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Data Mining: PhD Credits and Coursework

Attending lectures
Attending practical exercises

— Theory exercises and hands-on (intro to WEKA by dr.
Petra Kral] Novak)

Written exam (40%)
Seminar (60%):
— Data analysis of your own data (e.g., using WEKA for
guestionnaire data analysis)

— Implementing a selected data mining workflow in the
ClowdFlows data mining platform

— .... own Initiative is welcome ...



Data Mining: PhD Credits and coursework

Exam: Written exam (60 minutes) - Theory
Seminar: topic selection + results presentation

* One hour available for seminar topic discussion — one page
written proposal defining the task and the selected dataset

* Deliver written report + electronic copy (4 pages in
Information Society paper format, instructions on the web)

— Report on data analysis of own data needs to follow the
CRISP-DM methodology

— Report on DM SW development needs to include SW
compatible with the ClowdFlows 1I/O requirements

— Presentation of your seminar results (15 minutes each: 10
minutes presentation + 5 minutes discussion)



Data Mining: ICT2 Credits and Coursework

« 20 credits (8 LavracC + 4 Cestnik + 8 Mladenic)



Course Qutline

l. Introduction I\VV. Descriptive DM
— Data Mining and KDD process — Predictive vs. descriptive induction
— Introduction to Data Mining — Subgroup discovery
— Data Mining platforms — Association rule learning

Hierarchical clustering
ll. Predictive DM Techniques

— Decision Tree learning V. Relational Data Mining
- Bayesian classifier — RDM and Inductive Logic
— Classification rule learning Programming

— Propositionalization
— Semantic data mining

— Classifier Evaluation

lll. Regression
VI. Advanced Topics



Part |. Introduction

Data Mining and the KDD process
ntroduction to Data Mining
Data Mining platforms




Machine Learning and Data Mining

« Machine Learning (ML) — computer
algorithms/machines that learn predictive
models from class-labeled data

« Data Mining (DM) — extraction of useful
information from data: discovering
relationships and patterns that have not
previously been known, and use of ML
techniques applied to solving real-life data
analysis problems

« Knowledge discovery in databases (KDD) —
the process of knowledge discovery
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Machine Learning and Data Mining

« Machine Learning (ML) — computer
algorithms/machines that learn predictive
models from class-labeled data

« Data Mining (DM) — extraction of useful
iInformation from data: discovering
relationships and patterns that have not
previously been known, and use of ML
techniques applied to solving real-life data
analysis problems

« Knowledge Discovery in Databases (KDD) —
the process of knowledge discovery



Data Mining and KDD

« Buzzword since 1996

« KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

« Data Mining (DM) is the key step in the KDD
process, performed by using data mining
techniques for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

11
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KDD Process: CRISP-DM

KDD process of discovering useful knowledge from data

Pre- Trans- Data Interpretation/
= processing formation Mining ==z _Evaluation s
1 3 —t. — ——™ == — T :__-EE\{-Q:\_,-‘; =
B -1-__: I — o Y A=A i f
I Preprocessed ITransfnrmedI Patterns I Knowledge
Data Data
_ e .‘

« KDD process involves several phases:
 data preparation
 data mining (machine learning, statistics)
 evaluation and use of discovered patterns

« Data mining Is the key step, but represents only
15%-25% of the entire KDD process



Big Data

« Big Data — Buzzword since 2008 (special
Issue of Nature on Big Data)

— data and technigues for dealing with very
large volumes of data, possibly dynamic
data streams

— requiring large data storage resources,
special algorithms for parallel computing
architectures.

13



The 4 Vs of Big Data
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It's estimated that

2.5 QUINTILLION BYTES

[ 23 TRILLION GIGABYTES |
of data are created each day

40 ZETTABYTES
(43 TRILLION GIGABYTES |

of data will be created by
2020, an increase of 300
times from 2005

The
FOURV’s
of Big
Data

From traffic patterns and music downloads

2020

6 BILLION
PEOPLE

have cell
phones

Most companies in the
U.S. have at least

100 TERABYTES

[ 100,000 GIGABYTES |
of data stored

data, and how can these

WORLD POPULATION: 7 BILLION tor, IBM
four dimensions: Volume,

ety and Veracity

scientists

Modern cars have close to

100 SENSORS

that monitor items such as
fuel level and tire pressure

The New York Stock Exchange
captures

1718 OF TRADE
INFORMATION

during each trading session

omer needs, optimize operatic

nfrastructure, and find new sources of

Velocity

ANALYSIS OF
STREAMING DATA

By 2015

4.4 MILLION IT JOBS

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYY YYYrYYYY
e LY TTTTXTIT

As of 2011, the global size of
data in healthcare was

By 2014, it's anticipated
there will be

es,t-imated to be 420 MILLION
150 EXABYTES WEARABLE, WIRELESS
[ 161 BILLION GIGABYTES | HEALTH MONITORS

4 BILLION+
HOURS OF VIDEOD

are watched on
YouTube each month

You
LTube )

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

30 BILLION
PIECES OF CONTENT

are shared on Facebook

every month
Qoo

Poor data quality costs the US
economy around

1 IN 3 BUSINESS

LEADERS

it tr $3.1 TRILLION A YEAR
don’t trust the information $3.1 TRILLION A YEAR
they use to make decisions .

Veracity

UNCERTAINTY
OF DATA

in one survey were unsure of
how much of their data was
inaccurate

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS




Data Science

 Data Science — buzzword since 2012 when
Harvard Business Review called it "The
Sexiest Job of the 21st Century"

— an Interdisciplinary field that uses scientific
methods, processes, algorithms and
systems to extract knowledge and insights
from data in various forms, both structured
and unstructured, similar to data mining.

— used interchangeably with earlier concepts
like business analytics, business
intelligence, predictive modeling, and
statistics.

15
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Data Mining in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns



Data Mining in a Nutshell

Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIGdge discovery
o1 17 myope no reduced NONE

02 23 myope no normal SOFT from data
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE
06-013 4.3
014 35 hypermetrope no normal SOFT Data Mlnlng
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019023 .. model, patterns, ...
024 56 hypermetrope yes normal NONE
data

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

symbolic model

new unclassified instance |\ classified instance symbolic patterns A\
. explanation & S
black box classifier P i Re

no explanation . I
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Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc. Astigm. | Tear prod. Lenses
Ol 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
O5 19 hypermetrope no reduced NONE

06-013 .
O14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 54 myope no reduced NONE
018 62 myope no normal NONE

019-023

024 56 hypermetrope yes normal NONE
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Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc.| Astigm. Tear prod. Lenses

01 young myope no reduced NONE

02 young myope no normal SOFT

03 young myope yes reduced NONE

o4 young myope yes normal HARD

05 young  hypermetrope no reduced NONE Data Mlnlng
06-013

014  ore-presbyc hypermetrope no normal SOFT

015 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE

017 presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE
019-023

024  preshyopic hypermetrope yes normal NONE

reduced/ N:)rmal

NONE
no /

SOFT

spect. pre.

myope/ \hypermetrope

HARD NONE




20

Task reformulation: Binary Class Values

Person Age Spect. presc. Astigm. Tear prod.. Lenses
o1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013 .
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Learning from Numeric Class Data

Person Age Spect. presc.| Astigm. Tear prod. LensPrice
o1 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
04 27 myope yes normal 5
05 19 hypermetrope no reduced 0

06-013

014 35 hypermetrope no normal 5
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
017 54 myope no reduced 0
018 62 myope no normal 0
019-023
024 56 hypermetrope yes normal 0

Numeric class values — regression analysis



Learning from Unlabeled Data

Person Age Spect. presc. Astigm. Tear prod.\ Lenses /
o1 17 myope no reduced
02 23 myope no normal
03 22 myope yes reduced
04 27 myope yes normal
05 19 hypermetrope no reduced

06-013 . ..
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal

019-023 .
024 56 hypermetrope yes normal

Unlabeled data - clustering: grouping of similar instances
- association rule learning

22



Data Mining, ML and Statistics

All three areas have a long tradition of developing
Inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

DM vs. ML - Viewpoint in this course:

— Data Mining Is the application of Machine Learning
techniques to hard real-life data analysis problems

23



Data Mining, ML and Statistics

All three areas have a long tradition of developing
Inductive techniques for data analysis.

— reasoning from properties of a data sample to
properties of a population

DM vs. Statistics:
— Statistics

* Hypothesis testing when certain theoretical
expectations about the data distribution,

Independence, random sampling, sample size, etc.

are satisfied

« Main approach: best fitting all the available data
— Data mining

 Automated construction of understandable
patterns, and structured models

« Main approach: structuring the data space,
heuristic search for decision trees, rules, ...
covering (parts of) the data space

24



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: the class label for a new unlabeled instance



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: the class label for a new unlabeled instance

new unclassified instance classified instance



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

new unclassified instance classified instance

- use the model for the explanation of classifications of
new data instances
- use the discovered patterns for data exploration



Data Mining

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining

model, patterns, ...

Given: transaction data table, relational database, text
documents, Web pages
Find: a classification model, a set of interesting patterns

new unclassified instance |\

no explanation

classified instance

black box classifier

symbolic model
symbolic patterns“ 2\

explanation i -

"
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Contact lens data

Person Age Spect. presc. Astigm. | Tear prod. Lenses
Ol 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
O5 19 hypermetrope no reduced NONE

06-013
O14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 54 myope no reduced NONE
018 62 myope no normal NONE

019-023

024 56 hypermetrope yes normal NONE



Pattern discovery in Contact lens data

Person Age Spect. presc. | Astigm. Tear prod.  Lenses
Ol 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
O5 19 hypermetrope no reduced NONE

06-013 .
Oo14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE

019-023 .
024 56 hypermetrope yes normal NONE

PATTERN

Rule:

IF
Tear prod. =
reduced

THEN
Lenses =
NONE



Learning a classification model from

31

contact lens data

Person Age Spect. presc.| Astigm. Tear prod. Lenses
01 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
017 presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE

019-023
024  preshyopic hypermetrope yes normal NONE

Data Mining

reduced /

NONE

N:)rmal

no/

SOFT spect. pre.

myope/ \hypermetrope

HARD NONE




Decision tree classification model
learned from contact lens data

nodes: attributes
arcs: values of attributes
reduced \

normal leaves: classes
NONE astigmatism

I'ID/ yes

SOFT

spect. pre.

myope / \hypermetrupe

HARD NONE




Learning a classification model
from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
01 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023
024 56 hypermetrope yes normal NONE

lenses=NONE « tear production=red

Data Mining
tear prod.
reduced/ Ni)rmal
NONE astigmatism

no/

SOFT

myope /

HARD

spect. pre.

i hypermetr:

lenses=NONE « tear production=normal AND astigmatism=yes AND
spect. pre.=hypermetrope

lenses=SOFT <« tear production=normal AND astigmatism=no

lenses=HARD <« tear production=normal AND astigmatism=yes AND

spect. pre.=myope
lenses=NONE «



Classification rules model learned
from contact lens data

lenses=NONE <« tear production=reduced
lenses=NONE « tear production=normal AND
astigmatism=yes AND
spect. pre.=hypermetrope
lenses=SOFT <« tear production=normal AND
astigmatism=no
lenses=HARD <« tear production=normal AND
astigmatism=yes AND
spect. pre.=myope
lenses=NONE «



Task reformulation: Binary Class Values

Person Age Spect. presc. Astigm. Tear prod.. Lenses
o1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013 .
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning tasks
- classification and class description
- “one vs. all” multi-class learning
- for Subgroup discovery tasks



Learning from Numeric Class Data

Person Age Spect. presc.| Astigm. Tear prod. LensPrice
o1 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
O4 27 myope yes normal 5
05 19 hypermetrope no reduced 0

06-013
014 35 hypermetrope no normal 5
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
017 54 myope no reduced 0
018 62 myope no normal 0

019-023
024 56 hypermetrope yes normal 0

Numeric class values — regression analysis



Learning from Unlabeled Data

Person Age Spect. presc. Astigm. Tear prod.\ Lenses /
o1 17 myope no reduced
02 23 myope no normal
03 22 myope yes reduced
04 27 myope yes normal
05 19 hypermetrope no reduced

06-013 .
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal

019-023 .
024 56 hypermetrope yes normal

Unlabeled data - clustering: grouping of similar instances
- association rule learning



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

new unclassified instance classified instance

- use the model for the explanation of classifications of
new data instances
- use the discovered patterns for data exploration



First Generation Data Mining

* First machine learning algorithms for
— Decision tree and rule learning in 1970s and early 1980s
by Quinlan, Michalski et al., Breiman et al., ...
« Characterized by
— Learning from data stored in a single data table
— Relatively small set of instances and attributes

 Lots of ML research followed in 1980s

— Numerous conferences ICML, ECML, ... and ML
sessions at Al conferences |JCAI, ECAI, AAAI, ...

— Extended set of learning tasks and algorithms
addressed



Second Generation Data Mining

« Developed since 1990s:

— Focused on data mining tasks characterized by large
datasets described by large numbers of attributes

— Industrial standard: CRISP-DM methodology (1997)




Second Generation Data Mining

« Developed since 1990s:

— Focused on data mining tasks characterized by large
datasets described by large numbers of attributes

— Industrial standard: CRISP-DM methodology (1997)

Trans Data Interpretation/
processmg fcrmatlon Mining Evaluation

= o
e N7,
. ; l::)- — %_eme\»_.,f/f

Preprocessed Transformed Patterns Knowledge
Data Data

— New conferences on practical aspects of data mining
and knowledge discovery: KDD, PKDD, ...

— New learning tasks and efficient learning algorithms:

« Learning predictive models: Bayesian network learning,,
relational data mining, statistical relational learning, SVMs, ...

» Learning descriptive patterns: association rule learning,
subgroup discovery, ...



Second Generation Data Mining
Platforms

Orange, WEKA, KNIME, RapidMiner, ...
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Second Generation Data Mining
Platforms

Orange, WEKA, KNIME, RapidMiner, ...

— Include numerous data mining algorithms

— enable data and model visualization

— like Orange, Taverna, WEKA, KNIME, RapidMiner,
also enable complex workflow construction



Third Generation Data Mining

 Oranged4WS (Podpecan et al. 2009), ClowdFlows (Kranjc et
al. 2012) and TextFlows (Perovsek et al. 2016)

— are service oriented (DM algorithms as web services)
— user-friendly HCI: canvas for workflow construction

— Include functionality of standard data mining platforms
« WEKA algorithms, implemented as Web services

— Include new functionality
* relational data mining
e semantic data mining
* NLP processing and text mining

— enable simplified construction of Web services from
available algorithms

— ClowdFlows and TextFlows run in a browser — enables
data mining, workflow construction and sharing on the web
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ClowdFlows platform

E‘"bLoc al services
"Ll Big data

» Large algorithm repository

— Relational data mining i

— All Orange algorithms

— WEKA algorithms as web services Ao
— Data and results visualization o

Finte gers

— Text analysis SO

BT MysoL

— Social network analysis Sowr

L_l Moise Handling

B Objects

— Analysis of big data streams oo
» Large workflow repository 75 e

B Strings

— Enables access to our

"L_l Visual performance evaluation {(WiperChart

technology heritage

Import webservice



ClowdFlows platform

» Large repository of algorithms
» Large repository of workflows

str &\ '-'.t__t J48
Display Features J48
@ (]
I S
L ) L CLA, e | Iy [t t
MySQL Connec t o o arf = & ins Print Tree Dlsptay Tree
© Database To RSD pos rul Arff to Weka Data Build Classifier © ©
© neg Table @
on m cxt ®
set
Database Context
e RSD

Example workflow:
Propositionalization with RSD
available in ClowdFlows at
http://clowdflows.org/workflow/611/



TextFlows

 Motivation:

— Develop an online text mining platform for
composition, execution and sharing of text mining
workflows

« TextFlows platform — fork of ClowdFlows.org:

— Specialized on text mining

— Web-based user interface

— Visual programming

— Big roster of existing workflow (mostly text mining)
components

— Cloud-based service-oriented architecture



“Big Data” Use Case

« Real-time analysis of big data streams

« Example: semantic graph construction from news
streams. http://clowdflows.org/workflow/1729/.

2 e 3
url url ; txt str tri tri - tri st & & st tri
TLDR w _/\

RSS Reader Summarize news Triplet Extraction WordNet lemmatizer  Sliding Window Streaming triplet
article on triplets ~ graph

« Example: news monitoring by graph e =l
visualization (graph of CNN RSS feeds) -~~~ . .

http://clowdflows.org/streams/data/31/1 e



Part |I: Summary

KDD is the overall process of discovering useful

knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing technigues from machine learning and statistics

Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

Many application areas, many powerful tools
available

49



Course Qutline

|. Introduction
— Data Mining and KDD process
— Introduction to Data Mining
— Data Mining platforms

ll. Predictive DM Techniques
— Decision Tree learning
- Bayesian classifier
— Classification rule learning
— Classifier Evaluation

lll. Regression

I\VV. Descriptive DM
— Predictive vs. descriptive induction
— Subgroup discovery

— Association rule learning
Hierarchical clustering

V. Relational Data Mining

— RDM and Inductive Logic
Programming

— Propositionalization
— Semantic data mining

VI. Advanced Topics

50



Part |l. Predictive DM techniques

j|> Decision tree learning
« Bayesian Classifier

* Rule learning
« Evaluation

51



Predictive DM - Classification

« data are objects, characterized with attributes -
they belong to different classes (discrete labels)

 given objects described with attribute values,
iInduce a model to predict different classes

e decision trees, If-then rules, discriminant
analysis, ...

52
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Predictive DM - classification
formulated as a machine learning task

« Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)

Al A2 A3 Class
examplel v, Vi Vi 3 C;
example2 v,, Vs 5 Vs, 3 C,

« Performing generalization from examples (induction)

* Find a hypothesis (a decision tree or classification rules)
which explains the training examples, e.g. decision trees
or classification rules of the form:

IF (Ai=V;,) & (Aj=V,) & ... THEN Class = C,
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Decision Tree Learning

Person Age Spect. presc.| Astigm. Tear prod. Lenses
01 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
017 presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE

019-023
024  preshyopic hypermetrope yes normal NONE

Data Mining

reduced /

NONE

N:)rmal

no/

SOFT spect. pre.

myope/ \hypermetrope

HARD NONE




Decision Tree classifier

tear prod.

reduced normal

i

NONE

yes

n{:}/

SOFT

spect. pre.

lnynpi//f \\\Typenneuope

HARD NONE




Decision tree learning algorithm

* |ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
J48 in WEKA, ...

— create the root node of the tree

— If all examples from S belong to the same class Cj
* then label the root with Cj

— else

e select the ‘most informative’ attribute A with values
vil, v2, ... vn

« divide training set S into S1,... , Sn accordjng to
values v1,...,vn

* recursively build sub-trees

AR
T1,...,Tn for $1,...,Sn @ @
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Decision tree search heuristics

« Central choice in decision tree algorithms: Which
attribute to test at each node in the tree ? The
attribute that is most useful for classifying
examples.

« Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

* First define a measure commonly used In
Information theory, called entropy, to characterize

the (im)purity of an arbitrary collection of examples.
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Entropy

* S -training set, C,,...,C, - classes

* Entropy E(S) — measure of the impurity of
training set S

N
E(S) = _Z P.-10g, p.  p.- prior probability of class C,
c=1

(relative frequency of C_ in S)

« Entropy In binary classification problems

E(S) =-p,log,p. - p.log,p.
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Entropy

E(S) = - p.log,p. - p.log,p.
The entropy function relative to a Boolean

classification, as the proportion p, of positive
examples varies between 0 and 1

0o /\

08 / N\

/ AN
@ o0 / \
Zos 1/ A\
£ 04 / \
0a 1] \
o1 1 \
o !

0 0,2 0,4 0.6 0,8 1 Pt
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Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

So, In binary classification problems, the expected
number of bits to encode + or — of a random
member of S Is:

p. (- log,p, )+ p.(-log,p.) =-p,log,p, - p.log,p.
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Entropy — example calculation

Training set S: 14 examples (9 pos., 5 neg.)
Notation: S = [9+, 5-]

E(S) = - p.log,p. - p.log,p.
Computing entropy, if probability is estimated by
relative frequency

S0 I5.1) (151, .IS.]
E(S) = | 2« jog 2 | 2=t jog 2!
) [|S| ongJ (|S| °g|8|j

E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
= 0.940

61



62

Information gain
search heuristic

« Information gain measure is aimed to minimize the

number of tests needed for the classification of a new
object
« Gain(S,A) — expected reduction in entropy of S due to

sorting on A

Gain(S,A)=E(S)- >’ lSVl-E(SV)

veValues(A) | S |

« Most informative attribute: max Gain(S,A)




Information gain
search heuristic

 Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94

/N /N

[6+, 2—] [3+, 3-] [9+, 0—] [0+, 5—]
E=0.811 E=1.00 E=0.0 E=0.0

« Gain(S,Al1) =0.94 - (8/14 x 0.811 + 6/14 x 1.00) = 0.048
« Gain(S5,A2)=0.94-0=0.94 A2 has max Gain



Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

— If all examples belong to same class C;, label the
leaf with C,

— If all attributes were used, label the leaf with the
most common value C, of examples in the node

Extension to ID3: handling noise - tree pruning
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Pruning of decision trees

* Avoid overfitting the data by tree pruning

* Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) in training examples
* erroneous attribute values
 erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples



Handling noise — Tree pruning

« Handling imperfect data
— handling imperfections of type 1-3
* pre-pruning (stopping criteria)
 post-pruning / rule truncation
— handling missing values

* Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3
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Prediction of breast cancer recurrence:
Tree pruning

Degree_of_malig

<3 > 3
Tumor_size Involved_nodes
<15 > 15 <3 > 3
Age no_recur 125 ho_recur 30 ho_recur 27

recurrence 39 recurrence 18 recurrence 10

<4

no_recur 4
recurrence 1

no_rec 4 recl



Pruned decision tree for
contact lenses recommendation

tear prod.

Nﬁ)rmal

no / yes

reduced /

NONE

[N=12,S+H=0]

SOFT

[S=5,H+N=1]

myope / \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]
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Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— 0N unseen instances

How accurate is a decision tree when classifying unseen
Instances

— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
 split the example set into training set (e.g. 70%) and test set (e.g. 30%)
* induce a decision tree from training set, compute its accuracy on test
set
Error = 1 - Accuracy

High error may indicate data overfitting



Overfitting and accuracy

« Typical relation between tree size and accuracy

0.9
0.85 —
0.8 /_/
0.75 /_/
0.7 / \ ;/_
0.65 /
0.6
0.55
0.5 : : : : :
0 20 40 60 80 100

120

— On training data
— On test data

* Question: how to prune optimally?
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Avoiding overfitting

* How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

« forward pruning considered inferior (myopic)
* post pruning makes use of sub trees
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Selected decision/regression
tree learners

 Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (Seeb5, Quinlan)
— J48 (available in WEKA)

« Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA)
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Features of C4.5 and J48

* Implemented as part of the WEKA data mining
workbench

« Handling noisy data: post-pruning
« Handling incompletely specified training
Instances: ‘unknown’ values (?)

— In learning assign conditional probability of value v:
p(v|C) = p(vC) / p(C)

— In classification: follow all branches, weighted by
prior prob. of missing attribute values
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Other features of C4.5

 Binarization of attribute values

— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)

— for discrete values try grouping the values until
two groups remain *
* ‘Majority’ classification in NULL leaf (with no
corresponding training example)

— if an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
Is the majority class of the parent of the NULL leaf

*x . , o . . . .
the basic €C4.5 doesn't support binarisation of discrete attributes, it supports grouping
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Appropriate problems for
decision tree learning

 Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

* Characteristics:
— Instances described by attribute-value pairs
(discrete or real-valued attributes)

— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)

— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values



Classifier evaluation

* Use of induced models
— discovery of new patterns, new knowledge
— classification of new objects

« Evaluating the quality of induced models
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to

Induce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— Information contents (information score), significance
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Nn-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized
folds T,where U; T,= D

for 1i=1,...,ndo

— form a training set out of n-1 folds: Di = D\T,
— Induce classifier H, from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,

/8



Part |l. Predictive DM techniques

« Decision tree learning

j|> Bayesian Classifier
* Rule learning

 Evaluation
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Bayesian methods

« Bayesian methods — simple but powerful
classification methods

— Based on Bayesian formula

p(D|H)
H | D) =
p(H [ D) >(D)

p(H)

* Main methods:
— Nalive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* QOut of scope of this course
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Nalve Bayesian classifier

* Probability of class, for given attribute values

V,..V_|[C.

D(C, vy y) = p(e;) - o ta 1)

p(vl"'vn)

» For all C; compute probability p(C;), given values v; of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when
estimating p(C;) and p(C; |v)))

P(C; [ve-v) = p(e)) | | IO(Ff(jcl-\)/i)

« Output Cy,» With maximal posterior probability of class:

Cuax =arg Max; p(Cj Vi ,)



Semi-naive Bayesian classifier

« Nalve Bayesian estimation of probabilities
reliable
reliable) p(c, 1v) P(c, 1)
p(c;) p(c;)

e Semi-naive Bayesian estimation of
probabilities (less reliable)

p(C; [ Vi,V )
p(c;)
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Probability estimation
* Relative frequency:

) ME) G,
PLC;)= N  PLE IV = n(v;) j = 1.k, for k classes
6+,1-] (7) = 6/7 problems with small samples

2+,0-](2)=2/2=1

« Laplace estimate (prior probabillity):

n(Cj) +1 assumes uniform prior
N + Kk distribution of k classes

p(Cj):

6+,1-] (7)) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 = 3/4



Probability estimation

* Relative frequency:

p(Cj) — n(;j) , p(Cj |Vv.) = n(r]C(j\;i\)/i) j=1..k, for k classes
* Prior probability: Laplace law
Y+1

e m-estimate:

n(c;)+m- pa(c;)
N +m

p(Cj):
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Probability estimation: intuition

« Experiment with N trials, n successful

« Estimate probability of success of next trial

* Relative frequency: n/N
— reliable estimate when number of trials is large
— Unreliable when number of trials is small, e.qg.,

1/1=1

« Laplace: (n+1)/(N+2), (n+1)/(N+Kk), k classes
— Assumes uniform distribution of classes

* m-estimate: (n+m.pa)/(N+m)

— Prior probability of success p., parameter m
(weight of prior probability, i.e., number of ‘virtual’
examples )
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Explanation of Bayesian
classifier

Based on information theory

— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is

p(*)
Explanation based of the sum of information gains of

iIndividual attribute values v; (Kononenko and Bratko 1991,
Kononenko 1993)

—log(p(c; [v,..v,)) =

=—log(p(c)) —i(— log p(c;)+log(p(c; [v;))

* log p denotes binary logarithm



Example of explanation of semi-naive
Bayesian classifier

Hip surgery prognosis
Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision| Against
(bit) (bit)

Age = 70-80 0.07

Sex = Female -0.19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall -0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture classification acc. To Garden = Garden lll -0.3

Fracture classification acc. To Pauwels = Pauwels Il -0.14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes -0.32

Hospital rehabilitation = Yes 0.05

General complications = None 0

Combination: 0.21

Time between injury and examination < 6 hours
AND Hospitalization time between 4 and 5 weeks
Combination: 0.63
Therapy = Artroplastic AND anticoagulant therapy = Yes




Visualization of information
gains for/against C.

Information gain
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Naive Bayesian classifier

Nailve Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

It achieves good classification accuracy

— can be used as ‘gold standard’ for comparison with
other classifiers

Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information

Successful in many application domains
— Web page and document classification

— Medical diagnosis and prognosis, ...
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Improved classification accuracy due ™

to using m-estimate

Primary Breast thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. [ m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%




Part |l. Predictive DM techniques

« Decision tree learning
« Bayesian Classifier

j|> Rule learning

 Evaluation
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Rule Learning

Person Age Spect. presc. Astigm. |Tear prod. Lenses knOWIedge dlscovery
o1 young myope no reduced NONE from data
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE
06-013 3 .
014 ore-presbyc hypermetrope no normal SOFT RUIe Iearnlng MOdel a Set Of rU|eS
015 ore-presbyc hypermetrope yes reduced NONE . ..
016 ore-presbyc hypermetrope  yes normal NONE Patterns |nd|V|dua| rules
017 |presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE
019-023

024  |presbyopic| hypermetrope yes normal NONE

data

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;

or a set of interesting patterns in the form of individual
rules



Rule set representation

Rule base is a disjunctive set of conjunctive rules

Standard form of rules:
IF Condition THEN Class

Class IF Conditions
Class « Conditions

Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

Rule base: {R1,R2, R3, ..., DefaultRule}
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Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE
tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE
tear production=normal & astigmatism=no — lenses=SOFT
tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE
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Rule learning

« Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
« Learning an unordered set of rules
« Learning an ordered list of rules
« Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to

an unordered rule set

reduced N?rmal
NONE

no / yes
[N=12,S+H=0]

SOFT
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)
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Contact lenses: convert decision tree to

decision list
reduced N‘?rmaj

no es
[N=12,S+H=0] / J

SOFT
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list
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Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

* Very frequently used method, e.g., in C4.5
and J48

* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use



Concept learning:

99

ask reformulation for rule

learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. ~ Lenses
Ol 17 myope no reduced NO
02 23 myope no normal YES
O3 22 myope yes reduced NO
O4 27 myope yes normal YES
O5 19 hypermetrope no reduced NO

06-013
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023
024 56 hypermetrope yes normal NO



Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes C,, ..., Cv ]

for each class Ci do -
— EiI := Pi U Ni (Pi pos., Ni neg.) + 4
— RuleBase(Ci) := empty e T

— repeat {learn-set-of-rules}

 learn-one-rule R covering some positive
examples and no negatives

« add R to RuleBase(Ci)
* delete from P1 all pos. ex. covered by R
— until Pi = empty
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Covering algorithm

Positive examples Negative examples
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples

AV
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples T Negative examples

Y
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

QY

Rule2: Cl=+ « Cond8 AND Condé6
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Probability estimates

* Relative frequency : 0(Class|Cond) =
— problems with small samples
_ n(Class.Cond)
n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) =2/2=1
 Laplace estimate : _n(ClassCond)+1 | _»
— assumes uniform prior - n(Cond) +k

distribution of k classes

6+,1-] (7)) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 = 3/4
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| earn-one-rule:
search heuristics

Assume a two-class problem
Two classes (+,-), learn rules for + class (Cl).

Search for specializations R’ of a rule R = Cl «- Cond
from the RuleBase.

Specializarion R’ of rule R = Cl « Cond
has the form R’ = Cl <« Cond & Cond’

Heuristic search for rules: find the ‘best’ Cond’ to be
added to the current rule R, such that rule accuracy Is
improved, e.g., such that Acc(R’) > Acc(R)

— where the expected classification accuracy can be
estimated as A(R) = p(Cl|Cond)
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Learn-one-rule:
Greedy vs. beam search

 learn-one-rule by greedy general-to-specific
search, at each step selecting the "best’
descendant, no backtracking

— e.g., the best descendant of the initial rule
lenses=NONE «
— Is rule lenses=NONE « tear production=reduced

 beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set is again reduced to k best
candidates
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What is “high” rule accuracy
(rule precision) ?

Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
BUT: Rule accuracy/precision should be traded

off against the “default” accuracy/precision of the

rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

Relative accuracy (relative precision)
— RAcc(Cl «+~Cond) = p(Cl | Cond) — p(Cl)
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| earn-one-rule:

search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl « Cond from RuleBase.

Expected classification accuracy: A(R) = p(Cl|Cond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(Cl|Cond)

Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)
Information gain (decrease in the information needed):
IG(R",R) = log,p(Cl|Cond’) - log,p(Cl|Cond)
Weighted measures favoring more general rules: WAG, WIG
WAG(R',R) =
p(Cond’)/p(Cond) . (p(CIl|Cond’) - p(CIl|Cond))

Weighted relative accuracy trades off coverage and relative
accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))



Ordered set of rules:
If-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
Instance: rules are sequentially tried and the first
rule that “fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
Interpreted as if-then-else rules

If no rule fires, then DefaultClass (majority class In
ECUI‘)
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Seqguential covering algorithm

RuleBase := empty
EEcur;: EE
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E., := E., - {examples covered and correctly

cur cur

classified by R} (DELETE ONLY POS. EX.!)
— until performance(R, E.,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase
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| earn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
ECUI‘:: E
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E., := E., - {all examples covered by R}

cur cur

(NOT ONLY POS. EX.))
until performance(R, E.,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E

CUI‘)
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| earn-one-rule:
Beam search in CN2

 Beam search in CN2 learn-one-rule algo.:

— construct BeamsSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R ;= Head « BestBody by

adding majority class of examples covered by
BestBody in rule Head

» performance (R, E_,) : - Entropy(E_,)

— performance(R, E_ ) < ThresholdR (neg. num.)
— Why? Ent. > tis bad, Perf. = -Ent < -t is bad



Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification

Best performing rule learning algorithm: Ripper

JRIip implementation of Ripper in WEKA, available
In ClowdFlows
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Probabilistic classification

In the ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

In the unordered case all rules are tried and all rules which fire are

collected. If a clash occurs, a probabilistic method is used to resolve the

clash.

A simplified example:

1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.
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Part |l. Predictive DM techniques

« Decision tree learning
« Bayesian Classifier
* Rule learning

j|> Evaluation
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Classifier evaluation

Accuracy and Error
n-fold cross-validation
Confusion matrix
ROC
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Evaluating hypotheses

« Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

« Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to

Induce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— Information contents (information score), significance



N-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized
folds T,where U; T,= D

for 1i=1,...,ndo

— form a training set out of n-1 folds: Di = D\T,
— Induce classifier H, from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,
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Confusion matrix and
rule (in)accuracy

e Accuracy of a classifier is measured as TP+TN / N.

e Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on a test set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!

« Conclusion: classification accuracy Is not always an
appropriate rule quality measure



Confusion matrix

Predicted positive

Predicted negative

Positive examples

True positives

False negatives

Negative examples

False positives

True negatives

 also called contingency table

Classifier 1
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Predicted positive | Predicted negative
Positive examples 40 10 50 .,
Negative examples 10 40 50 C laSS] f] er 2
50 50 100
Predicted positive | Predicted negative
Positive examples 30 20 50
Negative examples 0 50 50
30 70 100
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ROC space

True positive rate = Classifier 1
#true pOS_ /#pos_ — I Predict(-z:ioposiﬁve Predictej(r;egative —

_ TPrl — 40/50 — 80% Negative examples ;8 451,8 15000 Class-if-ier 2

_ TPrZ - 30/50 — 60% POSmYe — Predlctzjoposmve Predlcte;(r;egatlve —
False positive rate T i

= #false pos. / #neg.
— FPr, = 10/50 = 20%
— FPr, =0/50 = 0%

ROC space has
— FPron X axis
— TPronY axis

100%

60% ;

40%

True positive rate

20%

0%
0% 20% 40% 60% 80% 100%

False positive rate



The ROC space

true positive rate

100%
*

80%

60%

40%

20% # Confirmation rules

® WRAcc
CN2
0% 4 |
0% 20% 40% 60% 80%

false positive rate

100%
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The ROC convex hull

true positive rate

100%

80%

60%

40% /

20%

0%

0%

20%

40% 60%

false positive rate

80%

100%
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Course Qutline

l. Introduction I\VV. Descriptive DM
— Data Mining and KDD process — Predictive vs. descriptive induction
— Introduction to Data Mining — Subgroup discovery
— Data Mining platforms — Association rule learning

Hierarchical clustering
ll. Predictive DM Techniques

— Decision Tree learning V. Relational Data Mining
- Bayesian classifier — RDM and Inductive Logic
— Classification rule learning Programming

— Propositionalization
— Semantic data mining

— Classifier Evaluation

lll. Regression
VI. Advanced Topics



lll. Predictive DM — Regression

often referred to as estimation or regression

data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

given objects described with attribute values, induce a
model to predict the numeric class value

regression trees, linear and logistic regression, ANN,
KNN, ...
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Estimation/regression example:
Customer data

Customer Gender Age Income Spent
cl male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
cl4 female 61 95000 18100
cl5 male 56 44000 12000
cl6 male 36 102000 13800
cl7 female 57 215000 29300
cl8 male 33 67000 9700
cl9 female 26 95000 11000

c20 female 55 214000 28800



Customer data:
regression tree

< 108000 / - ! > 108000

12000
3423/ > 42.5

16500 26700

In the nodes one usually has
Predicted value +- st. deviation
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Predicting algal biomass: regression
tree

Jan.-June

/ w - Dec.
C s D

4.32+2.07 2.34+1.65
<59 >59 TNz

<9.34

>

/

i

1.28+1.08
2.97+1.09 2.08 £0.71
<2.13
/// >2.13

1.15+0.21 0.70+0.34
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Predicting algal biomass: regression
tree

Jan.-June

/ w - Dec.
C s D

4.32+2.07 2.34+1.65
<59 >59 TNz

<9.34

>

/

i

1.28+1.08
2.97+1.09 2.08 £0.71
<2.13
/// >2.13

1.15+0.21 0.70+0.34
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Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression
trees,...

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class
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Example regression problem
« data about 80 people: Age and Height

Age ([ Height
5 3 1.03
$o3 L P Ny tpt o 5 119
;:"’ :°.;:s ¢ %’.’o} R 5 1.26
15 ‘} g | 139
£ 15 | 169
5 2 ' 19 | 167
72 | 1.86
0.5 75 | 1.85
* Height 41 159
0 T I 483 160
0 50 100 54 | 1.90
Age 71 187




Test set

Age Height
2 0.85
10 1.4
35 1.7
70 1.6
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Baseline numeric model

« Average of the target variable

138

Height

2

1.8
1.6

1.4
1.2

L

0.8

0.6
0.4

0.2
0

0

20

40

Age

* Height
= Average predictor

60

80

100




Age

Baseline numeric predictor

« Average of the target variable is 1.63

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

Height

Height

6’_" 0.00 .00‘0 . ”’ ’00: 0‘ ¢
e t we & 8
4
o
&
{od
2
+ Height N
| | = Average predictor |
Baseline 20 40 60 80 100

0.85

10

1.4

Age

35

1.7

70

1.6




Linear Regression Model

Height = 0.0056 * Age + 1.4181
2.5
2 o0 ou gm M"
09” “”0 **
I R ORI
= 15 &
] é
T 1 _f
0.5 ¢ Height =
= Prediction
O | | | |
0 20 40 60 80 100
Age
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Regression tree

==124 =12.48
Ui ins 3350)
«=B.5 =6.5 HEIght -
S s s o) 1709
=4 -4 Height = 2
" B 23030 00 e %t e
wiEmnrn| w404 i mtiar &
- - . 1.5 | L2 X * *e
Height = Height = =3
1.3932 1.4025 IEJ') P
g2 1
I
0.5 .
¢ Height
® Prediction
0 !
0 50 100
Age




Model tree

==12.5

Height =
0.0333 * Age
+ 1.1366
2 X s Qe (S L 23 *
é"_.k’- gmmi 0‘ - ? !
15 ¢ oo .”’0 oo %o 00 ¢
L
(@)
5 1%
T
0.5 + Height
= Prediction
O | | | |
0 20 40 60 80 100

Age

=12.5

—

Height =
0.0011 * Age
+ 1.6692



KNN — K nearest neighbors

* Looks at K closest examples (by age) and predicts the
average of their target variable

K=3

Height

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

+ Height

0 20 40 60
Age

= Prediction KNN, n=3

80

100
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Which predictor iIs the best?

Linear |Regression
Age Height | Baseline | regression tree Model tree KNN

2 1085|163 | 143 | 1.39 1.20 | 1.01

10 | 1.4 | 163 | 1.47 | 1.46 1.47 | 1.51

35 | 1.7 1163 | 1.61 | 1.71 1.71 | 1.67

/0 | 16163 | 181 | 1.71 1.75 | 1.81
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Course Qutline

l. Introduction I\VV. Descriptive DM
— Data Mining and KDD process — Predictive vs. descriptive induction
— Introduction to Data Mining — Subgroup discovery
— Data Mining platforms — Association rule learning

Hierarchical clustering
ll. Predictive DM Techniques

— Decision Tree learning V. Relational Data Mining
- Bayesian classifier — RDM and Inductive Logic
— Classification rule learning Programming

— Propositionalization
— Semantic data mining

— Classifier Evaluation

lll. Regression
VI. Advanced Topics
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Part IV. Descriptive DM technigues

j>- Predictive vs. descriptive induction
» Subgroup discovery
» Association rule learning
» Hierarchical clustering
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Descriptive DM:.
Subgroup discovery example -
Customer data

Customer Gender Age Income Spent  BigSpender
cl male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
ch male 63 191000 28100 yes

06-013
cla female 61 95000 18100 yes
cl5 male 56 44000 12000 no
cl6 male 36 102000 13800 no
cl7 female 57 215000 29300 yes
cl8 male 33 67000 9700 no
cl9 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data:
Subgroup discovery

Type of task: description (pattern discovery)
Hypothesis language: rules X =2 Y, if XthenY
X Is conjunctions of items, Y Is target class

Age > 52 & Sex = male =» BigSpender = no

Age > 52 & Sex = male & Income < 73250
=>» BigSpender = no
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Descriptive DM:
Association rule learning example -
Customer data

Customer Gender Age Income Spent  BigSpender
cl male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl4 female 61 95000 18100 yes
cl5 male 56 44000 12000 no
cl6 male 36 102000 13800 no
cl7 female 57 215000 29300 yes
cl8 male 33 67000 9700 no
cl9 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data:
Assoclation rules

Type of task: description (pattern discovery)
Hypothesis language: rules X =2 Y, if XthenY
X, Y conjunctions of items

1. Age > 52 & BigSpender = no = Sex = male
2. Age > 52 & BigSpender = no =
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =
BigSpender = no

150
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Descriptive DM:
Clustering and association rule learning

example - Customer data
\ /

Customer Gender Age Income Spent RigSpendq’r
cl male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
cla female 61 95000 18100
cl5 male 56 44000 12000
cl6 male 36 102000 13800
cl7 female 57 215000 29300
cl18 male 33 67000 9700
cl9 female 26 95000 11000

c20 female 55 214000 28800
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Predictive vs. descriptive
Induction

* Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

« Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— EXxploratory data analysis
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Descriptive DM

Often used for preliminary explanatory data
analysis

User gets feel for the data and its structure

Aims at deriving descriptions of characteristics
of the data

Visualization and descriptive statistical
techniques can be used
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Predictive vs. descriptive DM:
Summary from a rule learning
perspective

* Predictive DM: Induces rulesets acting as classifiers
for solving classification and prediction tasks

« Descriptive DM: Discovers individual rules
describing interesting regularities in the data

* Therefore: Different goals, different heuristics,
different evaluation criteria
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Descriptive DM

* Description

— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)

— Dependency analysis:
 describe associations, dependencies, ...
« discovery of properties and constraints

« Segmentation

— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)

— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)
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Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction

) - Subgroup discovery
» Association rule learning

» Hierarchical clustering




Subgroup Discovery

Person Age Spect. presc. Astigm. Tear prod. . Lenses
01 17 myope no reduced NO 5
02 23 myope no normal YES SU bgl’OU p DISCOVE I’y
03 22 myope yes reduced NO
04 27 myope yes normal YES
05 19 hypermetrope no reduced NO
06-013 Class YES
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO 2
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO
019-023 o
024 56 hypermetrope yes normal NO

Class NO

« A task in which individual interpretable patterns in the

form of rules are induced from data, labeled by a

predefined property of interest.

« SD algorithms learn several independent rules that
describe groups of target class examples
— subgroups must be large and significant

157



158

Classification versus Subgroup Discovery

« Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

« Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules

— aimed at finding interesting patterns in target class
examples
 large subgroups (high target class coverage)
« with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge
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Classification versus Subgroup discovery




Subgroup discovery In
High CHD Risk Group Detection

Input: Patient records described by anamnestic,
laboratory and ECG attributes

Task: Find and characterize population subgroups
with high CHD risk (large enough, distributionaly
unusual)

From best induced descriptions, five were selected by the expert
as most actionable for CHD risk screening (by GPSs):

high-CHD-risk « male & pos. fam. history & age > 46
high-CHD-risk «— female & bodymassindex > 25 & age > 63
high-CHD-risk « ...
high-CHD-risk « ...
high-CHD-risk « ...

(Gamberger & Lavrac, JAIR 2002)
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Subgroup Discovery: Medical Use Case

Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrac,
Krstacic)
Al for males: principal risk factors

CHD <« pos. fam. history & age > 46
A2 for females: principal risk factors

CHD « bodyMassindex > 25 & age >63

Al, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECG)

Al: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight



Subgroup discovery In functional
genomics

* Functional genomics is a typical scientific discovery
domain, studying genes and their functions

* Very large number of attributes (genes)

* Interesting subgroup describing patterns discovered
by SD algorithm

CancerType = Leukemia

IE KIAAO0128 = DIFE EXPRESS

E. EXPRESSED

AND prostoglandin a2 synthase = NOT_ DIFF.

 Interpretable by biologists
D. Gamberger, N. Lavrag, F. Zelezny, J. Tolar

Journal of Biomedical Informatics 37(5):269-284,
2004
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Subgroups vs. classifiers

« Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model
« Subgroups:
— Rules describing subgroups aim at significantly higher
proportion of positives

— Each rule is an independent chunk of knowledge

* Link
— SD can be viewed as
cost-sensitive positives negatives

classification true NS
— Instead of FNcost we Positives

aim at increased TPprofit
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

* Only first few rules induced by the covering
algorithm have sufficient support (coverage)

« Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

e ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

Weighted covering algorithm

Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Probabilistic classification

Evaluation with different interestingness
measures



CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =

= p(Class|Cond) = (n_+1) / (n,_.+k)
— CN2-SD: Weighted Relative Accuracy

WRAcc(Class « Cond) =
pP(Cond) (p(Class|Cond) - p(Class))

Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering

« Standard covering approach:
covered examples are deleted from current training set

« Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
In all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
« Additive weights: w(e,i) = 1/ (i+1)
w(e,i) — pos. example e being covered i times
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Subgroup Discovery

Positive examples Negative examples

1.0 1.0 1.0

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0 1.0

1.0
1.0 1,
1.0 0

1.0



Subgroup Discovery

Positive examples

Rulel: Cl=+ « Cond6 AND Cond2

1.0
1.0

1.0

1.0 .
1.0 1.0

1.0

Negative examples
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Subgroup Discovery

Positive examples Negative examples

1l0 1lo 1 o

1.0 30 20 4

1.0 1.0 1.0 1.0

1.0 1.0

1.0
1.0
1-0 1.0

1.0
1.0 .
1.0 1.0

1.0

Rule2: Cl=+ « Cond3 AND Cond4
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Subgroup Discovery

Positive examples Negative examples

1.0 1.0 1.0

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0 1.0

1.0
1.0 1,
1.0 0

1.0



CN2-SD: Weighted WRAcc Search
Heuristic

« Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl «<— Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

Increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* In WRAcc computation, probabilities are estimated
with relative frequencies, adapt:

WRAcc(Cl « Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =
n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N’ )
— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples



SD algorithms in the Orange DM
Platform

* Orange data mining toolkit
— classification and subgroup
discovery algorithms
— data mining workflows

— visualization

D_fibr=>4 20 ecghlv=na -+ class=emb
D_chol=c=6.90 D_fibr=>4.20 hypo=no -> class=emb
[_age=366.00 fthiz=pes -» class=emb

(163 [_age=»B6.00 D_chol=<=6.90 > class=emb

« SD Algorithms in Orange
= SD (Gamberger & Lavrac, JAIR 2002)
= Apriori-SD (Kavsek & Lavrac, AAlI 2006)
= CN2-SD (Lavrac et al., JIMLR 2004): Adapting CN2
classification rule learner to Subgroup Discovery
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Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction
» Subgroup discovery

_>- Association rule learning
» Hierarchical clustering
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Association Rule Learning

Rules: X =>Y, iIf XthenY

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions 102 e, i50
itemsets (records) 1 1 1 0
t2 O 1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)

o Support: Sup(X,Y) = #XY/#D = p(XY)
« Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(Y[X)
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Association Rule Learning:
Examples

« Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items

— Confidence 65%: 65% of customers that buy beer
and coke also buy peanuts and chips

* |nsurance
— mortgage & loans & savings = insurance (2%,
62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have
mortgage, loan and savings also have insurance
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and

— user defined minimum confidence, I.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis
verification



Searching for the associations

Find all large itemsets

Use the large itemsets to generate
association rules

If XY Is a large itemset, compute
r =support(XY) / support(X)

If r > MinConf, then X = Y holds
(support > MinSup, as XY Is large)
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Large itemsets

« Large itemsets are itemsets that appear in at
least MinSup transaction

« All subsets of a large itemset are large
itemsets (e.qg., If A,B appears In at least
MinSup transactions, so do A and B)

« This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)
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Assoclation vs. Classification

rules

« Exploration of
dependencies

« Different combinations
of dependent and
Independent attributes

« Complete search (all
rules found)

rules

Focused prediction

Predict one attribute
(class) from the others

Heuristic search (subset
of rules found)
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Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction
» Subgroup discovery
» Association rule learning

j>- Hierarchical clustering
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Hierarchical clustering

. Algorlthm (agglomerative ° Dendogram

hierarchical clustering):

| | .
oy M
] ] e
Each instance is a cluster; \
repeat = S e " - ==

find nearest pair Cjin Cj;
fuse Ciin Cj in a new cluster |::>
Cr=GCiUC;;

determine dissimilarities between
C: and other clusters:;

until one cluster left; I——‘ ‘
M |J'| M| v

of OF O3 04 O5 OF OF O8 O 0D O11 012 013 014

cluster level




Hierarchical clustering

* Fusing the nearest pair of clusters
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m\ * Minimizing intra-cluster

d(C;,C .. :
& similarity
d(C;.q;) ¢, | = Maximizing inter-cluster
similarity
d(C;.C,)

« Computing the dissimilaritiesﬁ

from the “new” cluster
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Hierarchical clustering: example

" X YV Z W V (xy) z w v
x| 0(1)1 5 58 (xy)| 0 141 5 566
RS & o | v 0 141424 5 - 0 441 5
-+ I
1 - y 0 4471 5 w 0 @
"_:. : : w o 1 ' 0
T ¥ 0
l] 1l L L] L L] }
a) sample problem b) dissimilarity matrix c) dissimilarity matrix after 'fusing'
elements X and y
xy) z (wyv) (x.y.2) (w.v) S +6 546
{xsy) D @ 5.66 {X,y,Z] U C!_:].t ............................. :- i
0 5 e
z (wl“) D -+ 2
I | E———— L~ 1.4
(w,v) 0 = —F-= —+1
1] ___E_—:‘[‘r____0

d) dissimilarity matrix after fusing' e) dissimilarity matrix after f) dendrogram
elements w and v fusing' cluster (x,y) and
element z
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Results of clustering

Ptah - [Clustering of Samples] s A dendogram Of
=| File Analyses Graph Options Window Help = resistance vectors
v 2 [ EBE] (] =
Antibiotics: {BETAL),AM,CB,CC,CFP,CIP,CIX,CPM,CT,GM,MET,NET,P [Bohanec et al., “PTAH:
Bacterium: 110 STAPHYLOCOCCUS AUREUS ’ .
1 . oz A system for supporting
1 .B......B...®B | nosocomial infection
L E...E — therapy”, IDAMAP
3 _.E.__ .. E.._ER
A . & book, 1997]
1 ... .. E._.._.. B l
1 B —'_I -
: T _
1 .. ... ... B_. .. —
1 E_ERE_RE. _E
1 E E. . RE. _E
1 E_ERE BRE B :I—‘i |
3 E_E _RE ]
2 ... EE. B [ |
1 ... .. E_ERE B
2 _...E.E.RE._.E N s
1 .. k... .. RE
3 _..E.RE_E_R. B
- g rEEE ®
2 ..E.E.E.R. .
. rermoEm
Trne m —

From: 1-1-94 To: 3-3-95 Samples: ¥9 Antibiotics: 13 Bacteria; 1




186

Course Qutline

l. Introduction I\VV. Descriptive DM
— Data Mining and KDD process — Predictive vs. descriptive induction
— Introduction to Data Mining — Subgroup discovery
— Data Mining platforms — Association rule learning

Hierarchical clustering
ll. Predictive DM Techniques

— Decision Tree learning V. Relational Data Mining
- Bayesian classifier — RDM and Inductive Logic
— Classification rule learning Programming

— Propositionalization
— Semantic data mining

— Classifier Evaluation

lll. Regression
VI. Advanced Topics
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Part V:
Relational Data Mining

) What is RDM

* Propositionalization techniques
« Semantic Data Mining




188

Relational Data Mining
(Inductive Logic Programming) task

customer
ID [Zip |8 [Som [A]CI [Re .
/ x|t jcome Befub |5 knowledge discovery
/ 3478(34677|m |si [60-70|32|me [nr from data
3479(43666/f |ma|80-90[45|nm|re
/ order . ..

e [ T [ ficae: Relational Data Mining
3478 [2140267(12  \ |regular |cash
3478 3446778|12 express [check
3478 472838617 regular |check
3479 323344417 xpress |credit
3479 |3475886[12 kig'ula.r credit mOde|, patterns,

store

Store ID|Size [Type Location

12 small (franchise|city
17 large |indep  |rural

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical
facts, a graph, ...
Find: a classification model, a set of interesting patterns



Relational data mining

ILP, relational learning, —
relational data mining AR

347834677 m |si |60-70
45|nm|re

— Learning from complex s o W
multi-relational data —

Customer [Order [Store [Delivery [Paymt
D 1D D\ [Mode = [Mode

A [C] [Re
Befub [P

T8 214026712 regular |cash
3478 3446778(12 express |check

79 3233444|17 xpress  |credit
3479 347588612 gular |credit

478 472838617 g;g‘ular check

stare

Store ID(Size |[Type  |Location

12 small |franchise|city
7 large indep  |rural

Relational representation of customers, orders and stores.



Relational data mining

* |LP, relational learning, e
relational data mining A

347834677 m |si |60-70
45|nm|re

— Learning from complex e

TEE

multi-relational data SRR  A——

— Learning from complex

structured data: e.qg.,
molecules and their

T8 214026712 regular |cash
3478 3446778(12 express |check
3478 472838617 g;gular check

79 3233444|17 xpress  |credit
3479 347588612 ar |credit

stare

Store ID(Size |[Type  |Location

biochemical properties

12 small | franchise|ci
17 large indep  |rur

Relational representation of customers, orders and stores.
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Sample problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST

|k
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RDM knowledge representation
(database)

LOAD_TABLE TRAIN_TABLE
LOAD CAR OBJECT NUMBER TRAIN EASTBOUND
11 cl circle 1 tl TRUE
12 c2 hexagon 1 t2 TRUE
13 c3 triangle 1
14 c4  rectangle 3 t6 FAL SE

T
CAR "TRAIN  SHAPE LENGTH ROOF WHEELS
cl t1 rectangle short none 2
c2 tl rectangle long none 3
c3 tl rectangle short peaked 2
c4 tl rectangle long none 2
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ER diagram for East-West trains




Relational data mining

« Relational data mining is characterized by using
background knowledge (domain knowledge) in the
data mining process

« Selected approaches:

— Inductive logic programming - ILP (Muggleton, 1991;
LavraC & Dzeroski 1994), ...

— Relational learning (Quinlan,1993)

— Learning in DL (Lisi 2004), ...

— Relational Data Mining (Dzeroski & Lavrac, 2001),

— Statistical relational learning (Domingos, De Raedt...)
— Propositionalization approach to RDM (Lavrac et al.)



Our early work:
Semantic subgroup discovery

* Propositionalization approach: Using relational

subgroup discovery in the SDM context

— General purpose system RSD for Relational
Subgroup Discovery, using a propositionalization
approach to relational data mining

— Applied to semantic data mining in a biomedical

application by using the Gene Ontology as background
knowledge in analyzing microarray data

(Zelezny and Lavra¢, MLJ 2006)
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Part V:
Relational Data Mining

* What is RDM
j|> Propositionalization techniques
« Semantic Data Mining




Relational Data Mining through

Propositionalization

Step 1

Propositionalization

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D D} |Mode = |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  [rural

Relational representation of customers, orders and stores.
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Relational Data Mining through

Propositionalization

Step 1

Propositionalization

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D Dy [Mode ™ |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  (rural

Relational representation of customers, orders and stores.

1. constructing
relational features

2. constructing a
propositional table

198

fl | f2 | £3 | f4 | £5 | £6 fn
gl (ool jryofoj1jo0j1)1
gzl o1 (1o |1 j1ryofojoj1y110
gg| o (1 (1)1 opocyrf1rjojo|0og1
0 T 5 1 O I I A 1
gh| 1 (110 |joqj1yofL1|1)o|1 0
gbyo (o1 j1rojoyofijojojog1
740 1 A A 1 A
L2 I 1 I I IR U A
v 1 I




Relational Data Mining through

Propositionalization

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D D} |Mode = |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  (rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

Step 2

Data Mining

fl | f2 | £3 |4 | £5 | f6 fn
gl (oo |11 j1rfo 01401 (1
2 O T A O 1 v I A I A
gg| o (111 (opofry1rjoy0|n0f1
I 5 1 O A I A A
gh| 1 (110 foqj1fo 1|10l
gl o (o1 1 (ojofoprjoyoj0fl
4 A I 1 A I A I B
L0 I A 1 A I A RV A
g1 (o111 jof1rpojoy1j0f1
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fl | f2 | £3 | f4 | £5 | £6 fn
gl (ool jryofoj1jo0j1)1
gzl o1 (1o |1 j1ryofojoj1y110
gg| o (1 (1)1 opocyrf1rjojo|0og1
0 T 5 1 O I I A 1
gh| 1 (110 |joqj1yofL1|1)o|1 0
gbyo (o1 j1rojoyofijojojog1
740 1 A A 1 A
L2 I 1 I I IR U A
v 1 I

>

model, patterns, ...
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Relational Data Mining through
Propositionalization

customer
D |Zip |3 |80 In_|A|CI |Re
/ ex|St |come |ge|yh [sP
3478|34677|m |si |60-70|32|me |nr
3479(43666(f |ma|80-90/45nm|re
order
Clstomer [Qrder |Store |Delivery |Paymt
D D D} |Mode = |Mode
3478 214026712 regular |cash
3478 344677812 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  |credit
3479 3475886(12 gular |credit
store
Store ID[Size [Type [Location
12 small |franchige |city
17 large [indep  [rural

Relational representation of customers, orders and stores.

Step 1

Propositionalization

Step 2

Data Mining

fl | f2 | £3 |4 | £5 | f6 fn
gl (oo |11 j1rfo 01401 (1
2 O T A O 1 v I A I A
gg| o (111 (opofry1rjoy0|n0f1
I 5 1 O A I A A
gh| 1 (110 foqj1fo 1|10l
gl o (o1 1 (ojofoprjoyoj0fl
4 A I 1 A I A I B
L0 I A 1 A I A RV A
g1 (o111 jof1rpojoy1j0f1

f1 | £2 | £3 | £4 | £5 | £6 fn
gl 10 (o1 )11 y0 {01011
g2l 01 (1011 y0 {00110
T R U VI 1
gt L1 |10 {1t oo 1j1)1]0
gh |11 (1o oyl y0o (11010
L I IV I
L /2 S A I A
g |00 (oo yo o {1y )pLyoyo
gl Lyo |11t jop o010l
target(A) :-
‘Doctor’ (A), ’Italy’(A).
target (A) :-
Public’ (A), ’Gold’ (A).

target (A) :-
’Poland’ (A),

target(A) :-—
‘Germany’ (A),

target(A) :-—
‘Service’ (A),

’Deposit’(A), *Gold’(A).

’Insurance’ (A).

’Germany’ (A) .

patterns (set of rules)
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Sample ILP problem:
East-West trains

1. TRAINS GOING EAST 2. TRAINS GOING WEST
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Relational data representation

R I TRAIN_TABLE
- F‘..F‘ :{ O L._ Fm S LOAD CAR OBJECT NUMBERI BEEEE A TEOUND

11 cl circle 1 tl TRUE
2 c2  hexagon t2 TRUE

13 c3  triangle

w |

14 ¢4 rectangle

t6 FAL SE

CAR TRAIN  SHAPE LENGTH ROOF WHEELS

cl tl rectangle short none 2
c2 (9 rectangle long none 3
c3 tl rectangle short peaked 2
c4 (9 rectangle long none 2
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Propositionalization in a nutshell

rTlooo Rt TRAIN_TABLE
Lo o e Hooo HTY e e
[2 c2  hexagon 1 t2 TRUE
g m - - 3 3 triangle 1
Propositionalization task o o otae I —
Transform a multi-relational CAR TRAIN  SHAPE  LENGTH ROOF WHEELS
. cl tl rectangle  short none 2
(mUIt|p|e'tabIE) c2 tl rectangle long none 3
. c3 tl rectangle short peaked 2
representatlon to d c4 tl rectangle long none 2
propositional representation
(single table)

Proposed in ILP systems
LINUS (Lavrac et al. 1991, 1994),
1BC (Flach and Lachiche 1999), ...
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Propositionalization in a nutshell

- . N : TRAIN_TABLE
Main propositionalization step: . .. ot waos e s
first-order feature construction |, ; ... . I — I

f1(T):-hasCar(T,C),clength(C,short). TI

fZ(T):-hasCar(T,C), hasLoad(C,L), CAR TRAIN SHAPE LENGTH ROOF WHEELS
. cl tl rectangle short none 2
|OadShape(L,CII‘C|e) c2 tl rectangle long none 3 I
. c3 tl rectangle short peaked 2
f3(T) CNEETY c4 tl rectangle long none 2

Propositional learning:

t(T) « f1(T), f4(T) PIRQIPOSIITIONAIL TRAIN_TABLE
train(T) f1(T)  f2(T) £3(T)  f4(T) £5(T)
t1l t t f t t
Relational interpretation: :2 ]f : : ]f ]f
t f t f f

eastbound(T) < t4
hasShortCar(T),hasClosedCar(T).
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Part V:
Relational Data Mining

 What is RDM
* Propositionalization techniques

_> Semantic Data Mining




Semantic data mining

* |LP, relational learning,

relational data mining A =
— Learning from complex B i
multi-relational data Mutagenesis —  EepErmm
— Learning from complex £ | e
structured data: e.g., i 5;53
molecules and their N W
Store O[Size [Type  Tocation

biochemical properties
— Learning by using domain

12 small |franchise|city
7 large indep  |rural

Relational representation of customers, orders and stores.

knowledge in the form of
ontologies = semantic data
mining

G0:0009308
amine metabolism

G0:0009309
amine bio-
ynthsis

G0:0006576
biogenic amine
metabolism

G0:0006520
amino acid
metabolism

G0:0008652
amino acid @ co:00042401
biosynthesis biogenic amine synthesis



Using domain ontologies in

Semantic Data Mining
Using domain ontologies as background knowledge, e.qg.,

using the Gene Ontology (GO)

* GO Is a database of terms, describing gene sets in terms

of their
— functions (12,093)
— processes (1,812)
— components (7,459)
« Genes are annotated
to GO terms
* Terms are connected
(Is_a, part_of)
* Levels represent
terms generality

G0:0009308
amine metabolism

G0:0009309
amine bio-
ynthsis

G0:0006576
biogenic amine
metabolism

G0:0006520
amino acid
metabolism

G0:0008652

amino acid @ co:00042401
biosynthesis biogenic amine synthesis
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What is Semantic Data Mining

* Ontology-driven (semantic) data mining is an
emerging research topic

« Semantic Data Mining (SDM) - a new term
denoting:
— the new challenge of mining semantically annotated

resources, with ontologies used as background
knowledge to data mining

— approaches with which semantic data are mined
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What is Semantic Data Mining
SDI\/IN__:,tgs‘_Ig_d_efinition

[ ontologies }

target (A) :-
’Doctor’ (A), ’Italy’(4).

annotations, dSema_nt_m mt?del,
mappings ata mining | patterns
target (A) :-
Given: ’Service’ (A), ’Germany’(A).

= — = transaction data table, relational database,
[ data } text documents, Web pages, ...

= one or more domain ontologies
Find: a classification model, a set of patterns
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

Gene Ontology

12093 biological process .. . ... componeen | ke p—
1812 cellular components / L L L
7459 molecular functions T EE—— ‘ s

biopolymer metabolism catabolism macromolecule metabolism primary metabolism cellular metabolism intrinsic to membrane peptidase activity

biopolymer catabolism macromolecule catabolism protein metabolism cellular catabolism

Joint work with
lgor Trajkovski
and Filip Zelezny
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Using domain ontologies (e.g. Gene
Ontology) as background knowledge for
Data Mining

First-order features, describing

gene properties and relations e . Pl e
between genes, can be viewed 7 | |
as generalisations of individual oot prcess. ol proces -
genes




Semantic subgroup discovery with RSD

. Take ontology terms represented as logical facts in Prolog, e.qg.
component (gene2532, 'GO:0016020") .
function (gene2534, 'GO:0030554") .
process (gene2534, 'G0O:0007243") .
interaction (gene2534,gened803) .

. Automatically generate generalized relational features:

f(2,A) :—component (A, 'GO:0016020") .
f(7,A):—-function (A, 'GO:0030554") .

(ll A) :—process (A, 'GO:0007243") .

£

224 ,A) :— interaction(A,B), function(B,'GO:0016787"),
component (B, 'GO:0043231") .

. Propositionalization: Determine truth values of features

. Learn rules by a subgroup discovery algorithm CN2-SD



Step 2: RSD feature construction

Construction of first order features, with support > min_support

f(7,A):-function(A,'G0:0046872").
f(8,A):-function(A,'G0O:0004871").
f(11,A):-process(A,'G0O:0007165").
f(14,A):-process(A,'G0O:0044267").
f(15,A):-process(A,'G0O:0050874").
f(20,A):-function(A,'G0O:0004871"), process(A,'G0O:0050874").
f(26,A):-component(A,'G0:0016021".
f(29,A):- function(A,'G0:0046872'), component(A,'G0O:0016020"
f(122,A):-interaction(A,B),function(B,'G0:0004872").
_—" f(223,A):-interaction(A,B),function(B,'G0:0004871"),
process(B,'G0O:0009613").
f(224,A):-interaction(A,B),function(B,'G0O:0016787"),
component(B,'G0O:0043231").

existential




Step 3: RSD Propositionalization

diffexp g1 (gene64499) random gl (gene7443)
diffexp g2 (gene2534) random g2 (gene9221)
diffexp g3 (gene5199) random g3 (gene2339)
diffexp g4 (genel052) random g4 (gene9657)
diffexp g5 (gene6036) random g5 (genel9679)
f1 | £2 | £3 | £4 | £5 | f£6 fn

gl 1 0 0 1 1 1 0 0 1 0 1 1
g2 | 0 1 1 0 1 1 0 0 0 1 1 0
g3 | 0 1 1 1 0 0 1 1 0 0 0 1
g4 1 1 1 0 1 1 0 0 1 1 1 0
g5 | 1 1 1 0 0 1 0 1 1 0 1 0
gl 0 0 1 1 0 0 0 1 0 0 0 1
g2 1 1 0 0 1 1 0 1 0 1 1 1
g3 0 0 0 0 1 0 0 1 1 1 0 0
g4 1 0 1 1 1 0 1 0 0 1 0 1




Step 4: RSD rule construction with CN2-SD

—
£1 | £2 | £3| £4 | £5 | £6 fn
gtl1lolo]lz1]|1]1 1
g2lol1|l12]o]|1]1 0
g3lol1|l12]l2]|0]o0 1
ga|l 1|1 l12]o]|1]1 0
g5 1 l1l12]o0o]|o0]1 0
gtlo]Jol1]lz1]o0]o0 1
g2l 1 l1lo]lo|1]1 1
g3lolololo]|1]o0 0
ga|l 1ol 2122|1210 1

Over-
expressed
IF
f2 and f3
[4,0]

diffexp(A) :- interaction(A,B) & function(B,'G0O:0004871")
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0 1.0 1.0

1.0 ;0 1.0 49

1.0 1.0 1.0 1.0

1.0
1.0 1.0
1.0

1.0 1.0
1.0 .
1.0 1.0

1.0
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0
1.0

1.0

1.0 .
1.0 1.0

1.0

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes
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Subgroup Discovery

diff. exp. genes Not diff. exp. genes

1.0 1.0 1.0

1.0 39 1.0 1.0

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0 1.0

1.0
1.0 .
1.0 10

1.0

RSD naturally uses gene weights in its procedure for repetitive
subgroup generation, via its heuristic rule evaluation: weighted
relative accuracy
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RSD Lessons learned

Efficient propositionalization can be applied to
Individual-centered, multi-instance learning problems:

— one free global variable (denoting an individual, e.g. molecule M)

— one or more structural predicates: (e.g. has_atom(M,A)), each
Introducing a new existential local variable (e.g. atom A), using either the
global variable (M) or a local variable introduced by other structural
predicates (A)

— one or more utility predicates defining properties of individuals or their
parts, assigning values to variables

featurel21(M):- hasAtom(M,A), atomType(A,21)
feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)
mutagenic(M):- feature121(M), feature235(M)
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SEGS: using RSD approach

 The SEGS approach enables to discover new
medical knowledge from the combination of gene
expression data with public gene annotation
databases

 The SEGS approach proved effective in several
biomedical applications (JBI 2008, ...)

* The work on semantic data mining - using ontologies as
background knowledge for subgroup discqvery with SEGS - was
done in collaboration with I.Trajkovski, F. Zelezny and J. Tolar

* Recent work: Semantic subgroup discovery
Implemented in Oranged4WS



Semantic subgroup discovery with

SEGS
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« SEGS workflow is implemented in the Oranged4dWS

data mining environment

GO

KEGG

ENTREZ

e N F

Microarray
Data | genes

Ranking of
- —

Construction
of gene sets

" Fisher

[

"™ GSEA

,| Enriched
gene sets

PAGE

 SEGS is also implemented also as a Web

applications

(Trajkovski et al., IEEE TSMC 2008, Trajkovski et al., JBI 2008)



From SEGS to SDM-SEGS:
Generalizing SEGS

« SDM-SEGS: a general semantic data mining

ONT.1  ONI.2 ONT. 3

BINARY CLASS

GO || KEGG || ENTREZ

e ol

LABELED
Microarray Ranking-of Construction
Data genes of gene sets

Fisher

[

RULES

. >

>

A

GSEA

Enriched
gene sets

PAGE

RULES

« Discovers subgroups both for ranked and
labeled data

« EXploits input ontologies in OWL format

 |s also implemented in Orange4WS

222
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Relational Data Mining in Orange4WsS

« Service for propositionalization through efficient

first-order feature construction (Zelezny and Lavrac,
MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21)
f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
* subgroup discovery using CN2-SD
mutaaenic(M) « feature121(M), feature235(M)

Mutagenesis

<
lecule 3
— \&

' g } — / View table
Load data ‘,;, L‘_ 7_,7\"' \_{ = * \ g :..‘, ﬂ&,/ \
2l /" Propositionalization Raftk attributes  Serialize ExampleTable  APriori-SD View rules
Load backgr. knowledge N e Ga ) ——)
- * Z }‘ g g ”
Serialize ExampleTable2 ~ CN2-SD
@} 223




Semantic Data Mining in Orange4WsS

* A special purpose Semantic Data Mining algorithm SEGS

— discovers interesting gene group descriptions as

conjunctions of ontology concepts from GO, KEGG and
Entrez

— Integrates public gene annotation data through relational
features

— SEGS algorithm (Trajkovski, Zelezny, Lavra¢ and Tolar, JBI
2008) is available in Orange4WS

* Recent developments:

— Special purpose SDM algorithms: RSD, SDM-SEGS, SDM-
Aleph, Hedwig

— Implemented in web based DM platform ClowdFlows



Third Generation Data Mining Platform:
ClowdFlows

 ClowdFlows - browsed-based DM platform for data mining in
the cloud and workflow sharing on the web (Kranjc et al. 2012)

« RSD, SDM-SEGS, SDM-Aleph, Hedwig are available
as ingredients of elaborate data mining workflows in
ClowdFlows

« Example workflow: Propositionalization with RSD available in
ClowdFlows at http://clowdflows.org/workflow/611/

o
str 2 \ ) | J48

Display Features J48
@ ©

- arf SK} ins i . :
MySQL Connect o = Ins Print Tree D15pLg Tree
Database To RSD pos rul Arff to Weka Data Build Classifier ©
@ Table @

ne
con “ cxt g @
set

Database Context
®© RSD



Sample biomedical application of Hedwig

e Semantic subgroup discovery and semantic
explanation of subgroups on breast cancer data
(Vavpeti¢ et al., JIIS 2014)

£
-

* The workflow, implemented in ClowdFlows, Is
avallable at http://clowdflows.org/workflow/1283/



Semantic Data Mining
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« Semantic subgroup discovery (Vavpetic et al., 2012)

Knowledge Discovery

/J Data Mining]

Relational Subgroup Discovery

\

Semantic Web

Ontologies
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Course Qutline

l. Introduction I\VV. Descriptive DM
— Data Mining and KDD process — Predictive vs. descriptive induction
— Introduction to Data Mining — Subgroup discovery
— Data Mining platforms — Association rule learning

Hierarchical clustering
ll. Predictive DM Techniques

— Decision Tree learning V. Relational Data Mining
- Bayesian classifier — RDM and Inductive Logic
— Classification rule learning Programming

— Propositionalization
— Semantic data mining

— Classifier Evaluation

lll. Regression
VI. Advanced Topics



Advanced Topics I.

j>ClowdFlows Data Mining Platform
(PhD of Janez Kranjc, demo Martin Znidarsic)

 Qutlier detection with NoiseRank
(PhD of Borut Sluban)




Open data science platform ClowdFlows

®m  Third generation platform for the creation and executlon
of complex data mining workflows @

= Algorithms as web services (in the cloud)
= No need for platform installation

=  Workflows are openly accessible and executable -
from any modern web browser by a web site klick
http://clowdflows.org/workflow/1283/

‘3,'0
L !



ClowdFlows platform

IS service oriented (DM algorithms as web
services)

Includes functionality of other DM platforms,
e.g. WEKA algorithms, implemented as Web
services

Includes new functionality, e.qg. relational data
mining, semantic data mining, big data
analytics, text mining, ...

enables simplified construction of Web
services from available algorithms

runs in any browser, enabling workflow
construction and sharing on the web

user-friendly HCI: canvas for workflow
construction

© Hello

ELocal services

"D Big data

"D Bio3araph

"D Decision Support
& (I Files

EEip

“-P Aleph

-"'11-? RSD

ol SDM-Aleph
ni‘ SDM-SEGS

“ILP Treeliker
“ILP Wardification
B3 Integers

B0 MUSE

BT pysaL

BTN

"[:I Moise Handling
B3 Objects
B Qrange

"Cl ScikitAlgorithms
"D Streaming

"Cl Strings

"D Testing

E-CTWeka
"[:l Subprocess widgets
E-CIWSDL Imports

Import webservice

"D Yisual performance

LR SDM-SEGS Rule Viewer

"D Performance Evaluation

evaluation (WiperChart



SDM in ClowdFlows

e Semantic subgroup discovery and semantic explanation of
subgroups on breast cancer data (Vavpetic et al., JIIS 2014)

Y
1o . ' f vo*
. .,
-—‘ »
Select subgroups
| QLR
5 - B 1‘
- [
ip" l
Load Dataset Dyery dats with " KAy
auns v
Soup Table from s=ts of
Ameles
o
- -
oad mipping Laad anmalogy DM Aleph
- .
Load ontolosy Loa L
]

* The workflow, implemented in ClowdFlows, is available for
sharing at http://clowdflows.org/workflow/1283/



Propositionalization and Wordification
ClowdFlows

Discretization
k‘ = cor h ot Database To RS0

MySOL Connect  Database Context

L

Database To aleph

iEr ﬂ dat
ut ol
Dratabase To
Treeliker

at Ig dat

odt ILP arf
o str

ot
ot ::TL_' |
waordification
J4B
3 Ig fr
b art
lrrr
pos r
airf
e
f
arf
RS0
f
P |!.P Tl Cross validation
ey o
5]
+
aleph

RedF

VIPER: Visual
Performance
Evaluation

o | [ual

Performance Chart

Evaluation Results
Lo Table

Wordification and propositionalization
algorithms comparison, available at
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Analysis of Big data in ClowdFlows

« Big data analysis in real time

« Example: Semantic graph construction from a stream of web
news http://clowdflows.org/workflow/1729/.

iff f‘h\ f 3 -
url url ; txt str tri tri - tri st & & st tri
TLDR w _./\ %

RSS Reader Summarize news Triplet Extraction WordNet lemmatizer  Sliding Window Streaming triplet
article on triplets ~ graph

« Example: news monitoring by visualization
of graph constructed from sports news == T Al

(CNN RSS feeds) o= s e

http://clowdflows.org/streams/data/31/15524/ e vl



Analysis of Big data in ClowdFlows

« Analysis of positive/negative sentiment in tweets in
real time http://clowdflows.org/workflow/1041/.

&n It () ltw =
Ist JX Ist w L%ﬁ LJ%
= Sliding Window Display tweets Positive tweets
ll : i ltw ltw Y ltw ltw |‘ﬁ ltw
Twitter Filter tweets by Tweet Sentiment Ist ‘-':-;; Ist
language Analysis ltw | 30
ltw ( ptw Sliding Window
; Positive Word Cloud
W

s &3 s r=y
negative tweets N ltw LJ&

Negative tweets

ltw @

Negative word cloud



Advanced Topics I.

* ClowdFlows Data Mining Platform
(PhD of Janez Kranjc, demo Martin Znidarsic)

j>0ut ier detection with NoiseRank
(PhD of Borut Sluban)







Noise and outliers

— Animals of white color

« EXxceptions or Outliers

— Herd of sheep




Noise and outliers

« Data In nature
— follows certain patters
— adheres to the laws of physics
— IS not random

« Build models to Identify the “laws” of the datze
Patterns and rules = ¥ -
= “laws” of the data g9 F = ]

* Errors and outliers
— Do NOT obey the laws (models)




Noise and outlier detection

* Noise in data negatively affect
data mining results. (Zhu et al., 2004)

» False medical diagnosis (classification
noise) can have serious consequences
(Gamberger et al. 2003)

* Qutlier detection proved to be effective In
detection of network intrusion and bank fraud.
(Aggarwal and Yu, 2001)



Detecting noise and outliers

— Great deviations from expected values”™

— Hard to describe
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Classification noise filtering

« Model the data
« What can’t be modeled is considered noise



Classification noise filtering

« Model the data, using any learning algorithm
« What can’t be modeled is considered noise

Classified
as A
Classified n(A)
as B

n(B)




Ensembles of classifiers




Ensembles of classifiers

« Combine predictions of various models
* To overcome weaknesses or bias of individual models

« Averaging, Majority voting, Consensus voting, Ranking, etc.



NoiseRank: Ensemble-based noise and
outlier detection

Misclassified document
detection by an
ensemble of diverse
classifiers (e.g., Naive
Bayes, Random Forest,
SVM, ... classifiers)

Ranking of misclassified
documents by “voting”
of classifiers

* MoiseRank

EET)

Detect noise with an enseble of;
Classification Filters

Saturation filters (time demanding)

HARF

R s (RF1
R s (RF5
.

Moise Ranking Results

Send Selected




NoiseRank Workflows

Classification Filter
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Data Table Classification Filter
Information

ds ' noi
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Load dataset to
Orange Data Table
©

oL

Data Table
Information

NoiseRank Workflows

o
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W

[l

Irn . noi =

= ds

Classification Filter
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o5
s Irn . noi ==
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NoiseRank: Ranked List of Nois
Instances/Outliers

Select the data instances that you want to examine in more detail. Select all l Select none
1. non-CHD 51 Natic;’:aj;ey]es (;F;f;e] SVM (Orange) Eéii;ii’:i SF =
2. CHD 229 (Oi’isrf;e] 5VM (Orange) E;iz;;iﬁs: 5F
3. CHD i] 5VM (Orange) ;—I:i;g:i SF
4. non-CHD Bl oo J| Feeoen s
5. non-CHD 39 Na{jg;ea:ga;es SVM (Orange) I;;iz;ii_’:i .
6. CHD 176 Natic;’:aj;ey]es SYM (Orange) Eéii;ii’:i
7. CHD 194 Natigreaj;ey]es SVM (Orange) ?;izgéii’:i
8. CHD 213 (Oiisf;el SVM (Orange) Eéii;ii’:i
] 3. CHD 42 SVM (Orange) I ’g;‘iz;ii’ﬁ I i
]| 10. non-CHD 120 Natic;’:aj;ey]es I 5V (Ozrange) I
B 1. noncr 164 Neire Bayes | JEso |
| 12. non-CHD 173 (Oi'is:;e] I SF I
]| 13. CHD 196 Haive Bayes I SVM (Orange) I
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H 14, non-CHD 226 (oiisf;e] I SE I
[l 15. non-CHD 30 5VM (Orange) I




Try it out

 NoiseRank
— http://clowdflows.org/workflow/115/

* Clowdflows:
— Noise Handling
— Orange, Weka classification
— Performance evaluation

* Noise filtering using ensembles (with performance evaluation)
— http://clowdflows.org/workflow/245/



http://clowdflows.org/workflow/115/
http://clowdflows.org/workflow/245/

Noise filtering using ensembles (with
performance evaluation)
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http://clowdflows.org/workflow/245/

Advanced Topics Il.

:'>Text mining: An introduction
« Document clustering and outlier detection
« Wordification approach to relational data mining



Background: Data mining

Person Age Spect. presc. Astigm. Tear prod. Lenses
o1 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

knowledge discovery
from data

Data Mining> ﬁ.

model, patterns, clusters,

Given: transaction data table, a set of text documents, ...
Find: a classification model, a set of interesting patterns



Data mining: Task reformulation

Person Young Myope Astigm. euced tea_ Lenses
o1 1 1 0 1 NO
02 1 1 0 0 YES
03 1 1 1 1 NO
04 1 1 1 0 YES
05 1 0 0 1 NO

06-013
014 0 0 0 0 YES
015 0 0 1 1 NO
016 0 0 1 0 NO
017 0 1 0 1 NO
018 0 1 0 0 NO

019-023 .
024 0 0 1 0 NO

Binary features and class values



Text mining:
Words/terms as binary features

Document Word1l Word?2 WordN Class
dl 1 1 0 1 NO
d2 1 1 0 0) YES
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO

d6-d13
d14 0 0 0 0 YES
di5 0 0 1 1 NO
d16 0) 0 1 0 NO
d17 0) 1 0 1 NO
d18 0 1 0 0 NO

d19-d23
d24 0 0 1 0 NO

Instances = documents
Words and terms = Binary features



Text Mining from unlabeled data

Document  Word1l Word2 ... WordN
dl 1 1 0 1
d2 1 1 0 0
d3 1 1 1 1
d4 1 1 1 0
d5 1 0 0 1

d6-d13
di14 0 0 0 0
di5 0 0 1 1
d16 0 0 1 0
di17 0 1 0 1
di8 0 1 0 0

d19-d23 ...
d24 0 0 1 0

Unlabeled data - clustering: grouping of similar instances
- association rule learning



Text mining

Document Wordl Word?2 WordN Class
Step1 di 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
. d4 1 1 1 0 YES
BoW vector construction 45 1 0 0 1 .
d6-d13
d14 0 0 0 0 YES
dis 0 0 1 1 NO
di6 0 0 1 0 NO
1. BoW features 417 0 1 0 1 NO
construction pam |
2. Table of BoW vectors d24 0 0 1 0 o
construction
Document Wordl Word2 WordN Class
di 1 1 0 1 NO
d2 1 1 0 0 YES Stepz
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO o
d6-d13 Data |\/||n|ng
di4 0 0 0 0 YES
dis 0 0 1 1 NO
die 0 0 1 0 NO
di7 0 1 0 1 NO
di8 0 1 0 0 NO
d19-d23
o4 5 5 ; 5 o model, patterns, clusters,



Text Mining

* Feature construction
— StopWords elimination
— Stemming or lemmatization
— Term construction by frequent N-Grams construction
— Terms obtained from thesaurus (e.g., WordNet)

e BoW vector construction

* Mining of BoW vector table
— Feature selection, Document similarity computation
— Text mining: Categorization, Clustering, Summarization,



Stemming and Lemmatization

 Different forms of the same word usually

problematic for text data analysis

— because they have different spelling and similar meaning (e.qg.
learns, learned, learning,...)

— usually treated as completely unrelated words
« Stemming Is a process of transforming a word Into
Its stem
— cutting off a suffix (eg., smejala -> smej)
 Lemmatization is a process of transforming a
word into 1ts normalized form

— replacing the word, most often replacing a suffix (eg.,
smejala -> smejati)



Bag-of-Words document

representation

|I"'- e a—— -
Journal of Artificial Intellipence
TATR is arefereed journal, cover £as
of Artificial Intelli is distributed

e MtamWnlmn&‘\_—

of the jowrndl is also published by IMorgan
Eaufrnan....

free of charge oy

L R s == i == R - T VL R

learning
journal
intelligence
text

agent

internet
webwatcher

perls

volume




Word weighting

 In bag-of-words representation each word is represented
as a separate variable having numeric weight.

* The most popular weighting schema is normalized word
frequency TFIDF:
N

tfidf (w) = tf. log( ” (W))

— Tf(w) — term frequency (number of word occurrences in a

document)

— Df(w) — document ffequency (number of docyyments containing the
word)

— N — number of all documents

— Tfidf(w) — relative importance of the word in the document

The word is more important if it appears The word is more important if it
several times in a target document appears in less documents



Cosine similarity between
document vectors

« Each document D is represented as a vector of
TF-IDF weights

« Similarity between two vectors is estimated by the
similarity between their vector representations
(cosine of the angle between the two vectors):

2 Xy,
I

Similarity (D,,D,) =

R



Advanced Topics Il.

« Text mining: An introduction
jl>Document clustering and outlier detection
« Wordification approach to relational data mining



Document clustering

Clustering Is a process of finding natural groups in
data in a unsupervised way (no class labels pre-
assigned to documents)

Document similarity is used

Most popular clustering methods:
— K-Means clustering

— Agglomerative hierarchical clustering
— EM (Gaussian Mixture)



Document clustering with OntoGen
ontogen.ijs.sl

Topic ldentification

Domain

Slide adapted from D. Mladenié, JSI



Using OntoGen for clustering
PubMed articles on autism

Work by
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http://www.ontogen.si/

K-Means clustering in OntoGen

OntoGen uses k-Means clustering for semi-automated
topic ontology construction

* Given:
— set of documents (eg., word-vectors with TFIDF),
— distance measure (eg., cosine similarity)
— K - number of groups
* For each group initialize its centroid with a random
document
* While not converging

— each document is assigned to the nearest group
(represented by its centroid)

— for each group calculate new centroid (group mass point,
average document in the group)



Detecting outlier documents

« By classification noise detection on a domain
pair dataset, assuming two separate document

corpora A and C

Classitied
as A

Classified
as C



Outlier detection for cross-domain
knowledge discovery
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Outlier documents
are bolded for the
user to easily spot
them.

Our research
has shown that
most domain
bridging terms
appear in outlier

documents.
(Lavrac, Sluban,
Grc¢ar, Jursi¢ 2010)



Using OntoGen for outlier
document identification

Qutlier Identification

Text corpus

Concept A

Concept C’

Slide adapted from D. Mladenié, JSI



NoiseRank: Ensemble-based noise
and outlier detection

* Misclassified document —— )
detection by an
ensemble of diverse B
classifiers (e.g., Naive
Bayes, Random Forest,
SVM, ... classifiers)

* Ranking of misclassified | —
dOCU men‘ts by “Votlng” Noise Ranking Results
of classifiers

HARF

Send Selected




NoiseRank on news articles

Articles on Kenyan elections: local vs. Western media

Eayes RF100 RFS00 SVM
Eayes RF100 RFS00 SVM

__EBayes RF100 RFS00 SVM

__EBayes RF100 RF500 8VM

__Bayes RF100 RF500 8VM

__Bayes RF100 RF500 8VM

__EBayes RF100 RFS00 SVM

__EBayes RF100 RFS00 SVM

__RFi100 RFS00 SVM SVMEasy

__EBayes RF500 SVM SVMEasy

__RF100 RFS00 SVM SVMEasy

__EBayes RFS00 SVM SVMEasy

__EBayes RF100 RFS00 SVM

__RF100 RFS00 SVM SVMEasy

__EBayes SVM SVMEasy _

__RF100 RFS00  Satrilt

__RF100 RF500 SVM

__Bayes RF500 5VM

__Bayes RF100 5VM

__RF100 RF500__ SVMEasy_

SVMEasy
SVMEasy
SVMEasy _
SVMEasy
SVMEasy
SatFilt
SVMEasy



NoiseRank on news articles

« Article 352: Out of topic
The article was later indeed
removed from the corpus
used for further linguistic
analysis, since it is not
about Kenya(ns) or the
socio-political climate but
about British tourists or
expatriates’ misfortune.

 Article 173: Guest

journalist

Wrongly classified because it
could be regarded as a
“Western article” among the
local Kenyan press. The
author does not have the
cultural sensitivity or does not
follow the editorial guidelines
requiring to be careful when
mentioning words like tribe in
negative contexts. One could
even say that he has a kind
of “Western” writing style.



Advanced Topics lll.

« Text mining: An introduction
« Document clustering and outlier
:'>Wordification approach to relational data mining



Propositionaization through Wordification:
Motivation

 Develop a RDM technique inspired by text
mining

« Using a large number of simple, easy to
understand features (words)

* Improved scalability, handling large datasets

* Used as a preprocessing step to propositional
learners



Wordification Methodology

 Transform a relational database to a document
Corpus

* For each individual (row) in the main table, concatenate
words generated for the main table with words generated
for the other tables, linked through external keys

—_—

Feature vector

T —

—t

E

Feature vector |

Feature vector |

Feature vector

d;: .

RN




Text mining: Words/terms as binary features

Document Word1l Word?2 WordN Class
dl 1 1 0 1 NO
d2 1 1 0 0) YES
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO

d6-d13
d14 0 0 0 0 YES
di5 0 0 1 1 NO
d16 0) 0 1 0 NO
d17 0) 1 0 1 NO
d18 0 1 0 0 NO

d19-d23
d24 0 0 1 0 NO

Instances = documents
Words and terms = Binary features



Text mining

Document Wordl Word?2 WordN Class
Step1 di 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
. d4 1 1 1 0 YES
BoW vector construction 45 1 0 0 1 .
d6-d13
d14 0 0 0 0 YES
dis 0 0 1 1 NO
di6 0 0 1 0 NO
1. BoW features 417 0 1 0 1 NO
construction pam |
2. Table of BoW vectors d24 0 0 1 0 o
construction
Document Wordl Word2 WordN Class
di 1 1 0 1 NO
d2 1 1 0 0 YES Stepz
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO o
d6-d13 Data |\/||n|ng
di4 0 0 0 0 YES
dis 0 0 1 1 NO
die 0 0 1 0 NO
di7 0 1 0 1 NO
di8 0 1 0 0 NO
d19-d23
o4 5 5 ; 5 o model, patterns, clusters,



Wordification Methodology

One Iindividual of the main data table in the
relational database ~ one text document

Features (attribute values) ~ the words of this
document

Individual words (called word-items or witems)
are constructed as combinations of:

‘table namel|_|attribute name|_{value]

n-grams are constructed to model feature
dependencies:

witemq |_|witems|_ ... _|lwitem,,]



Wordification Methodology

 Transform a relational database to a document
COIpus

* Construct BoW vectors with TF-IDF weights on
words

(optional: Perform feature selection)

* Apply text mining or propositional learning on BoW
table



Wordification

CAR
TRAIN carlD  shape roof wheels train
trainlD  eastbound cll rectangle none 2 tl
t1 east cl2 rectangle peaked 3 tl
tS west ¢Sl rectangle none 2 t5
c32 hexagon  flat 2 tS

t1: [car_roof none, car_shape_ rectangle, car wheels 2,
car_roof none_ car_shape rectangle,

car_roof none_car wheels 2,

car_shape rectangle car wheels 2,

car_roof peaked, car_shape_rectangle,

car_wheels_3, car_roof peaked car shape rectangle,
car_roof peaked car wheels 3,

car_shape rectangle car wheels 3], east



Wordification

t1: [car_roof _none, car_shape rectangle, car_wheels 2,

car_roof none__ car_shape rectangle, car_roof none_ car _wheels 2,
car_shape rectangle car wheels 2, car_roof peaked, car_shape rectangle,
car_wheels_3, car_roof peaked car shape rectangle,
car_roof peaked car wheels 3, car_shape rectangle car wheels 3], east

t5: [car_roof _none, car_shape rectangle, car_wheels 2,

car_roof none__car_shape rectangle, car_roof none_ car _wheels 2,
car_shape rectangle car wheels 2, car_roof flat, car shape hexagon,
car_wheels_2, car_roof flat car _shape_ hexagon,
car_roof flat car wheels 2, car_shape hexagon_ _car wheels 2], west

TF-IDF calculation for BoW vector construction:

car_shape car_roof car_wheels_3 car_roof_peaked_ car_shape_rectangle class
_rectangle peaked car_shape _rectangle _car_wheels_3
tl | 0.000 0.693 0.693 0.693 0.693 east

5 | 0.000 0.000 0.000 0.000 0.000

weslt



TF-IDF weights

* No explicit use of existential variables In
features, TF-IDF instead

* The weight of a word indicates how relevant is
the feature for the given individual

 The TF-IDF weights can then be used either for
filtering words with low importance or for using
them directly by a propositional learner (e.g. J48)




Experiments

« Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

e Results (using J48 for propositional learning)



Experiments

« Cross-validation experiments on 8 relational
datasets: Trains (In two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

« Results (using J48 for propositional learning)

— first applying Friedman test to rank the algorithms,

— then post-hoc test Nemenyi test to compare multiple
algorithms to each other



Experiments

« Cross-validation experiments on 8 relational
datasets: Trains (in two variants),
Carcinogenesis, Mutagenensis with 42 and 188
examples, IMDB, and Financial.

e Results (using J48 for propositional learning)

MEAsurRE = CA MEASURE = RUN-TIME
CD =1.77 CD = 1.77
——— ——
4 3 2 1 4 3 2 I
I I I | I I I
Wordification (1.9) I— Wordification (1.0)
AlephFeaturize (2.5) AlephFeaturize (2.9)
RSD (2.7) RSD (3.0)
RelF (2.9) RelF (3.1)



EXxperiments

Domain Algorithm HME-Accuracy[%]  J4B-AUC  Run-time[s]
Trainz Wordification 35.00 0.51 11
without position RelF 65,00 (.65 104
RSD 65,00 (.68 0.53

AlephFeaturize T5.00 .82 0.40

Trains Wordification 05, M 0.51 12
RelF 65,00 (.62 1.06

RSD 50,00 0.53 0.47

A lephFeaturize 85.00 0.74 0.38
Mutagenesis42  Wordification 97.62 0,93 34
RelF 80,935 0.59 2.11

RSD o762 0.93 2.63

A lephFeaturize o762 0.93 2.07
Mutagenesis 188 Wordification 9574 0.90 LG5
RelF 71553 0.79 1.76

RSD 04.15 0.91 [0.10

AlephFeaturize 8723 (.88 19.27

IMDB Wordification 8434 0.79 1.23
RelF 79.52 0.73 3249

RSD 73.49 0.47 4.33

A lephFeaturize 73.49 0.47 4.96
Carcinogenesis  Wordification 6109 062 1.7%9
RelF 54.71 (.53 644

RSD 58.05 (.56 9.29

A lephFeaturize 55.32 0.49 [04.70

Financial Wordification B6.75 0.48 4.65
RelF 97.00 0.91 260.93

RSD 86.73 (.48 333.68

A lephFeaturize 86.73 (.48 325.86




Use Case: IMDB

IMDB subset: Top 250 and bottom 100 movies
Movies, actors, movie genres, directors, director genres

Wordification methodology applied
Association rules learned on BoW vector table



Use Case: IMDB

goodMovie <— director_genre_drama, movie_genre_thriller,
director_ name_AlfredHitchcock. (support: 5.38% Confidence: 100.00%)

movie_genre_drama <— goodMovie, actor_name RobertDeNiro.

(Support: 3.59% Confidence: 100.00%)

director_name_AlfredHitchcock <« actor_name_AlfredHitchcock.

(Support: 4.79% Confidence: 100.00%)

director name_StevenSpielberg <- goodMovie, movie_genre_adventure,
(Support: 1.79% Confidence: 100.00%) actor_name_TedGrossman.



Wordification implemented in ClowdFlows

* Propositionalization through wordification, available
at http://clowdflows.org/workflow/1455/
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Evaluation implemented in ClowdFlows

« Wordification and propositionalization algorithms
comparison, available at
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Summary

— Wordification methodology
— Implemented in ClowdFlows

— Allows for solving non-standard RDM tasks, including RDM
clustering, word cloud visualization, association rule
learning, topic ontology construction, outlier detection, ...
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