
most common value Ck of examples in the node

• Extension to ID3: handling noise - tree pruning 
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Pruning of decision trees

• Avoid overfitting the data by tree pruning

• Pruned trees are
– less accurate on training data

– more accurate when classifying unseen data
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Handling noise – Tree pruning

Sources of imperfection

1.  Random errors (noise) in training examples

• erroneous attribute values

• erroneous classification

2. Too sparse training examples (incompleteness)

3.  Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples
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Handling noise – Tree pruning 

• Handling imperfect data 

– handling imperfections of type 1-3

• pre-pruning (stopping criteria)

• post-pruning / rule truncation

– handling missing values

• Pruning avoids perfectly fitting noisy data: relaxing 

the completeness (fitting all +) and consistency (fitting 

all -) criteria in ID3
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Prediction of breast cancer recurrence: 

Tree pruning
Degree_of_malig

Tumor_size

Age no_recur 125
recurrence 39

no_recur 4
recurrence 1 no_recur 4

Involved_nodes

no_recur 30
recurrence 18

no_recur 27
recurrence 10

< 3  3

< 15  15 < 3  3

< 40 40

no_rec 4      rec1
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Pruned decision tree for

contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]



70

Accuracy and error

• Accuracy: percentage of correct classifications

– on the training set

– on unseen instances

• How accurate is a decision tree when classifying unseen 

instances

– An estimate of accuracy on unseen instances can be computed, 

e.g., by averaging over 4 runs:

• split the example set into training set (e.g. 70%) and test set (e.g. 30%) 

• induce a decision tree from training set, compute its  accuracy on test 

set

• Error = 1 - Accuracy

• High error may indicate data overfitting



71

Overfitting and accuracy

• Typical relation between tree size and accuracy

• Question: how to prune optimally?
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Avoiding overfitting

• How can we avoid overfitting?
– Pre-pruning (forward pruning): stop growing the tree e.g., 

when data split not statistically significant or too few 
examples are in a split

– Post-pruning: grow full tree, then post-prune

• forward pruning considered inferior (myopic)

• post pruning makes use of sub trees 

Pre-pruning

Post-pruning



73

Selected decision/regression 

tree learners

• Decision tree learners

– ID3 (Quinlan 1979)

– CART (Breiman et al. 1984)

– Assistant (Cestnik et al. 1987)

– C4.5 (Quinlan 1993), C5 (See5, Quinlan)

– J48 (available in WEKA)

• Regression tree learners, model tree learners

– M5, M5P (implemented in WEKA)
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Features of C4.5 and J48

• Implemented as part of the WEKA data mining 

workbench

• Handling noisy data: post-pruning

• Handling incompletely specified training 

instances: ‘unknown’ values (?)

– in learning assign conditional probability of value v: 

p(v|C) = p(vC) / p(C)

– in classification: follow all branches, weighted by 

prior prob. of missing attribute values
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Other features of C4.5

• Binarization of attribute values
– for continuous values select a boundary value 

maximally increasing the informativity of the 
attribute: sort the values and try every possible 
split (done automaticaly)

– for discrete values try grouping the values until 
two groups remain *

• ‘Majority’ classification in NULL leaf (with no 
corresponding training example)
– if an example ‘falls’ into a NULL leaf during 

classification, the class assigned to this example 
is the majority class of the parent of the NULL leaf

* the basic C4.5 doesn’t support binarisation of discrete attributes, it supports grouping
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Appropriate problems for 

decision tree learning

• Classification problems: classify an instance into one 
of a discrete set of possible categories (medical 
diagnosis, classifying loan applicants, …)

• Characteristics:
– instances described by attribute-value pairs       

(discrete or real-valued attributes)

– target function has discrete output values             
(boolean or multi-valued, if real-valued then regression trees)

– disjunctive hypothesis may be required

– training data may be noisy                                     
(classification errors and/or errors in attribute values)

– training data may contain missing attribute values
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Classifier evaluation

• Use of induced models

– discovery of new patterns, new knowledge

– classification of new objects

• Evaluating the quality of induced models

– Accuracy, Error = 1 - Accuracy

– classification accuracy on testing examples = 
percentage of correctly classified instances

• split the example set into training set (e.g. 70%) to 
induce a concept, and test set (e.g. 30%) to test its 
accuracy

• more elaborate strategies: 10-fold cross validation, 
leave-one-out, ...

– comprehensibility (compactness)

– information contents (information score), significance 
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n-fold cross validation

• A method for accuracy estimation of classifiers

• Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D

• for i = 1, ..., n do

– form a training set out of n-1 folds: Di = D\Ti

– induce classifier Hi from examples in Di

– use fold Ti  for testing the accuracy of Hi

• Estimate the accuracy of the classifier by 

averaging accuracies over 10 folds Ti 
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Part II. Predictive DM techniques

• Decision tree learning

• Bayesian Classifier

• Rule learning

• Evaluation
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Bayesian methods

• Bayesian methods – simple but powerful 

classification methods

– Based on Bayesian formula

• Main methods:

– Naive Bayesian classifier

– Semi-naïve Bayesian classifier

– Bayesian networks *

* Out of scope of this course
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Naïve Bayesian classifier

• Probability of class, for given attribute values

• For all Cj compute probability p(Cj), given values vi of all 

attributes describing the example which we want to classify 

(assumption: conditional independence of attributes, when 

estimating p(Cj) and p(Cj |vi))

• Output CMAX with maximal posterior probability of class: 
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Semi-naïve Bayesian classifier

• Naive Bayesian estimation of probabilities 

(reliable)

• Semi-naïve Bayesian estimation of 

probabilities (less reliable)
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Probability estimation

• Relative frequency:

problems with small samples

• Laplace estimate (prior probability): 

assumes uniform prior 

distribution of k classes
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Probability estimation

• Relative frequency:

• Prior probability: Laplace law

• m-estimate:
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Probability estimation: intuition

• Experiment with N trials, n successful

• Estimate probability of success of next trial 

• Relative frequency: n/N

– reliable estimate when number of trials is large

– Unreliable when number of trials is small, e.g., 
1/1=1

• Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes

– Assumes uniform distribution of classes

• m-estimate: (n+m.pa) /(N+m)

– Prior probability of success pa, parameter m 
(weight of prior probability, i.e., number of ‘virtual’ 
examples )
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Explanation of Bayesian 

classifier

• Based on information theory

– Expected number of bits needed to encode a message = 

optimal code length -log p for a message, whose probability is 

p (*)

• Explanation based of the sum of information gains of 

individual attribute values vi (Kononenko and Bratko 1991, 

Kononenko 1993)

*  log p denotes binary logarithm
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Example of explanation of semi-naïve 

Bayesian classifier

Hip surgery prognosis

Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision Against

(bit) (bit)

Age = 70-80 0.07

Sex = Female -0.19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall -0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture classification acc. To Garden = Garden III -0.3

Fracture classification acc. To Pauwels = Pauwels III -0.14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes -0.32

Hospital rehabilitation = Yes 0.05

General complications = None 0

Combination: 0.21

   Time between injury and examination < 6 hours

   AND Hospitalization time between 4 and 5 weeks

Combination: 0.63

 Therapy = Artroplastic AND anticoagulant therapy = Yes
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Visualization of information 

gains for/against Ci
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Naïve Bayesian classifier

• Naïve Bayesian classifier can be used
– when we have sufficient number of training examples 

for reliable probability estimation

• It achieves good classification accuracy

– can be used as ‘gold standard’ for comparison with 

other classifiers

• Resistant to noise (errors)
– Reliable probability estimation

– Uses all available information

• Successful in many application domains

– Web page and document classification 

– Medical diagnosis and prognosis, …
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Improved classification accuracy due 

to using m-estimate

Relative freq. m-estimate

Primary tumor 48.20% 52.50%

Breast cancer 77.40% 79.70%

hepatitis 58.40% 90.00%

lymphography 79.70% 87.70%

Primary Breast thyroid Rheumatology

tumor cancer

#instan 339 288 884 355

#class 22 2 4 6

#attrib 17 10 15 32

#values 2 2.7 9.1 9.1

majority 25% 80% 56% 66%

entropy 3.64 0.72 1.59 1.7
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Part II. Predictive DM techniques

• Decision tree learning

• Bayesian Classifier

• Rule learning

• Evaluation
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Rule Learning

data

Rule learning

knowledge discovery 

from data

Model: a set of rules

Patterns: individual rules

Given: transaction data table, relational database (a set of 

objects, described by attribute values)

Find: a classification model in the form of a set of rules;

or a set of interesting patterns in the form of individual 

rules 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Rule set representation

• Rule base is a disjunctive set of conjunctive rules

• Standard form of rules:

IF Condition THEN Class

Class IF Conditions

Class  Conditions

• Form of CN2 rules:    

IF Conditions THEN MajClass [ClassDistr]

• Rule base:   {R1, R2, R3, …, DefaultRule}
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Contact lens data: 

Classification rules

Type of task: prediction and classification

Hypothesis language: rules X  C,  if X then C

X conjunction of attribute values, C class

tear production=reduced → lenses=NONE

tear production=normal & astigmatism=yes & 

spect. pre.=hypermetrope → lenses=NONE

tear production=normal & astigmatism=no → lenses=SOFT

tear production=normal & astigmatism=yes & 

spect. pre.=myope → lenses=HARD
DEFAULT lenses=NONE
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Rule learning

• Two rule learning approaches:

– Learn decision tree, convert to rules

– Learn set/list of rules

• Learning an unordered set of rules

• Learning an ordered list of rules

• Heuristics, overfitting, pruning 
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Contact lenses: convert decision tree to  

an unordered rule settear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

tear production=reduced => lenses=NONE [S=0,H=0,N=12] 

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>

lenses=NONE  [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT [S=5,H=0,N=1]

tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD 

[S=0,H=3,N=2]

DEFAULT lenses=NONE                      Order independent rule set (may overlap)
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Contact lenses: convert decision tree to 

decision listtear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

IF tear production=reduced THEN lenses=NONE

ELSE /*tear production=normal*/

IF astigmatism=no THEN lenses=SOFT

ELSE /*astigmatism=yes*/

IF spect. pre.=myope THEN lenses=HARD 

ELSE /* spect.pre.=hypermetrope*/

lenses=NONE                                         Ordered (order dependent) rule list 
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Converting decision tree to rules, and 

rule post-pruning (Quinlan 1993)

• Very frequently used method, e.g., in C4.5

and J48

• Procedure:

– grow a full tree (allowing overfitting)

– convert the tree to an equivalent set of rules

– prune each rule independently of others

– sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule 

learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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Original covering algorithm

(AQ, Michalski 1969,86)

Given examples of N classes C1, …, CN

for each class Ci do

– Ei := Pi U Ni (Pi pos., Ni neg.)

– RuleBase(Ci) := empty

– repeat {learn-set-of-rules}

• learn-one-rule R covering some positive 
examples and no negatives 

• add R to RuleBase(Ci)

• delete from Pi all pos. ex. covered by R

– until Pi = empty 
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Covering algorithm
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Covering algorithm
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Covering algorithm
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Covering algorithm
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Probability estimates

• Relative frequency :
– problems with small samples

• Laplace estimate : 
– assumes uniform prior 

distribution of k classes
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Learn-one-rule:

search heuristics

• Assume a two-class problem

• Two classes (+,-),  learn rules for + class (Cl). 

• Search for specializations R’ of a rule R = Cl  Cond 

from the RuleBase.

• Specializarion R’ of rule R = Cl  Cond

has the form    R’ = Cl  Cond & Cond’

• Heuristic search for rules: find the ‘best’ Cond’ to be 

added to the current rule R, such that rule accuracy is 

improved, e.g., such that Acc(R’) > Acc(R)

– where the expected classification accuracy can be 

estimated as A(R) = p(Cl|Cond)
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Learn-one-rule:

Greedy vs. beam search

• learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’ 
descendant, no backtracking
– e.g., the best descendant of the initial rule 

lenses=NONE ←

– is rule lenses=NONE ← tear production=reduced 

• beam search: maintain a list of k best candidates 
at each step; descendants (specializations) of 
each of these k candidates are generated, and 
the resulting set is again reduced to k best 
candidates
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What is “high” rule accuracy

(rule precision) ? 

• Rule evaluation measures: 
– aimed at maximizing classification accuracy 

– minimizing Error = 1 - Accuracy

– avoiding overfitting

• BUT: Rule accuracy/precision should be traded 
off against the “default” accuracy/precision of the 
rule Cl true

– 68% accuracy is OK if there are 20% examples of that class in 
the training set, but bad if there are 80%

• Relative accuracy (relative precision)

– RAcc(Cl Cond) = p(Cl | Cond) – p(Cl)
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Learn-one-rule:

search heuristics
• Assume two classes (+,-),  learn rules for + class (Cl). Search 

for specializations of one rule R = Cl  Cond from RuleBase.

• Expected classification accuracy:   A(R) = p(Cl|Cond)

• Informativity (info needed to specify that example covered by 
Cond belongs to Cl):  I(R) =  - log2p(Cl|Cond)

• Accuracy gain (increase in expected accuracy):

AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)

• Information gain (decrease in the information needed):

IG(R’,R) = log2p(Cl|Cond’) - log2p(Cl|Cond)

• Weighted measures favoring more general rules: WAG, WIG

WAG(R’,R) = 

p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))

• Weighted relative accuracy trades off coverage and relative 

accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))
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Ordered set of rules:

if-then-else rules

• rule  Class IF Conditions is learned by first 
determining Conditions and then Class

• Notice: mixed sequence of classes C1, …, Cn in 
RuleBase 

• But: ordered execution when classifying a new 
instance: rules are sequentially tried and the first 
rule that `fires’ (covers the example) is used for 
classification

• Decision list {R1, R2, R3, …, D}: rules Ri are 
interpreted as if-then-else rules

• If no rule fires, then DefaultClass (majority class in

Ecur)
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Sequential covering algorithm

• RuleBase := empty 

• Ecur:= E 

• repeat 

– learn-one-rule R

– RuleBase := RuleBase U R

– Ecur := Ecur - {examples covered and correctly 
classified by R}  (DELETE ONLY POS. EX.!)

– until performance(R, Ecur) < ThresholdR 

• RuleBase := sort RuleBase by performance(R,E)

• return RuleBase
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Learn ordered set of rules

(CN2, Clark and Niblett 1989)

• RuleBase := empty 

• Ecur:= E 

• repeat 

– learn-one-rule R

– RuleBase := RuleBase U R

– Ecur := Ecur - {all examples covered by R}  
(NOT ONLY POS. EX.!)

• until performance(R, Ecur) < ThresholdR 

• RuleBase := sort RuleBase by performance(R,E)

• RuleBase := RuleBase U DefaultRule(Ecur)
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Learn-one-rule:

Beam search in CN2

• Beam search in CN2 learn-one-rule algo.:

– construct BeamSize of best rule bodies 
(conjunctive conditions) that are statistically 
significant

– BestBody - min. entropy of examples covered 
by Body 

– construct best rule R := Head  BestBody by 
adding majority class of examples covered by 
BestBody in rule Head

• performance (R, Ecur) : - Entropy(Ecur) 
– performance(R, Ecur) < ThresholdR (neg. num.)

– Why? Ent. > t is bad, Perf. = -Ent < -t is bad
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Variations

• Sequential vs. simultaneous covering of data (as 
in TDIDT): choosing between attribute-values vs. 
choosing attributes

• Learning rules vs. learning decision trees and  
converting them to rules

• Pre-pruning vs. post-pruning of rules

• What statistical evaluation functions to use

• Probabilistic classification

• Best performing rule learning algorithm: Ripper

• JRip implementation of Ripper in WEKA, available 
in ClowdFlows
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Probabilistic classification

• In the ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

• In the unordered case all rules are tried and all rules which fire are 
collected. If a clash occurs, a probabilistic method is used to resolve the 
clash.

• A simplified example:
1. tear production=reduced => lenses=NONE [S=0,H=0,N=12] 

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE  [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT 
[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and 
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and 
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total 
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into 
class H with probability 0.5 and N with probability 0.5. In this case, the 
clash can not be resolved, as both probabilities are equal.
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Part II. Predictive DM techniques

• Decision tree learning

• Bayesian Classifier

• Rule learning

• Evaluation
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Classifier evaluation

• Accuracy and Error

• n-fold cross-validation

• Confusion matrix

• ROC
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Evaluating hypotheses

• Use of induced hypotheses

– discovery of new patterns, new knowledge

– classification of new objects

• Evaluating the quality of induced hypotheses

– Accuracy, Error = 1 - Accuracy

– classification accuracy on testing examples = 
percentage of correctly classified instances

• split the example set into training set (e.g. 70%) to 
induce a concept, and test set (e.g. 30%) to test its 
accuracy

• more elaborate strategies: 10-fold cross validation, 
leave-one-out, ...

– comprehensibility (compactness)

– information contents (information score), significance 
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n-fold cross validation

• A method for accuracy estimation of classifiers

• Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D

• for i = 1, ..., n do

– form a training set out of n-1 folds: Di = D\Ti

– induce classifier Hi from examples in Di

– use fold Ti  for testing the accuracy of Hi

• Estimate the accuracy of the classifier by 

averaging accuracies over 10 folds Ti 
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•Partition D

T1 T2 T3
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•Partition

•Train

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train

•Test

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3

T1 T2 T3
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Confusion matrix and 

rule (in)accuracy

• Accuracy of a classifier is measured as TP+TN / N.

• Suppose two rules are both 80% accurate on an 
evaluation dataset, are they always equally good? 
– e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out 

of 50 negatives; Rule 2 correctly classifies 30 out of 50 
positives and 50 out of 50 negatives

– on a test set which has more negatives than positives, Rule 2 is 
preferable; 

– on a test set which has more positives than negatives, Rule 1 is 
preferable; unless…

– …the proportion of positives becomes so high that the ‘always 
positive’ predictor becomes superior!

• Conclusion: classification accuracy is not always an 
appropriate rule quality measure
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Confusion matrix

• also called contingency table

Classifier 1 
 Predicted positive Predicted negative  

Positive examples 40 10 50 
Negative examples 10 40 50 
 50 50 100   

Classifier 2 
 Predicted positive Predicted negative  

Positive examples 30 20 50 
Negative examples 0 50 50 
 30 70 100  
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ROC space
• True positive rate = 

#true pos. / #pos.

– TPr1 = 40/50 = 80% 

– TPr2 = 30/50 = 60%

• False positive rate

= #false pos. / #neg.

– FPr1 = 10/50 = 20%

– FPr2 = 0/50 = 0%

• ROC space has 

– FPr on X axis 

– TPr on Y axis
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The ROC convex hull
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Course Outline

I. Introduction

– Data Mining and KDD process

– Introduction to Data Mining 

– Data Mining platforms

II. Predictive DM Techniques

– Decision Tree learning

- Bayesian classifier 

– Classification rule learning

– Classifier Evaluation 

III. Regression 

IV. Descriptive DM

– Predictive vs. descriptive induction

– Subgroup discovery

– Association rule learning 
Hierarchical clustering

V. Relational Data Mining

– RDM and Inductive Logic 
Programming

– Propositionalization

– Semantic data mining

VI. Advanced Topics
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III. Predictive DM – Regression

• often referred to as estimation or regression

• data are objects, characterized with attributes (discrete 

or continuous), classes of objects are continuous 

(numeric)

• given objects described with attribute values, induce a 

model to predict the numeric class value

• regression trees, linear and logistic regression, ANN, 

kNN, ...
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Estimation/regression example:

Customer data

Customer Gender Age Income Spent

c1 male 30 214000 18800

c2 female 19 139000 15100

c3 male 55 50000 12400

c4 female 48 26000 8600

c5 male 63 191000 28100

O6-O13 ... ... ... ...

c14 female 61 95000 18100

c15 male 56 44000 12000

c16 male 36 102000 13800

c17 female 57 215000 29300

c18 male 33 67000 9700

c19 female 26 95000 11000

c20 female 55 214000 28800
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Customer data: 

regression tree

Income

Age

16500

12000

 108000  108000

 42.5  42.5

26700

In the nodes one usually has 

Predicted value +- st. deviation
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Predicting algal biomass: regression 

tree

Month

Ptot

2.341.65Ptot

Si

Si
2.08 0.712.971.09

Ptot 4.322.07

0.700.341.150.21

1.281.08

Jan.-June

> 9.34  10.1 >10.1

July - Dec.

> 2.13
 2.13

 9.1 > 9.1

 9.34

 5.9 > 5.9
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Predicting algal biomass: regression 

tree

Month

Ptot

2.341.65Ptot

Si

Si
2.08 0.712.971.09

Ptot 4.322.07

0.700.341.150.21

1.281.08

Jan.-June

> 9.34  10.1 >10.1

July - Dec.

> 2.13
 2.13

 9.1 > 9.1

 9.34

 5.9 > 5.9
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Regression Classification

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithms:

Linear regression, regression 

trees,…

Algorithms:

Decision trees, Naïve Bayes, …

Baseline predictor:

Mean of the target variable

Baseline predictor:

Majority class
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Example regression problem

• data about 80 people: Age and Height
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Test set
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Baseline numeric model

• Average of the target variable
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Baseline numeric predictor

• Average of the target variable is 1.63
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Linear Regression Model

Height =    0.0056 * Age + 1.4181
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Regression tree
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Model tree
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kNN – K nearest neighbors

• Looks at K closest examples (by age) and predicts the 

average of their target variable

• K=3
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Which predictor is the best?

Age Height Baseline

Linear 

regression

Regression 

tree Model tree kNN

2 0.85 1.63 1.43 1.39 1.20 1.01

10 1.4 1.63 1.47 1.46 1.47 1.51

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.81
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Course Outline

I. Introduction

– Data Mining and KDD process

– Introduction to Data Mining 

– Data Mining platforms

II. Predictive DM Techniques

– Decision Tree learning

- Bayesian classifier 

– Classification rule learning

– Classifier Evaluation 

III. Regression 

IV. Descriptive DM

– Predictive vs. descriptive induction

– Subgroup discovery

– Association rule learning 
Hierarchical clustering

V. Relational Data Mining

– RDM and Inductive Logic 
Programming

– Propositionalization

– Semantic data mining

VI. Advanced Topics
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Descriptive DM:

Subgroup discovery example -

Customer data

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Customer data: 

Subgroup discovery

Type of task: description (pattern discovery)

Hypothesis language: rules X  Y, if X then Y 

X is conjunctions of items, Y is target class

Age  52 & Sex = male  BigSpender = no

Age  52 & Sex = male & Income  73250 

 BigSpender = no
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Descriptive DM:

Association rule learning example -

Customer data

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Customer data: 

Association rules

Type of task: description (pattern discovery)

Hypothesis language: rules X  Y, if X then Y 

X, Y conjunctions of items 

1. Age  52 & BigSpender = no  Sex = male 

2. Age  52 & BigSpender = no 

Sex = male & Income  73250

3. Sex = male & Age  52 & Income  73250 

BigSpender = no
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Descriptive DM:

Clustering and association rule learning 

example - Customer data

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Predictive vs. descriptive 

induction

• Predictive induction: Inducing classifiers for solving 
classification and prediction tasks, 
– Classification rule learning, Decision tree learning, ...

– Bayesian classifier, ANN, SVM, ...

– Data analysis through hypothesis generation and testing

• Descriptive induction: Discovering interesting 
regularities in the data, uncovering patterns, ... for 
solving KDD tasks
– Symbolic clustering, Association rule learning, Subgroup 

discovery, ...

– Exploratory data analysis
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Descriptive DM

• Often used for preliminary explanatory data 

analysis

• User gets feel for the data and its structure

• Aims at deriving descriptions of characteristics 

of the data

• Visualization and descriptive statistical 

techniques can be used
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Predictive vs. descriptive DM: 

Summary from a rule learning 

perspective

• Predictive DM: Induces rulesets acting as classifiers 
for solving classification and prediction tasks

• Descriptive DM: Discovers individual rules 
describing interesting regularities in the data

• Therefore: Different goals, different heuristics, 
different evaluation criteria
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Descriptive DM
• Description

– Data description and summarization: describe elementary and 

aggregated data characteristics (statistics, …)

– Dependency analysis:

• describe associations, dependencies, … 

• discovery of properties and constraints

• Segmentation

– Clustering: separate objects into subsets according to distance and/or 

similarity (clustering, SOM, visualization, ...)

– Subgroup discovery: find unusual subgroups that are significantly 

different from the majority (deviation detection w.r.t. overall class 

distribution)
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Subgroup Discovery

• A task in which individual interpretable patterns in the 
form of rules are induced from data, labeled by a 
predefined property of interest.

• SD algorithms learn several independent rules that 
describe groups of target class examples
– subgroups must be large and significant 

1

2

3

Class YES Class NO

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO

Subgroup Discovery
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Classification versus Subgroup Discovery

• Classification (predictive induction) -

constructing sets of classification rules

– aimed at learning a model for classification or prediction

– rules are dependent

• Subgroup discovery (descriptive induction) –

constructing individual subgroup describing 

rules 

– aimed at finding interesting patterns in target class 

examples

• large subgroups (high target class coverage)

• with significantly different distribution of target class examples (high

TP/FP ratio, high significance, high WRAcc

– each rule (pattern) is an independent chunk of knowledge
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Subgroup discovery in

High CHD Risk Group Detection

Input: Patient records described by anamnestic, 
laboratory and ECG attributes

Task: Find and characterize population subgroups 
with high CHD risk (large enough, distributionaly 
unusual)

From best induced descriptions, five were selected by the expert 
as most actionable for CHD risk screening (by GPs):

high-CHD-risk  male & pos. fam. history & age > 46

high-CHD-risk  female & bodymassIndex > 25 & age > 63

high-CHD-risk  ...

high-CHD-risk  ...

high-CHD-risk  ...

(Gamberger & Lavrač, JAIR 2002)
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Subgroup Discovery: Medical Use Case

• Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrač, 
Krstačić) 

• A1 for males: principal risk factors

CHD  pos. fam. history & age > 46

• A2 for females: principal risk factors

CHD  bodyMassIndex > 25 & age >63

• A1, A2 (anamnestic info only), B1, B2 (an. and physical 
examination), C1 (an., phy. and ECG)

• A1: supporting factors (found by statistical analysis): 
psychosocial stress, as well as cigarette smoking, 
hypertension and overweight



Subgroup discovery in functional 

genomics

• Functional genomics is a typical scientific discovery 
domain, studying genes and their functions

• Very large number of attributes (genes)

• Interesting subgroup describing patterns discovered 
by SD algorithm

• Interpretable by biologists 
D. Gamberger, N. Lavrač, F. Železný, J. Tolar

Journal of Biomedical Informatics 37(5):269-284, 
2004

CancerType = Leukemia

IF KIAA0128 = DIFF. EXPRESSED

AND prostoglandin d2 synthase = NOT_ DIFF. EXPRESSED
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Subgroups vs. classifiers

• Classifiers:

– Classification rules aim at pure subgroups

– A set of rules forms a domain model

• Subgroups:

– Rules describing subgroups aim at significantly higher 
proportion of positives

– Each rule is an independent chunk of knowledge

• Link 

– SD can be viewed as

cost-sensitive 

classification

– Instead of FNcost we 

aim at increased TPprofit

negativespositives

true

positives

false

pos.
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Classification Rule Learning for 

Subgroup Discovery: Deficiencies

• Only first few rules induced by the covering 

algorithm have sufficient support (coverage)

• Subsequent rules are induced from smaller and 

strongly biased example subsets (pos. examples 

not covered by previously induced rules), which 

hinders their ability to detect population 

subgroups 

• ‘Ordered’ rules are induced and interpreted 

sequentially as a if-then-else decision list 
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CN2-SD: Adapting CN2 Rule 

Learning to Subgroup Discovery

• Weighted covering algorithm

• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights

• Probabilistic classification

• Evaluation with different interestingness 

measures
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CN2-SD: CN2 Adaptations

• General-to-specific search  (beam search) for best rules 

• Rule quality measure: 

– CN2: Laplace: Acc(Class  Cond) = 

= p(Class|Cond) = (nc+1)/(nrule+k)

– CN2-SD: Weighted Relative Accuracy

WRAcc(Class  Cond) = 

p(Cond) (p(Class|Cond) - p(Class)) 

• Weighted covering approach (example weights)

• Significance testing (likelihood ratio statistics)

• Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering 

• Standard covering approach: 

covered examples are deleted from current training set

• Weighted covering approach:

– weights assigned to examples 

– covered pos. examples are re-weighted: 

in all covering loop iterations, store 

count i how many times (with how many 

rules induced so far) a pos. example has 

been covered: w(e,i), w(e,0)=1

• Additive weights:  w(e,i) = 1/(i+1)

w(e,i) – pos. example e being covered i times
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Subgroup Discovery
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Subgroup Discovery
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Subgroup Discovery 
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Subgroup Discovery 
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CN2-SD: Weighted WRAcc Search 

Heuristic
• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights 
WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

increased coverage, decreased # of rules, approx. equal 
accuracy (PKDD-2000)

• In WRAcc computation, probabilities are estimated 
with relative frequencies, adapt:
WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) = 

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’ )
– N’ : sum of weights of examples

– n’(Cond) : sum of weights of all covered examples

– n’(Cl.Cond) : sum of weights of all correctly covered examples



SD algorithms in the Orange DM 

Platform
• Orange data mining toolkit

– classification and subgroup 

discovery algorithms 

– data mining workflows

– visualization 

SD Algorithms in Orange
SD (Gamberger & Lavrač, JAIR 2002)

Apriori-SD (Kavšek & Lavrač, AAI 2006)

CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2  

classification rule learner to Subgroup Discovery
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Association Rule Learning

Rules: X =>Y,  if X then Y

X and Y are itemsets (records, conjunction of items), 

where items/features are binary-valued attributes)

Given: Transactions i1     i2  ………………… i50

itemsets (records) t1     1      1                 0 

t2     0      1             0

…    … ………………...  …

Find: A set of association rules in the form X =>Y

Example: Market basket analysis

beer & coke => peanuts & chips (0.05, 0.65)

• Support:  Sup(X,Y) = #XY/#D = p(XY)

• Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =

= p(XY)/p(X) = p(Y|X)
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Association Rule Learning: 

Examples

• Market basket analysis

– beer & coke  peanuts & chips  (5%, 65%)                   

(IF beer AND coke THEN peanuts AND chips)

– Support 5%: 5% of all customers buy all four items

– Confidence 65%: 65% of customers that buy beer 

and coke also buy peanuts and chips

• Insurance

– mortgage & loans & savings  insurance (2%, 

62%)

– Support 2%: 2% of all customers have all four 

– Confidence 62%: 62% of all customers that have 

mortgage, loan and savings also have insurance
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions 

that have 

– user defined minimum support, i.e., support > MinSup, and 

– user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis 

verification
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Searching for the associations

• Find all large itemsets

• Use the large itemsets to generate 

association rules

• If XY is a large itemset, compute 

r =support(XY) / support(X)

• If r > MinConf, then X  Y holds 

(support > MinSup, as XY is large)
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Large itemsets

• Large itemsets are itemsets that appear in at 

least MinSup transaction

• All subsets of a large itemset are large 

itemsets (e.g., if A,B appears in at least 

MinSup transactions, so do A and B)

• This observation is the basis for very efficient 

algorithms for association rules discovery 

(linear in the number of transactions)
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Association  vs.  Classification

rules             rules

• Exploration of 

dependencies

• Different combinations 

of dependent and 

independent attributes

• Complete search (all 

rules found)

• Focused prediction

• Predict one attribute 

(class) from the others

• Heuristic search (subset 

of rules found)
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Hierarchical clustering

• Algorithm (agglomerative 

hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Ci in Cj;

fuse Ci in Cj in a new cluster

Cr = Ci U Cj;

determine dissimilarities between

Cr and other clusters;

until one cluster left;

• Dendogram:
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Hierarchical clustering

• Fusing the nearest pair of clusters

iC

jC

kC),( ji CCd

),( ki CCd

),( kj CCd

• Minimizing intra-cluster 

similarity

• Maximizing inter-cluster 

similarity

• Computing the dissimilarities   

from the “new” cluster
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Hierarchical clustering: example



185

Results of clustering

A dendogram of 

resistance vectors

[Bohanec et al., “PTAH: 

A system for supporting 

nosocomial infection 

therapy”, IDAMAP 

book, 1997]
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Course Outline

I. Introduction

– Data Mining and KDD process

– Introduction to Data Mining 

– Data Mining platforms

II. Predictive DM Techniques

– Decision Tree learning

- Bayesian classifier 

– Classification rule learning

– Classifier Evaluation 

III. Regression 

IV. Descriptive DM

– Predictive vs. descriptive induction

– Subgroup discovery

– Association rule learning 
Hierarchical clustering

V. Relational Data Mining

– RDM and Inductive Logic 
Programming

– Propositionalization

– Semantic data mining

VI. Advanced Topics



187

Part V: 

Relational Data Mining

• What is RDM

• Propositionalization techniques

• Semantic Data Mining
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Relational Data Mining

(Inductive Logic Programming) task

Relational Data Mining

knowledge discovery 

from data

model, patterns, …

Given: a relational database, a set of tables. sets of logical 

facts, a graph, …

Find: a classification model, a set of interesting patterns 



Relational data mining

• ILP, relational learning, 
relational data mining

– Learning from complex 

multi-relational data



Relational data mining

• ILP, relational learning, 
relational data mining

– Learning from complex 

multi-relational data

– Learning from complex 

structured data: e.g., 

molecules and their 

biochemical properties
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Sample problem: 

East-West trains
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RDM knowledge representation 

(database)

TRAIN EASTBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FALSE

… …

TRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t 1 rect angle short none 2

c2 t 1 rect angle long none 3

c3 t 1 rect angle short peaked 2

c4 t 1 rect angle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rect angle 3

… … …

LOAD_TABLE

CAR_TABLE
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ER diagram for East-West trains

TrainDirection

Has

Car

Shape

Length

Roof

Wheels

1

M

Has Load
1 1

Number Object



Relational data mining

• Relational data mining is characterized by using 

background knowledge (domain knowledge) in the 

data mining process

• Selected approaches:

– Inductive logic programming - ILP (Muggleton, 1991; 

Lavrač & Džeroski 1994), …

– Relational learning (Quinlan,1993)

– Learning in DL (Lisi 2004), …

– Relational Data Mining (Džeroski & Lavrač, 2001),

– Statistical relational learning (Domingos, De Raedt…)

– Propositionalization approach to RDM (Lavrač et al.)



Our early work: 

Semantic subgroup discovery

• Propositionalization approach: Using relational 
subgroup discovery in the SDM context
– General purpose system RSD for Relational 

Subgroup Discovery, using a propositionalization
approach to relational data mining

– Applied to semantic data mining in a biomedical 
application by using the Gene Ontology as background 
knowledge in analyzing microarray data

(Železny and Lavrač, MLJ 2006)
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Part V: 

Relational Data Mining

• What is RDM

• Propositionalization techniques

• Semantic Data Mining
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Relational Data Mining through 

Propositionalization

Propositionalization

Step 1
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Relational Data Mining through 

Propositionalization

Propositionalization

Step 1

1. constructing 

relational features

2. constructing a 

propositional table
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Relational Data Mining through 

Propositionalization

Propositionalization

model, patterns, …

Data Mining

Step 1

Step 2
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Relational Data Mining through 

Propositionalization

Propositionalization

patterns (set of rules)

Data Mining

Step 1

Step 2
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Sample ILP problem: 

East-West trains
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Relational data representation

TRAIN EASTBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FALSE

… …

TRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t 1 rect angle short none 2

c2 t 1 rect angle long none 3

c3 t 1 rect angle short peaked 2

c4 t 1 rect angle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rect angle 3

… … …
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Propositionalization in a nutshell

TRAIN EASTBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FALSE

… …

TRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t 1 rect angle short none 2

c2 t 1 rect angle long none 3

c3 t 1 rect angle short peaked 2

c4 t 1 rect angle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rect angle 3

… … …

Propositionalization task

Transform a multi-relational 

(multiple-table)

representation to a 

propositional representation

(single table)

Proposed in ILP systems 

LINUS (Lavrac et al. 1991, 1994), 

1BC (Flach and Lachiche 1999), …
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Propositionalization in a nutshell

TRAIN EASTBOUND

t 1 TRUE

t 2 TRUE

… …

t 6 FALSE

… …

TRAIN_TABLE

CAR TRAIN SHAPE LENGTH ROOF WHEELS

c1 t 1 rect angle short none 2

c2 t 1 rect angle long none 3

c3 t 1 rect angle short peaked 2

c4 t 1 rect angle long none 2

… … … …

LOAD CAR OBJECT NUMBER

l1 c1 circle 1

l2 c2 hexagon 1

l3 c3 t riangle 1

l4 c4 rect angle 3

… … …

train(T) f1(T) f2(T)        f3(T) f4(T)      f5(T) 

t1 t t f t t 

t2 t t t t t 

t3 f f t f f 

t4 t f t f f 

… … …   … 

 

PROPOSITIONAL TRAIN_TABLE

Main propositionalization step:

first-order feature construction

f1(T):-hasCar(T,C),clength(C,short).

f2(T):-hasCar(T,C), hasLoad(C,L),

loadShape(L,circle)

f3(T) :- ….

Propositional learning:

t(T)  f1(T), f4(T)

Relational interpretation:

eastbound(T) 

hasShortCar(T),hasClosedCar(T).



205

Part V: 

Relational Data Mining

• What is RDM

• Propositionalization techniques

• Semantic Data Mining



Semantic data mining

• ILP, relational learning, 
relational data mining

– Learning from complex 

multi-relational data

– Learning from complex 

structured data: e.g., 

molecules and their 

biochemical properties

– Learning by using domain 

knowledge in the form of 

ontologies = semantic data 

mining



Using domain ontologies in 

Semantic Data Mining 
Using domain ontologies as background knowledge, e.g., 
using the Gene Ontology (GO)

• GO is a database of terms, describing gene sets in terms 
of their 

– functions (12,093) 

– processes (1,812) 

– components (7,459) 

• Genes are annotated 

to GO terms

• Terms are connected

(is_a, part_of)

• Levels represent 

terms generality 



What is Semantic Data Mining

• Ontology-driven (semantic) data mining is an 

emerging research topic 

• Semantic Data Mining (SDM) - a new term 

denoting:

– the new challenge of mining semantically annotated 

resources, with ontologies used as background 

knowledge to data mining

– approaches with which semantic data are mined
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What is Semantic Data Mining

Semantic 

data mining
annotations,

mappings

ontologies

data

model,

patterns

SDM task definition

Given: 

transaction data table, relational database,

text documents, Web pages, …

one or more domain ontologies

Find: a classification model, a set of patterns

209
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Using domain ontologies (e.g. Gene 

Ontology) as background knowledge for 

Data Mining

Gene Ontology

12093 biological process

1812 cellular components

7459 molecular functions

Joint work with 

Igor Trajkovski 

and Filip Zelezny
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Using domain ontologies (e.g. Gene 

Ontology) as background knowledge for 

Data Mining

First-order features, describing 

gene properties and relations 

between genes, can be viewed 

as generalisations of individual 

genes



Semantic subgroup discovery with RSD

1. Take ontology terms represented as logical facts in Prolog, e.g.
component(gene2532,'GO:0016020').

function(gene2534,'GO:0030554').

process(gene2534,'GO:0007243').

interaction(gene2534,gene4803).

2. Automatically generate generalized relational features:
f(2,A):-component(A,'GO:0016020').

f(7,A):-function(A,'GO:0030554').

f(11,A):-process(A,'GO:0007243').

f(224,A):- interaction(A,B), function(B,'GO:0016787'), 
component(B,'GO:0043231').

3. Propositionalization: Determine truth values of features

4. Learn rules by a subgroup discovery algorithm CN2-SD



Step 2: RSD feature construction

f(7,A):-function(A,'GO:0046872').

f(8,A):-function(A,'GO:0004871').

f(11,A):-process(A,'GO:0007165').

f(14,A):-process(A,'GO:0044267').

f(15,A):-process(A,'GO:0050874').

f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874').

f(26,A):-component(A,'GO:0016021').

f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020').

f(122,A):-interaction(A,B),function(B,'GO:0004872').

f(223,A):-interaction(A,B),function(B,'GO:0004871'), 
process(B,'GO:0009613').

f(224,A):-interaction(A,B),function(B,'GO:0016787'), 
component(B,'GO:0043231').

Construction of first order features, with support > min_support

existential



Step 3: RSD Propositionalization

f1 f2 f3 f4 f5 f6 … … fn

g1 1 0 0 1 1 1 0 0 1 0 1 1

g2 0 1 1 0 1 1 0 0 0 1 1 0

g3 0 1 1 1 0 0 1 1 0 0 0 1

g4 1 1 1 0 1 1 0 0 1 1 1 0

g5 1 1 1 0 0 1 0 1 1 0 1 0

g1 0 0 1 1 0 0 0 1 0 0 0 1

g2 1 1 0 0 1 1 0 1 0 1 1 1

g3 0 0 0 0 1 0 0 1 1 1 0 0

g4 1 0 1 1 1 0 1 0 0 1 0 1

diffexp g1 (gene64499) 

diffexp g2 (gene2534)   

diffexp g3 (gene5199)   

diffexp g4 (gene1052)    

diffexp g5 (gene6036)   

….

random g1 (gene7443)

random g2 (gene9221)

random g3 (gene2339)

random g4 (gene9657)

random g5 (gene19679)

….



Step 4: RSD rule construction with CN2-SD

f1 f2 f3 f4 f5 f6 … … fn

g1 1 0 0 1 1 1 0 0 1 0 1 1

g2 0 1 1 0 1 1 0 0 0 1 1 0

g3 0 1 1 1 0 0 1 1 0 0 0 1

g4 1 1 1 0 1 1 0 0 1 1 1 0

g5 1 1 1 0 0 1 0 1 1 0 1 0

g1 0 0 1 1 0 0 0 1 0 0 0 1

g2 1 1 0 0 1 1 0 1 0 1 1 1

g3 0 0 0 0 1 0 0 1 1 1 0 0

g4 1 0 1 1 1 0 1 0 0 1 0 1

Over-

expressed 

IF 

f2 and f3

[4,0]

diffexp(A) :- interaction(A,B) & function(B,'GO:0004871') 



216

Subgroup Discovery
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Subgroup Discovery

1.0
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1.0
1.0
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1.0

1.0
1.0

1.0

diff. exp. genes Not diff. exp. genes
Cl=YES  f2 and f3

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage  x  Precision
*Coverage = sum of the covered weights

*Precision = purity of the covered genes
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Subgroup Discovery
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RSD naturally uses gene weights in its procedure for repetitive 
subgroup generation, via its heuristic rule evaluation: weighted 
relative accuracy
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RSD Lessons learned

Efficient propositionalization can be applied to 
individual-centered, multi-instance learning problems:

– one free global variable (denoting an individual, e.g. molecule M)

– one or more structural predicates: (e.g. has_atom(M,A)),  each 
introducing a new existential local variable (e.g. atom A), using either the 
global variable (M) or a local variable introduced by other structural 
predicates (A)

– one or more utility predicates defining properties of individuals or their 
parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)

feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)

mutagenic(M):- feature121(M), feature235(M)
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SEGS: using RSD approach

• The SEGS approach enables to discover new 

medical knowledge from the combination of gene 

expression data with public gene annotation 

databases

• The SEGS approach proved effective in several 

biomedical applications (JBI 2008, …)
• The work on semantic data mining - using ontologies as 

background knowledge for subgroup discovery with SEGS - was 

done in collaboration with I.Trajkovski, F. Železny and J. Tolar

• Recent work: Semantic subgroup discovery 

implemented in Orange4WS



Semantic subgroup discovery with 

SEGS

• SEGS workflow is implemented in the Orange4WS 

data mining environment

• SEGS is also implemented also as a Web 

applications
(Trajkovski et al., IEEE TSMC 2008, Trajkovski et al., JBI 2008)

221



From SEGS to SDM-SEGS: 

Generalizing SEGS

• SDM-SEGS: a general semantic data mining 

system generalizing SEGS

• Discovers subgroups both for ranked and 

labeled data

• Exploits input ontologies in OWL format

• Is also implemented in Orange4WS
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Relational Data Mining in Orange4WS

 service for propositionalization through efficient 

first-order feature construction (Železny and Lavrač, 

MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)

f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

• subgroup discovery using CN2-SD

mutagenic(M)  feature121(M), feature235(M)



Semantic Data Mining in Orange4WS

• A special purpose Semantic Data Mining algorithm SEGS

– discovers interesting gene group descriptions as 

conjunctions of ontology concepts from GO, KEGG and 

Entrez

– integrates public gene annotation data through relational 

features

– SEGS algorithm (Trajkovski, Železny, Lavrač and Tolar, JBI 

2008) is available in Orange4WS

• Recent developments:

– Special purpose SDM algorithms: RSD, SDM-SEGS, SDM-

Aleph, Hedwig 

– Implemented in web based DM platform ClowdFlows



Third Generation Data Mining Platform: 

ClowdFlows

• ClowdFlows - browsed-based DM platform for data mining in 

the cloud and workflow sharing on the web (Kranjc et al. 2012)

• RSD, SDM-SEGS, SDM-Aleph, Hedwig are available 

as ingredients of elaborate data mining workflows in 

ClowdFlows

• Example workflow: Propositionalization with RSD available in 

ClowdFlows at http://clowdflows.org/workflow/611/



Sample biomedical application of Hedwig

• Semantic subgroup discovery and semantic 

explanation of subgroups on breast cancer data 

(Vavpetič et al., JIIS 2014)

• The workflow, implemented in ClowdFlows, is 

available at http://clowdflows.org/workflow/1283/



Semantic Data Mining

• Semantic subgroup discovery (Vavpetič et al., 2012)

Data Mining

Knowledge Discovery

Semantic Web

Ontologies

Relational Subgroup Discovery 

Semantic Subgroup 

Discovery
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Course Outline

I. Introduction

– Data Mining and KDD process

– Introduction to Data Mining 

– Data Mining platforms

II. Predictive DM Techniques

– Decision Tree learning

- Bayesian classifier 

– Classification rule learning

– Classifier Evaluation 

III. Regression 

IV. Descriptive DM

– Predictive vs. descriptive induction

– Subgroup discovery

– Association rule learning 
Hierarchical clustering

V. Relational Data Mining

– RDM and Inductive Logic 
Programming

– Propositionalization

– Semantic data mining

VI. Advanced Topics



Advanced Topics I. 

• ClowdFlows Data Mining Platform                          

(PhD of Janez Kranjc, demo Martin Žnidaršič)

• Outlier detection with NoiseRank

(PhD of Borut Sluban)



Open data science platform ClowdFlows

Third generation platform for the creation and execution 

of complex data mining workflows 

Algorithms as web services (in the cloud)

No need for platform installation

Workflows are openly accessible and executable 
from any modern web browser by a web site klick

http://clowdflows.org/workflow/1283/



ClowdFlows platform

• is service oriented (DM algorithms as web 

services)

• includes functionality of other DM  platforms, 

e.g. WEKA algorithms, implemented as Web 

services

• includes new functionality, e.g. relational data 

mining, semantic data mining, big data 

analytics, text mining, …

• enables simplified construction of Web 

services from available algorithms

• runs in any browser, enabling workflow 

construction and sharing on the web

• user-friendly HCI: canvas for workflow 

construction



SDM in ClowdFlows

• Semantic subgroup discovery and semantic explanation of

subgroups on breast cancer data (Vavpetič et al., JIIS 2014)

• The workflow, implemented in ClowdFlows, is available for 

sharing at http://clowdflows.org/workflow/1283/



Propositionalization and Wordification in 

ClowdFlows

Wordification and propositionalization

algorithms comparison, available at 

http://clowdflows.org/workflow/1456/



Analysis of Big data in ClowdFlows

• Big data analysis in real time

• Example: Semantic graph construction from a stream of web 

news http://clowdflows.org/workflow/1729/.

• Example: news monitoring by visualization                                    

of graph constructed from sports news   

(CNN RSS feeds)

http://clowdflows.org/streams/data/31/15524/.



Analysis of Big data in ClowdFlows

• Analysis of positive/negative sentiment in tweets in 

real time  http://clowdflows.org/workflow/1041/.



Advanced Topics I. 

• ClowdFlows Data Mining Platform                          

(PhD of Janez Kranjc, demo Martin Žnidaršič)

• Outlier detection with NoiseRank

(PhD of Borut Sluban)





Noise and outliers

• Errors in the data – noise 

– Animals of white color

• Exceptions or Outliers

– Herd of sheep



• Data in nature 

– follows certain patters

– adheres to the laws of physics

– is not random

• Build models to Identify the “laws” of the data

Patterns and rules = 

= “laws” of the data

• Errors and outliers

– Do NOT obey the laws (models)

Noise and outliers



Noise and outlier detection

• Noise in data negatively affect 

data mining results. (Zhu et al., 2004)

• False medical diagnosis (classification 

noise) can have serious consequences

(Gamberger et al. 2003)

• Outlier detection proved to be effective in 

detection of network intrusion and bank fraud.

(Aggarwal and Yu, 2001)



• Errors and exceptions are:

– Inconsistencies with common patterns

– Great deviations from expected values

– Hard to describe

Detecting noise and outliers



Classification noise filtering

• Model the data 

• What can’t be modeled is considered noise



Classification noise filtering

• Model the data, using any learning algorithm

• What can’t be modeled is considered noise



Ensembles of classifiers



Ensembles of classifiers

• Combine predictions of various models

• To overcome weaknesses or bias of individual models

• Averaging, Majority voting, Consensus voting, Ranking, etc. 



NoiseRank: Ensemble-based noise and 

outlier detection

• Misclassified document 

detection by an 

ensemble of diverse 

classifiers (e.g., Naive 

Bayes, Random Forest, 

SVM, … classifiers)

• Ranking of misclassified 

documents by “voting” 

of classifiers



NoiseRank Workflows



NoiseRank Workflows



NoiseRank: Ranked List of Noisy 

instances/Outliers



Try it out

• NoiseRank
– http://clowdflows.org/workflow/115/

• Clowdflows:
– Noise Handling

– Orange, Weka classification

– Performance evaluation

• Noise filtering using ensembles (with performance evaluation)
– http://clowdflows.org/workflow/245/

http://clowdflows.org/workflow/115/
http://clowdflows.org/workflow/245/


Noise filtering using ensembles (with 

performance evaluation)

http://clowdflows.org/workflow/245/

http://clowdflows.org/workflow/245/


Advanced Topics II. 

• Text mining: An introduction

• Document clustering and outlier detection

• Wordification approach to relational data mining



Background: Data mining 

data

knowledge discovery 

from data

model, patterns, clusters, 

…

Given: transaction data table, a set of text documents, … 

Find: a classification model, a set of interesting patterns 

Data Mining

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE



Data mining: Task reformulation 

Person Young Myope Astigm. Reuced tear Lenses

O1 1 1 0 1 NO

O2 1 1 0 0 YES

O3 1 1 1 1 NO

O4 1 1 1 0 YES

O5 1 0 0 1 NO

O6-O13 ... ... ... ... ...

O14 0 0 0 0 YES

O15 0 0 1 1 NO

O16 0 0 1 0 NO

O17 0 1 0 1 NO

O18 0 1 0 0 NO

O19-O23 ... ... ... ... ...

O24 0 0 1 0 NO

Binary features and class values



Text mining: 

Words/terms as binary features

Instances = documents

Words and terms = Binary features

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Text Mining from unlabeled data

Unlabeled data - clustering: grouping of similar instances 

- association rule learning

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Text mining

BoW vector construction

model, patterns, clusters, 

…

Data Mining

Step 1

Step 2

1. BoW features 

construction

2. Table of BoW vectors 

construction

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Text Mining

• Feature construction
– StopWords elimination

– Stemming or lemmatization

– Term construction by frequent N-Grams construction

– Terms obtained from thesaurus (e.g., WordNet)

• BoW vector construction

• Mining of BoW vector table
– Feature selection, Document similarity computation

– Text mining: Categorization, Clustering, Summarization, 
…



Stemming and Lemmatization

• Different forms of the same word usually 

problematic for text data analysis
– because they have different spelling and similar meaning (e.g. 

learns, learned, learning,…)

– usually treated as completely unrelated words

• Stemming is a process of transforming a word into 

its stem  

– cutting off a suffix (eg., smejala -> smej)

• Lemmatization is a process of transforming a 

word into its normalized form

– replacing the word, most often replacing a suffix (eg., 

smejala -> smejati)



Bag-of-Words document 

representation



Word weighting

• In bag-of-words representation each word is represented 
as a separate variable having numeric weight.

• The most popular weighting schema is normalized word 
frequency TFIDF:

– Tf(w) – term frequency (number of word occurrences in a 
document)

– Df(w) – document frequency (number of documents containing the 
word)

– N – number of all documents

– Tfidf(w) – relative importance of the word in the document

)
)(

log(.)(
wdf

N
tfwtfidf 

The word is more important if it appears 
several times in a target document

The word is more important if it 
appears in less documents



Cosine similarity between 

document vectors

• Each document D is represented as a vector of       

TF-IDF weights 

• Similarity between two vectors is estimated by the 

similarity between their vector representations 

(cosine of the angle between the two vectors):



Advanced Topics II. 

• Text mining: An introduction

• Document clustering and outlier detection

• Wordification approach to relational data mining



Document clustering

• Clustering is a process of finding natural groups in 
data in a unsupervised way (no class labels pre-
assigned to documents)

• Document similarity is used 

• Most popular clustering methods:
– K-Means clustering

– Agglomerative hierarchical clustering

– EM (Gaussian Mixture)

– …



Document clustering with OntoGen

ontogen.ijs.si

Domain

PubMed Articles Topic Identification

Topic A Topic B

Topic C

Slide adapted from D. Mladenić, JSI



Using OntoGen for clustering 

PubMed articles on autism

www.ontogen.si

Fortuna, Mladenić, 

Grobelnik 2006

Work by 

Petrič et al. 2009

http://www.ontogen.si/


K-Means clustering in OntoGen

OntoGen uses k-Means clustering for semi-automated 
topic ontology construction

• Given:
– set of documents (eg., word-vectors with TFIDF), 

– distance measure (eg., cosine similarity)

– K - number of groups

• For each group initialize its centroid with a random 
document

• While not converging 
– each document is assigned to the nearest group 

(represented by its centroid)

– for each group calculate new centroid (group mass point, 
average document in the group)



Detecting outlier documents

• By classification noise detection on a domain 

pair dataset, assuming two separate document 

corpora A and C



Outlier detection for cross-domain 

knowledge discovery

2-dimensional 

projection of 

documents (about 

autism (red) and 

calcineurin (blue). 

Outlier documents 

are bolded for the 

user to easily spot 

them. 

Our research 

has shown that 

most  domain 

bridging terms 

appear in outlier 

documents.
(Lavrač, Sluban, 

Grčar, Juršič 2010)



Using OntoGen for outlier 

document identification

A U C

Text corpus Outlier Identification

Concept A’

Concept C’

Slide adapted from D. Mladenić, JSI



NoiseRank: Ensemble-based noise 

and outlier detection

• Misclassified document 

detection by an 

ensemble of diverse 

classifiers (e.g., Naive 

Bayes, Random Forest, 

SVM, … classifiers)

• Ranking of misclassified 

documents by “voting” 

of classifiers



NoiseRank on news articles

Articles on Kenyan elections: local vs. Western media



NoiseRank on news articles

• Article 352: Out of topic

The article was later indeed 

removed from the corpus 

used for further linguistic 

analysis, since it is not 

about Kenya(ns) or the 

socio-political climate but 

about British tourists or 

expatriates’ misfortune.

• Article 173: Guest 

journalist

Wrongly classified because it 

could be regarded as a 

“Western article” among the 

local Kenyan press. The 

author does not have the 

cultural sensitivity or does not 

follow the editorial guidelines 

requiring to be careful when 

mentioning words like tribe in 

negative contexts. One could 

even say that he has a kind 

of “Western” writing style.



Advanced Topics III. 

• Text mining: An introduction

• Document clustering and outlier 

• Wordification approach to relational data mining



Propositionaization through Wordification: 

Motivation

• Develop a RDM technique inspired by text 

mining 

• Using a large number of simple, easy to 

understand features (words)

• Improved scalability, handling large datasets

• Used as a preprocessing step to propositional 

learners



Wordification Methodology

• Transform a relational database to a document 

corpus

• For each individual (row) in the main table, concatenate 

words generated for the main table with words generated

for the other tables, linked through external keys



Text mining: Words/terms as binary features

Instances = documents

Words and terms = Binary features

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Text mining

BoW vector construction

model, patterns, clusters, 

…

Data Mining

Step 1

Step 2

1. BoW features 

construction

2. Table of BoW vectors 

construction

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Wordification Methodology

• One individual of the main data table in the 

relational database ~ one text document

• Features (attribute values)  ~ the words of this 

document

• Individual words (called word-items or witems) 

are constructed as combinations of:

• n-grams are constructed to model feature 

dependencies:



Wordification Methodology

• Transform a relational database to a document 

corpus

• Construct BoW vectors with TF-IDF weights on 

words

(optional: Perform feature selection)

• Apply text mining or propositional learning on BoW

table



Wordification

t1: [car_roof_none, car_shape_rectangle, car_wheels_2,

car_roof_none__car_shape_rectangle, 

car_roof_none__car_wheels_2,

car_shape_rectangle__car_wheels_2, 

car_roof_peaked, car_shape_rectangle, 

car_wheels_3, car_roof_peaked__car_shape_rectangle,

car_roof_peaked__car_wheels_3, 

car_shape_rectangle__car_wheels_3], east



Wordification
t1: [car_roof_none, car_shape_rectangle, car_wheels_2, 

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,

car_shape_rectangle__car_wheels_2, car_roof_peaked, car_shape_rectangle, 

car_wheels_3, car_roof_peaked__car_shape_rectangle,

car_roof_peaked__car_wheels_3, car_shape_rectangle__car_wheels_3], east

t5: [car_roof_none, car_shape_rectangle, car_wheels_2,

car_roof_none__car_shape_rectangle, car_roof_none__car_wheels_2,

car_shape_rectangle__car_wheels_2, car_roof_flat, car_shape_hexagon, 

car_wheels_2, car_roof_flat__car_shape_hexagon,

car_roof_flat__car_wheels_2, car_shape_hexagon__car_wheels_2], west

TF-IDF calculation for BoW vector construction:



TF-IDF weights

• No explicit use of existential variables in 

features, TF-IDF instead

• The weight of a word indicates how relevant is 

the feature for the given individual

• The TF-IDF weights can then be used either for 

filtering words with low importance or for using 

them directly by a propositional learner (e.g. J48)



Experiments

• Cross-validation experiments on 8 relational 

datasets: Trains (in two variants), 

Carcinogenesis, Mutagenensis with 42 and 188 

examples, IMDB, and Financial. 

• Results (using J48 for propositional learning)



Experiments

• Cross-validation experiments on 8 relational 

datasets: Trains (in two variants), 

Carcinogenesis, Mutagenensis with 42 and 188 

examples, IMDB, and Financial. 

• Results (using J48 for propositional learning)

– first applying Friedman test to rank the algorithms, 

– then post-hoc test Nemenyi test to compare multiple 

algorithms to each other



Experiments

• Cross-validation experiments on 8 relational 

datasets: Trains (in two variants), 

Carcinogenesis, Mutagenensis with 42 and 188 

examples, IMDB, and Financial. 

• Results (using J48 for propositional learning)



Experiments



Use Case: IMDB

• IMDB subset: Top 250 and bottom 100 movies

• Movies, actors, movie genres, directors, director genres

• Wordification methodology applied

• Association rules learned on BoW vector table



Use Case: IMDB



Wordification implemented in ClowdFlows

• Propositionalization through wordification, available 

at http://clowdflows.org/workflow/1455/



Evaluation implemented in ClowdFlows

June 28, 2013 DAISY, Konstanz291

• Wordification and propositionalization algorithms 

comparison, available at 

http://clowdflows.org/workflow/1456/
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Summary

– Wordification methodology 

– Implemented in ClowdFlows

– Allows for solving non-standard RDM tasks, including RDM 

clustering, word cloud visualization, association rule 

learning, topic ontology construction, outlier detection, …


