
Naive Bayes Classifier

Petra Kralj Novak∗

A naive Bayes classifier is a simple probabilistic classifier based on ap-
plying Bayes’ theorem with strong (naive) independence assumptions. It
assumes the conditional idependence of attribute values given the class:

P (v1, v2, ..., vn|ci) =
n∏

i=1

P (vi|ci)

Naive Bayes formula

P (ci|v1, v2, ..., vn) ∝ P (ci)
n∏

j=1

P (vj|ci)

Legend:
c1, c2, ..., ck classes
P (c1), P (c2), ..., P (ck) prior probabilities of classes
v1, v1, ..., vn attribute values
∝ is proportional to∏

product

Classifying a new instance (v1, v2, ..., vn)

Let’s say that our dataset has k classes (c1, c2, ..., ck) (target variable with k
values). The Naive Bayes classifier calculates for each class ci the conditional
probability1 of class ci given evidence (v1, v2, ..., vn)

P (ci|v1, v2, ..., vn)

according to the naive Bayes formula. It classifies the example into the class
with the highest value:

classification = argmaxci
P (ci)

n∏
j=1

P (vj|ci)

∗Petra.Kralj.Novak@ijs.si, http://kt.ijs.si/petra_kralj/dmkd.html
1a value proportional to the conditional probability
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Example

Will the spider catch an ant?

Past experiences of the spider catching ants:

Color Size Time Caught
black large day YES
white small night YES
black small day YES
red large night NO

black large night NO
white large night NO

Ant 1: Color = white, Time = night

v1 = “Color = white” = “C = w′′

v2 = “Time = night” = “T = n′′

c1 = Y ES

c2 = NO

P (C1|v1, v2) =

= P (YES|C = w, T = n)

= P (YES) · P (C = w|YES) · P (T = n|YES)

=
1

2
· 1

3
· 1

3

=
1

18

P (C2|v1, v2) =

= P (NO|C = w, T = n)

= P (NO) · P (C = w|NO) · P (T = n|NO)

=
1

2
· 1

3
· 1

=
1

6

The spider will not catch the white ant at night because P(NO| Color =
white, Time = night) > P(YES | Color = white, Time = night).
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Ant 2: Color = black, Size = large, Time = day

v1 = “Color = black” = “C = b”

v2 = “Size = large” = “S = l”

v3 = “Time = day” = “T = d”

c1 = Y ES

c2 = NO

P (C1|v1, v2, v3) =

= P (YES|C = b, S = l, T = d)

= P (YES) · P (C = b|YES) · P (S = l|YES) · P (T = d|YES)

=
1

2
· 2

3
· 1

3
· 2

3

=
4

54
=

2

27

P (C2|v1, v2, v3) =

= P (NO|C = b, S = l, T = d)

= P (NO) · P (C = b|NO) · P (S = l|NO) · P (T = d|NO)

=
1

2
· 1

3
· 3

3
· 0

= 0

The spider will catch the large black ant at night because p(Caught=YES
| Color = black, Size = large, Time = day) > p(Caught=NO | Color = black,
Size = large, Time = day).
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Probability estimates

The simplest way of estimating the probability of an event e from data is to
count the number of times an event occurred (|e|) and divide by the total
number of trials n. This is referred to as the relative frequency of the event.

relative frequency =
|e|
n

Such estimates are unreliable when estimated on small samples. For
example, in our spider case, P (Time = day|Class = NO) = 0/3 = 0. Is it
really impossible that a spider catches an ant during the day? Or is just that
the sample to small? In our the Naive Bayes case, even if all other evidence
was in favor of catching the ant, if it was during the day, the classifier would
consider this impossible.

We can overcome this by using the Laplace probability estimate. Laplace
estimate assumes equal prior probability of events if no evidence is given.
The more evidence it has, the more it is close to relative frequency.

Laplace estimate =
|e|+ 1

n + k

, where k is the number of all possible outcomes.
In our spider example P (Time = day|Class = NO), there are three trials

with Class = NO (n = 3), there are 0 cases where Time = day and Class =
NO (|e| = 0) and there are two possible values of the attribute Time: day
and night (k = 2).

P (Time = day|Class = NO) =
0 + 1

3 + 2
=

1
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If there were 300 cases when the spider didnt catch ants at night:

P (Time=day|Class=NO) = (0 + 1)/(300 + 2) = 1/302 = 0.003

With Laplace estimate, probabilities can never be 0.
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