

Course

- Prof. Bojan Cestnik
 Data preparation
- Prof. Nada Lavrač:
 Data mining overview
- Advanced topicsDr. Petra Kralj Novak
- Dr. Petra Kraij Nova
 Data mining basis
- Hand on Weka
- Written exam
- Reading clubs:
- Basic: Max Bramer: Principles of Data Mining (2007)
 Advanced: Charu C. Aggarwal : Data Mining: The Textbook
- Advanced: Charu C. Aggarwal : Data Mining: The T
 Prof. Dunja Mladenić
- Prof. Dunja Mlade
 Text mining

KNOWLEDGE TECHNOLOGIES

Keywords

Data Selection	Pre- processing Preprocessed Data	Transformed	a Interpr Evalu Patterns	etation/ iation Knowledge

- Data
- Attribute, example, attribute-value data, target variable, class, discretization
- Algorithms

 Decision tree induction, entropy, information gain, overfitting, Occam's razor, model pruning, narve Bayes classifier, KNN, association rules, support, confidence, numeric prediction, regression tree, model tree, heuristics vs. exhaustive search, predictive vs. descriptive DM
- Evaluation
 - Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, ROC space, AUC, error, precision, recall

Decision tree induction

Given

KNOWLEDGE

- Attribute-value data with nominal target variable
- Induce
- A decision tree and estimate its performance

Data Selection	Pre- processing for processed pata	Transformed Data	Interpreta Evaluati Patterns	tion/ on Knowledge
				1. V
KNOWLEDGE TECHNOLOGIES				ARNED 4
Lastine man				

Test set

Person	Age	Prescription	Astigmatic	Tear_Rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

Put these data away and do not look at them in the training phase!

KNOWLEDGE

Given

• Attribute-value data with nominal target variable

Induce

• A decision tree and estimate its performance

Information gain

Training set

	_					
Perso	n Age	Prescription	Astigmatic	Tear_Rate	Lenses	
P1	young	myope	no	normal	YES	
P2	young	myope	no	reduced	NO	
P4	young	hypermetrope	no	reduced	NO	
P5	young	myope	yes	normal	YES	
P6	young	myope	yes	reduced	NO	
P7	young	hypermetrope	yes	normal	YES	
P8	young	hypermetrope	yes	reduced	NO	
P10	pre-presbyopic	myope	no	reduced	NO	
P11	pre-presbyopic	hypermetrope	no	normal	YES	
P14	pre-presbyopic	myope	yes	reduced	NO	
P17	presbyopic	myope	no	normal	NO	
P18	presbyopic	myope	no	reduced	NO	
P19	presbyopic	hypermetrope	no	normal	YES	-
P20	presbyopic	hypermetrope	no	reduced	NO	
P21	presbyopic	myope	yes	normal	YES	110
P22	presbyopic	myope	yes	reduced	NO	19
P24	presbyopic	hypermetrope	yes	reduced	NO	
NATION OF						8
INOI OCIES						

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S:

- Compute the **entropy** E(S) of the set S **IF** E(S) = 0 1.
- The current set is "clean" and therefore a leaf in our tree

- The during sets 1 and 1
 IF E(S) > 0
 Compute the information gain of each attribute Gain(S, A)
 The attribute A with the highest information gain becomes the root Divide the set S into subsets S_i according to the values of A Repeat steps 1-7 on each S_i
- 8.

Test the model on the test set T

KNOWLEDGE Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106

Entropy

$$E(S) = -\sum_{c=1}^{N} p_{c} . \log_{2} p_{c}$$

Calculate the following entropies:

E(0,1) =E(1/2, 1/2) =E(1/4, 3/4) =E(1/7, 6/7) =E(6/7, 1/7) =E(0.1, 0.9) =E(0.001, 0.999) =

KNOWLEDGE

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

 Calculate the following entropies: E(0,1) = 0E(1/2, 1/2) = 1E(1/4, 3/4) = 0.81E (1/7, 6/7) = 0.59 E(6/7, 1/7) = 0.59E(0.1, 0.9) = 0.47E(0.001, 0.999) = 0.01KNOWLEDGE

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

• Calculate the following entropies: E(0,1) = 0E(1/2, 1/2) = 1E(1/4, 3/4) = 0.81E (1/7, 6/7) = 0.59 E (6/7, 1/7) = 0.59 E(0.1, 0.9) = 0.47E(0.001, 0.999) = 0.01KNOWLEDGE 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.

Entropy

$$E(S) = -\sum_{c=1}^{N} p_c .\log_2 p_c$$

 Calculate the following entropies: E(0,1) = 0

E(1/2, 1/2) = 1

E(1/4, 3/4) = 0.81E (1/7, 6/7) = 0.59

E (6/7, 1/7) = 0.59 F(0.1, 0.9) = 0.47

	(0.1,0	1.9) = 0.	47	
Е	(0.001	, 0).999)	=	0.01

	TRACTOR OF THE	
	KNOWI EI	B ÔE
TECH	UNOI OCII	De la
(IEU	INOLUGII	co 👘
	- Activities	Sec. 1942

	0.0	
	0.0 -	
	07-	
	0.6 -	• •
	0.5	
	0.5 -	•
	0.4	
	0.4	
	03-	
	0.0	
1	0.2 -	
-	0.1 -	
	0.4	
	0.	
		010203040506070809
		0.10.20.00.40.00.00.10.00.00

Entropy and information gain

Decision tree induction (ID3)

Given:

Attribute-value data with nominal target variable Divide the data into training set (S) and test set (T)

Induce a decision tree on training set S: he set S

- IF E(S) = 0
 The current
 - The current set is "clean" and therefore a leaf in our tree
- 4.
- $\begin{array}{l} \text{IF } E(S) > 0 \\ \text{Compute the information gain of each attribute Gain(S, A) } \\ \text{The attribute A with the highest information gain becomes the root} \end{array}$
- 6. 7. Divide the set S into subsets S, according to the values of A Repeat steps 1-7 on each Si

Test the model on the test set T

Cor	ifus	ion	matrix

		productod				
		Predicted positive	Predicted negative			
ual	Actual positive	ТР	FN			
act	Actual negative	FP	TN			

- · Confusion matrix is a matrix showing actual and predicted classifications
- Classification measures can be calculated from it, like classification accuracy
 - = #(correctly classified examples) / #(all examples)

= (TP+TN) / (TP+TN+FP+FN)

304	ATMONT OF		
KN	OWLEI	DGE	
TECHN	DLOGI	15	
	010000		

Actual

positive

Actual

negative

TP=3

FP=2

FN=0

TN=2

Is 71% good classification accuracy?

- Depends on the dataset!
- · Compare to the majority class classifier (ZeroR in Weka)
 - Classifies all the data in the most represented class
- In our Lenses example, the majority class is "Lenses=NO".
 - Accuracy on train set = 11/17 = 65%
 - Accuracy on test set = 4/7 = 57%
 - If we had bigger sets, these two numbers would be almost the same
- Since 71% > 57%, there is some improvement from the majority class classifier

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
- How do we compute entropy for a target variable that has three values? Lenses = $\{hard=4, soft=5, none=13\}$
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- What are the stopping criteria for building a decision tree? How would you compute the information gain for a numeric attribute?

KNOWLEDGE

Discussion

NNOLOGIES

- How much is the information gain for the "attribute" Person? How would it perform on the test set? How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13} •
- What would be the classification accuracy of our decision tree if we pruned it at the node *Astigmatic*?
- What are the stopping criteria for building a decision tree?
- How would you compute the information gain for a numeric attribute?

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set?
 → How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
 What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?

 - What are the stopping criteria for building a decision tree? How would you compute the information gain for a numeric attribute?

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set? How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13} •
- •
- → What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
 - What are the stopping criteria for building a decision tree? How would you compute the information gain for a numeric • attribute?

These two trees are equivalent

Entropy{hard=4, soft=5, none=13}=

- = E(4/22, 5/22, 13/22)
- $= -\Sigma p_i * \log_2 p_i$
- $= -4/22 * \log_2 4/22 5/22 * \log_2 5/22 13/22 * \log_2 13/22$
- = 1.38

KNOWLEDGE TECHNOLOGIES

Classification accuracy of the pruned tree

Person	Age	Prescription	Astigmatic	Tear_rate	Lenses
P3	young	hypermetrope	no	normal	YES
P9	pre-presbyopic	myope	no	normal	YES
P12	pre-presbyopic	hypermetrope	no	reduced	NO
P13	pre-presbyopic	myope	yes	normal	YES
P15	pre-presbyopic	hypermetrope	yes	normal	NO
P16	pre-presbyopic	hypermetrope	yes	reduced	NO
P23	presbyopic	hypermetrope	yes	normal	NO

	Ca = (3+2)/ (3+2+2+0) = 71%			
NO 17.0 Tear rate				
NOTAL Reduced NO Reduc		Predicted positive	Predicted negative	
YES	Actual positive	TP=3	FN=0	
KNOWLEDGE TECHNOLOGIES Last mile main	Actual negative	FP=2	TN=2	

Discussion about decision trees

- •
- How much is the information gain for the "attribute" Person? How would it perform on the test set? How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13} What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic?
- → What are the stopping criteria for building a decision tree?
- · How would you compute the information gain for a numeric attribute?

Discussion about decision trees

- How much is the information gain for the "attribute" Person? How would it perform on the test set? How do we compute entropy for a target variable that has three values? Lenses = {hard=4, soft=5, none=13}
- .
- What would be the classification accuracy of our decision tree if we pruned it at the node Astigmatic? .
- What are the stopping criteria for building a decision tree? · How would you compute the information gain for a numeric attribute?

Information gain of a numeric attribute

Stopping criteria for building a decision tree

- ID3
 - "Pure" nodes (entropy =0)
 - Out of attributes
- J48 (C4.5)
 - Minimum number of instances in a leaf constraint

Information gain of a numeric attribute

	Age	Lenses		
	67	YES		
	52	YES		
	63	NO		
	26	YES		
	65	NO		
	23	YES		
	65	NO		
	25	YES		
	26	YES		
	57	NO		
	49	NO		
	23	YES		
	39	NO		
	55	NO		
	53	NO		
	38	NO		
	67	YES		
	54	NO		
	29	YES		
	46	NO		
	44	YES		
~	32	NO		
KN CHN	39	NO		
	45	VES		

Information gain of a numeric attribute

	Aae	Lenses		Age	Lenses		Age	Lenses
ľ	67	YES	-	23	YES		23	YES
	52	YES		23	YES		23	YES
	63	NO		25	YES	Define	25	YES
	26	YES	Sort	26	YES	Denne	26	YES
	65	NO	bv	26	YES	possible	26	YES
	23	YES	Ago	29	YES	splitting	29	YES
	65	NO	Age	32	NO	nointo	32	NO
	25	YES		38	NO	points	38	NO
	26	YES		39	NO		39	NO
	57	NO		39	NO		39	NO
	49	NO		44	YES		44	YES
	23	YES		45	YES		45	YES
	39	NO		46	NO		46	NO
	55	NO		49	NO		49	NO
	53	NO		52	YES		52	YES
	38	NO		53	NO		53	NO
	67	YES		54	NO		54	NO
	54	NO		55	NO		55	NO
	29	YES		57	NO		57	NO
	46	NO		63	NO		63	NO
	44	YES		65	NO		65	NO
	32	NO		65	NO		65	NO
KN	39	NO		67	YES		67	YES
	45	VES		67	VES		67	VES

Information gain of a numeric attribute

Information gain of a numeric attribute

Information gain of a numeric attribute

Decision trees

Many possible decision trees

$$\sum_{i=0}^{k} 2^{i} (k-i) = -k + 2^{k+1} - 2$$

- k is the number of binary attributes
- Heuristic search with information gain
- Information gain is short-sighted

18/24

Trees are shortsighted (1)

- В С A xor B А
- Three attributes: A, B and C
- Target variable is a logical combination attributes A and B class = A xor B
- Attribute C is random w.r.t. the target variable

KNOWLEDGE

KNOWLEDGE

Trees are shortsighted (3)

Decision tree by ID3

• The real model behind the data

KNOWLEDGE

Overcoming shortsightedness of decision trees

Random forests

- (Breinmann & Cutler, 2001)
- A random forest is a set of decision trees
- Each tree is induced from a bootstrap sample of examples
- For each node of the tree, select among a subset of attributes
- All the trees vote for the classification
- See also ansemble learning
- ReliefF for attribute estimation (Kononenko el al., 1997)

