Data Mining and Knowledge Discovery

ICT3 Programme

2017 / 2018

Nada Lavrač

Jožef Stefan Institute Ljubljana, Slovenia

Outline

- JSI & Knowledge Technologies
- Introduction to Data Mining and KDD
 - Data Mining and KDD process
 - DM standards, tools and visualization
 - Classification of Data Mining techniques: Predictive and descriptive DM
- Selected Data Mining techniques: Advanced subgroup discovery techniques and applications
- Relation between data mining and text mining

Jožef Stefan Institute

- Jožef Stefan Institute (JSI, founded in 1949)
 - named after a distinguished physicist Jožef Stefan (1835-1893)
 - leading national research organization in natural sciences and technology (~700 researchers and students)

j = σT4

- JSI research areas
 - information and communication technologies
 - chemistry, biochemistry & nanotechnology
 - physics, nuclear technology and safety
- Jožef Stefan International Postgraduate School (IPS, founded in 2004)
 - offers MSc and PhD programs (ICT, nanotechnology, ecotechnology)
 - research oriented, basic + management courses
 - in English

Department of Knowledge Technologies

- Head: Nada Lavrač,
- **Staff:** 45 (30 researchers, 10 students, 5 tech/admin)
- Machine learning & Data mining
 - ML (decision tree and rule learning, subgroup discovery, ...)
 - Text and Web mining
 - Relational data mining inductive logic programming
 - Equation discovery

• Other research areas:

- Semantic Web and Ontologies
- Knowledge management
- Decision support
- Human language technologies

• Applications:

- Medicine, Bioinformatics, Public Health
- Ecology, Finance, ...

Selected Publications

Data Mining 2017/2018 Logistics: Course participants

Contacts: <u>http://kt.ijs.si/petra_kralj/dmkd.html</u>

- Nada Lavrač, Bojan Cestnik, Petra Kralj Novak, Martin Žnidaršič
- Petra Kralj Novak: petra.kralj.novak@ijs.si

IPS ICT3 students	Mišel Cevzar
10 ECTS Data mining and knowledge discovery Knowledge Technologies Module	Darko Dujić David Gojo Aljoša Vodopija

Course Schedule – 2017/18

Wednesday	18.10.2017	17-19h	prof. Nada Lavrač	IPS Lecture hall	
Modposday	25.10.2016	15-17h	prof. Bojan Cestnik	IPS Locture hall	
Wednesday	25.10.2010	17h-19h	dr. Petra Kralj Novak	IPS Lecture hall	
			dr. Petra Kralj Novak: Reading club Dr. Martin Žnidaršič: Reading club	IPS Lecture hall	
		15-16h	written exam (2 ECTS) - dr. Petra Kralj Novak		
		16-18h	seminar proposals topic discussion - dr. Petra Kralj Novak	IPS Lecture hall	
		15-19h	Seminars	IPS Lecture hall	
		15-19h	spare term for seminars	IPS Lecture hall	

Data Mining: PhD Credits and Coursework

- Attending lectures
- Attending reading club
- Optional: Attending ICT2 theory exercises and hands-on (intro to WEKA by dr. Petra Kralj Novak)
- Written exam (40%)
- Seminar (60%):
 - Data analysis of your own data (e.g., using WEKA for questionnaire data analysis)
 - Implementing a selected data mining workflow in the ClowdFlows data mining platform
 - … own initiative is welcome …

Data Mining: PhD Credits and coursework

Exam: Written exam (60 minutes) - Theory

Seminar: topic selection + results presentation

- One hour available for seminar topic discussion one page written proposal defining the task and the selected dataset
- Deliver written report + electronic copy (4 pages in Information Society paper format, instructions on the web)
 - Report on data analysis of own data needs to follow the CRISP-DM methodology
 - Report on DM SW development needs to include SW compatible with the ClowdFlows I/O requirements
 - Presentation of your seminar results (15 minutes each: 10 minutes presentation + 5 minutes discussion)

Outline

JSI & Knowledge Technologies

Introduction to Data Mining and KDD

- Data Mining and KDD process
- DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive and descriptive DM
- Selected Data Mining techniques: Advanced subgroup discovery techniques and applications
- Relation between data mining and text mining

Part I. Introduction

Data Mining in a Nutshell

- Data Mining and the KDD process
- DM standards and tools

What is DM

- Extraction of useful information from data: discovering relationships that have not previously been known
- The viewpoint in this course: Data Mining is the application of Machine Learning techniques to solve real-life data analysis problems

Machine Learning and Data Mining

data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	knowledge discovery
01	17	myope	no	reduced	NONE	o
O2	23	myope	no	normal	SOFT	from data
O3	22	myope	yes	reduced	NONE	
O4	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	Machine Learning
O6-O13						
O14	35	hypermetrope	no	normal	SOFT	
O15	43	hypermetrope	yes	reduced	NONE	Data Mining
O16	39	hypermetrope	yes	normal	NONE	
O17	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	madel softens
O19-O23						model, patterns
O24	56	hypermetrope	ves	normal	NONE	

data

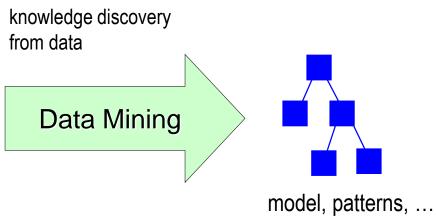
Given: class labeled data

Find: a classification model, a set of interesting patterns

Machine Learning and Data Mining

data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	k
O1	17	myope	no	reduced	NONE	
O2	23	myope	no	normal	SOFT	fr
O3	22	myope	yes	reduced	NONE	
O4	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	
O6-O13						
O14	35	hypermetrope	no	normal	SOFT	
O15	43	hypermetrope	yes	reduced	NONE	
O16	39	hypermetrope	yes	normal	NONE	
O17	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	
O19-O23						
O24	56	hypermetrope	yes	normal	NONE	

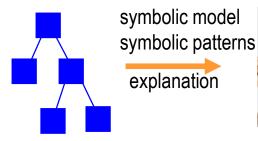


data

Given: class labeled data **Find:** a classification model, a set of interesting patterns

new unclassified instance

classified instance black box classifier no explanation



Contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013	•••				
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
O17	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023	•••		•••		
O24	56	hypermetrope	yes	normal	NONE

Pattern discovery in Contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013					
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
O17	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					
O24	56	hypermetrope	yes	normal	NONE

PATTERN

Rule:

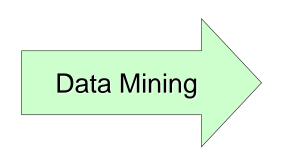
IF Tear prod. =

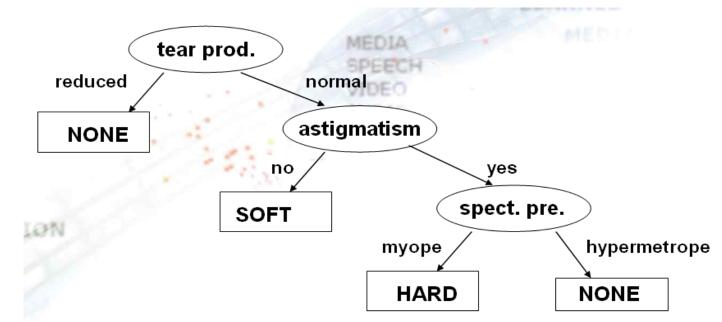
reduced

THEN Lenses = NONE

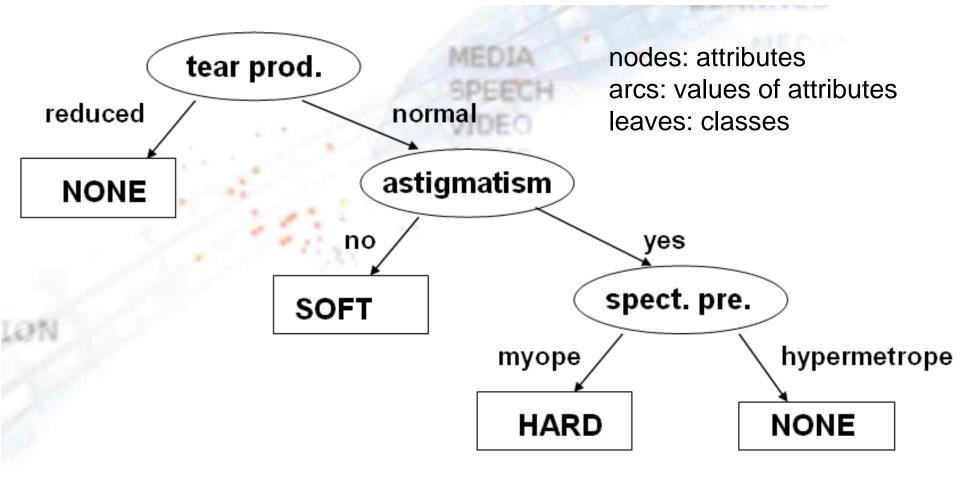
Learning a classification model from contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
O2	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
O4	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
06-013					
O14	ore-presby	hypermetrope	no	normal	SOFT
O15	ore-presby	hypermetrope	yes	reduced	NONE
O16	ore-presby	hypermetrope	yes	normal	NONE
O17	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
O24	presbyopic	hypermetrope	yes	normal	NONE

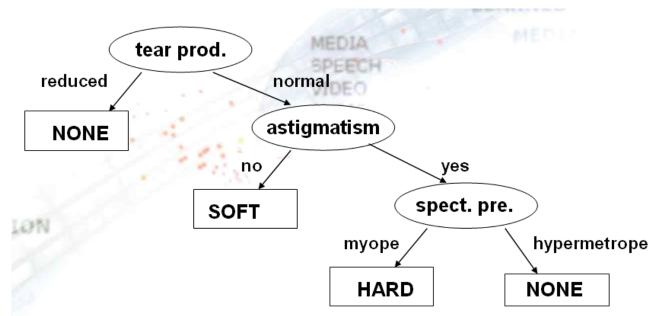




Decision tree classification model learned from contact lens data



Learning a decision tree classification model



Using Gain(S,A) heuristic for determining the most informative attribute

$$Gain(S,A) = E(S) - \sum p_v \cdot E(S_v)$$

Gain(S,A) estimates the reduction of entropy of set S after splitting into subsets based on values of attribute A

Entropy

- **S** training set, C_1, \dots, C_N classes
- Entropy E(S) measure of the impurity of training set S

$$E(S) = -\sum_{c=1}^{N} p_c . \log_2 p_c$$

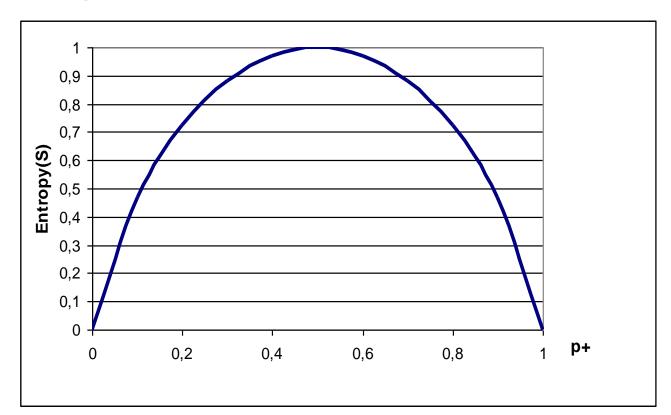
p_c - prior probability of class C_c
 (relative frequency of C_c in S)

• Entropy in binary classification problems

 $\mathbf{E}(\mathbf{S}) = -\mathbf{p}_{+}\mathbf{log}_{2}\mathbf{p}_{+} - \mathbf{p}_{-}\mathbf{log}_{2}\mathbf{p}_{-}$

Entropy

- $E(S) = -p_{+} \log_2 p_{+} p_{-} \log_2 p_{-}$
- The entropy function relative to a Boolean classification, as the proportion p₁ of positive examples varies between 0 and 1



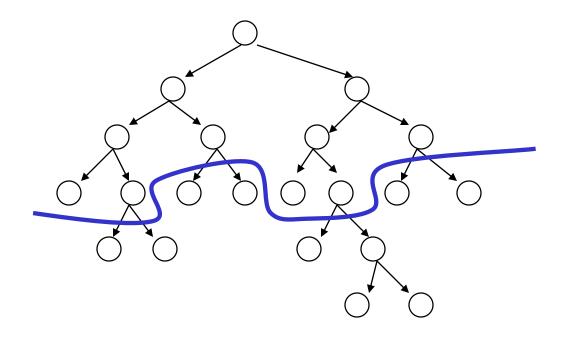
Entropy – why ?

- Entropy E(S) = expected amount of information (in bits) needed to assign a class to a randomly drawn object in S (under the optimal, shortest-length code)
- Why ?
- Information theory: optimal length code assigns
 log₂p bits to a message having probability p
- So, in binary classification problems, the expected number of bits to encode + or – of a random member of S is:

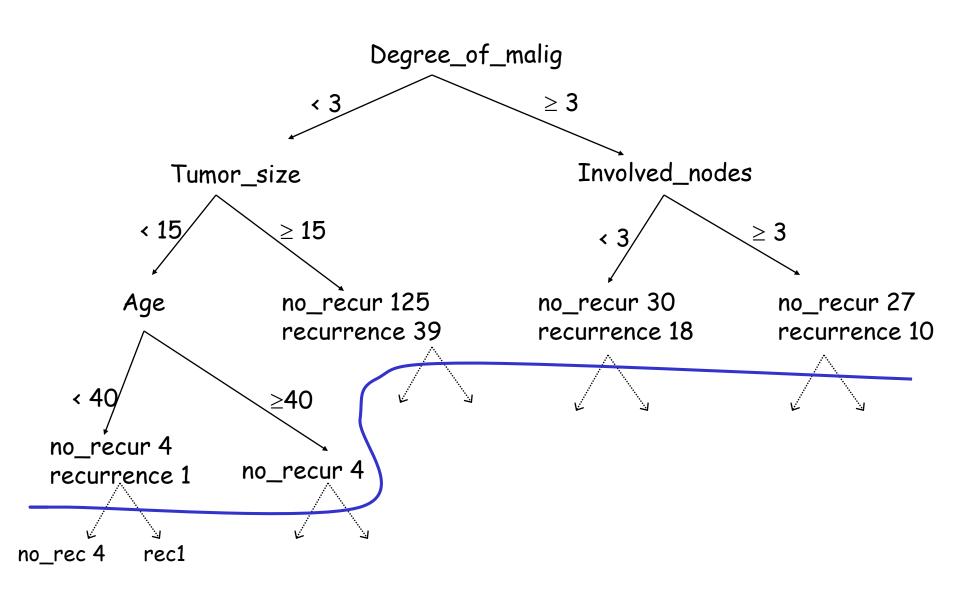
 $p_{+}(-\log_2 p_{+}) + p_{-}(-\log_2 p_{-}) = -p_{+}\log_2 p_{+} - p_{-}\log_2 p_{-}$

Pruning of decision trees

- Avoid overfitting the data by tree pruning
- Pruned trees are
 - less accurate on training data
 - more accurate when classifying unseen data



Prediction of breast cancer recurrence: Tree pruning

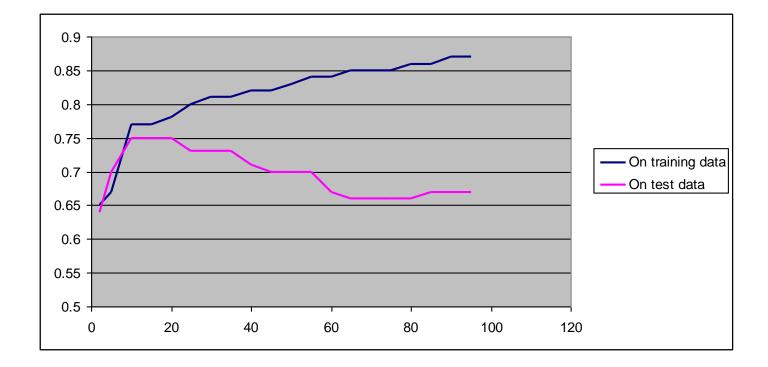


Accuracy and error

- Accuracy: percentage of correct classifications
 - on the training set
 - on unseen instances
- How accurate is a decision tree when classifying unseen instances
 - An estimate of accuracy on unseen instances can be computed, e.g., by averaging over 4 runs:
 - split the example set into training set (e.g. 70%) and test set (e.g. 30%)
 - induce a decision tree from training set, compute its accuracy on test set
- Error = 1 Accuracy
- High error may indicate data overfitting

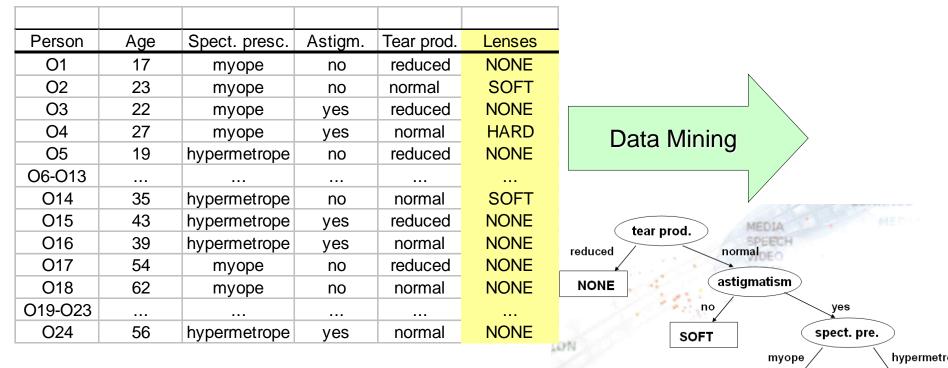
Overfitting and accuracy

• Typical relation between tree size and accuracy



• Question: how to prune optimally?

Learning a classification model from contact lens data



- lenses=NONE ← tear production=red
- lenses=NONE ← tear production=normal AND astigmatism=yes AND spect. pre.=hypermetrope

NONE

HARD

- **lenses=SOFT** ← tear production=normal AND astigmatism=no
- lenses=HARD ← tear production=normal AND astigmatism=yes AND spect. pre.=myope

 $\mathsf{lenses}{=}\mathsf{NONE} \leftarrow$

Classification rules model learned from contact lens data

lenses=NONE ← tear production=reduced

lenses=NONE ← tear production=normal AND astigmatism=yes AND spect. pre.=hypermetrope

- lenses=SOFT ← tear production=normal AND astigmatism=no
- Ienses=HARD ← tear production=normal AND astigmatism=yes AND spect. pre.=myope

 $\mathsf{lenses} = \mathsf{NONE} \leftarrow$

Task reformulation: Binary Class Values

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
O6-O13			•••		
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
O17	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023			•••		
O24	56	hypermetrope	yes	normal	NO

Binary classes (positive vs. negative examples of Target class)

- for Concept learning tasks
 - classification and class description
 - "one vs. all" multi-class learning

Learning from Numeric Class Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	LensPrice
O1	17	myope	no	reduced	0
O2	23	myope	no	normal	8
O3	22	myope	yes	reduced	0
O4	27	myope	yes	normal	5
O5	19	hypermetrope	no	reduced	0
O6-O13					
O14	35	hypermetrope	no	normal	5
O15	43	hypermetrope	yes	reduced	0
O16	39	hypermetrope	yes	normal	0
O17	54	myope	no	reduced	0
O18	62	myope	no	normal	0
O19-O23			•••		
O24	56	hypermetrope	yes	normal	0

Numeric class values – regression analysis

Learning from Unlabeled Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	NARD
O5	19	hypermetrope	no	reduced	NONE
06-013					<u>X</u> .
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					/ \
O24	56	hypermetrope	yes	normal	NONE

Unlabeled data - clustering: grouping of similar instances - association rule learning

Why learn and use symbolic models

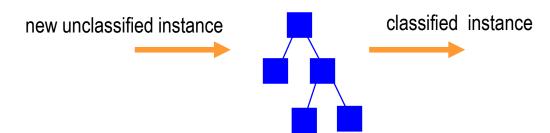
Given: the learned classification model (a decision tree or a set of rules)

Find: the class label for a new unlabeled instance

Why learn and use symbolic models

Given: the learned classification model (a decision tree or a set of rules)

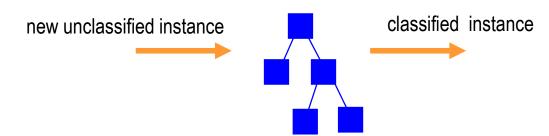
Find: the class label for a new unlabeled instance



Why learn and use symbolic models

Given: the learned classification model (a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance



- use the model for the explanation of classifications of new data instances
- use the discovered patterns for data exploration

First Generation Data Mining

• First machine learning algorithms for

 Decision tree and classification rule learning in 1970s and early 1980s, by Quinlan, Michalski et al., Breiman et al., …

Characterized by

- Learning from simple tabular data
- Relatively small set of instances and attributes

• Lots of ML research followed in 1980s

- Numerous conferences ICML, ECML, ... and ML sessions at AI conferences IJCAI, ECAI, AAAI, ...
- Extended set of learning tasks and algorithms addressed

Part I. Introduction

- Data Mining in a Nutshell
- Data Mining and the KDD process
- DM standards and tools

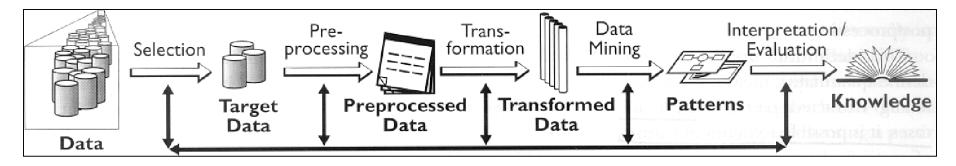
Data Mining and KDD

- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models/patterns in data." *
- Data Mining (DM) is the key step in the KDD process, performed by using data mining techniques for extracting models or interesting patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

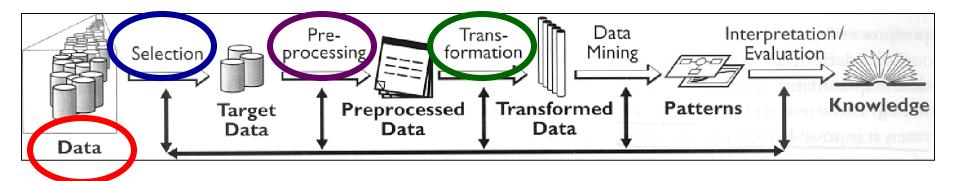
KDD Process

KDD process of discovering useful knowledge from data



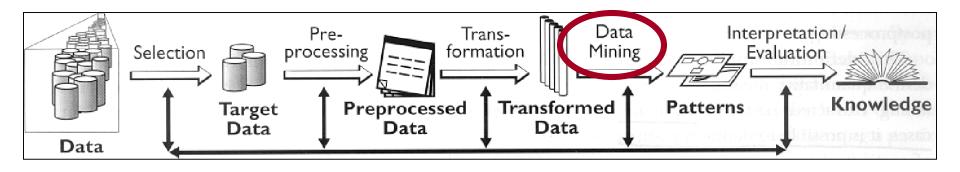
- KDD process involves several phases:
 - data preparation
 - data mining (machine learning, statistics)
 - evaluation and use of discovered patterns
- Data mining is the key step, but represents only 15%-25% of the entire KDD process

MEDIANA – analysis of media research data



- Questionnaires about journal/magazine reading, watching of TV programs and listening of radio programs, about 1200 questions. Yearly publication: frequency of reading/listening/watching, distribution w.r.t. Sex, Age, Education, Buying power,...
- Data for one year, about 8,000 questionnaires, covering lifestyle, spare time activities, personal viewpoints, reading/listening/watching of media (yes/no/how much), interest for specific topics in media, social status
- good quality, "clean" data
- table of n-tuples (rows: individuals, columns: attributes, in classification tasks selected class)

MEDIANA – media research pilot study



- Patterns uncovering regularities concerning:
 - Which other journals/magazines are read by readers of a particular journal/magazine ?
 - What are the properties of individuals that are consumers of a particular media offer ?
 - Which properties are distinctive for readers of different journals ?
- Induced models: description (association rules, clusters) and classification (decision trees, classification rules)

Simplified association rules

Finding profiles of readers of the Delo daily newspaper

1. reads_Marketing_magazine 116 → reads_Delo 95 (0.82)

- 2. reads_Financial_News (Finance) 223 → reads_Delo 180
 (0.81)
- 3. reads_Views (Razgledi) 201 → reads_Delo 157 (0.78)
- 4. reads_Money (Denar) 197 → reads_Delo 150 (0.76)
- 5. reads_Vip 181 → reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, Financial News, Views, Money and Vip read also Delo.

Simplified association rules

- 1. reads_Sara 332 → reads_Slovenske novice 211 (0.64)
- 2. reads_Ljubezenske zgodbe 283 →

reads_Slovenske novice 174 (0.61)

3. reads_Dolenjski list 520 →

reads_Slovenske novice 310 (0.6)

- 4. reads_Omama 154 → reads_Slovenske novice 90 (0.58)
- 5. reads_Delavska enotnost 177 →

reads_Slovenske novice 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska new, Omama in Workers new read also Slovenian news.

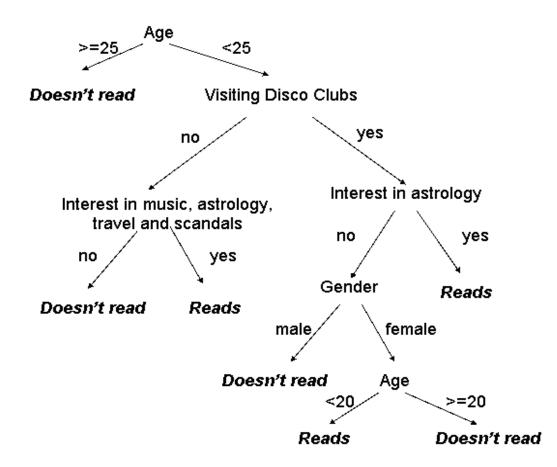
Simplified association rules

 reads_Sportske novosti 303 → reads_Slovenski delnicar 164 (0.54)
 reads_Sportske novosti 303 → reads_Salomonov oglasnik 155 (0.51)
 reads_Sportske novosti 303 → reads_Lady 152 (0.5)

More than half of readers of Sports news reads also Slovenian shareholders magazine, Solomon advertisements and Lady.

Decision tree

Finding reader profiles: decision tree for classifying people into readers and non-readers of a teenage magazine Antena.

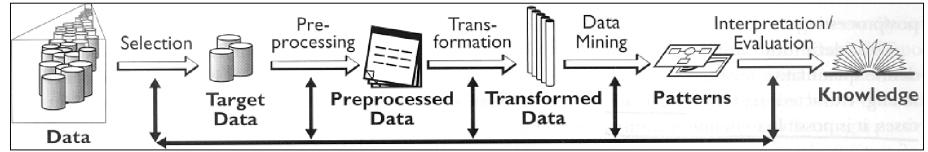


Part I. Introduction

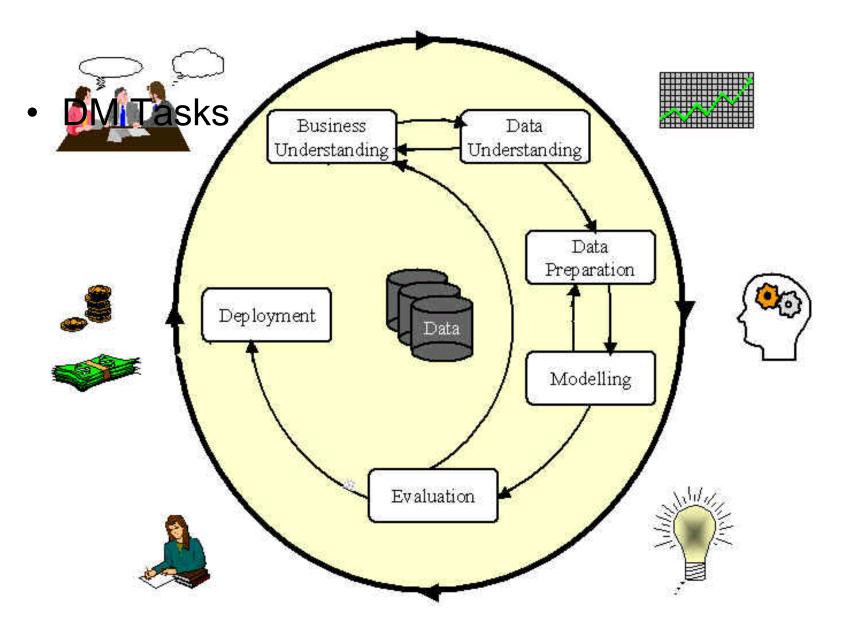
- Data Mining in a Nutshell
- Data Mining and the KDD process
- DM standards and tools

CRISP-DM

- Cross-Industry Standard Process for DM
- A collaborative, 18-months partially EC founded project started in July 1997
- NCR, ISL (Clementine), Daimler-Benz, OHRA (Dutch health insurance companies), and SIG with more than 80 members
- DM from art to engineering
- Views DM more broadly than Fayyad et al. (actually DM is treated as KDD process):



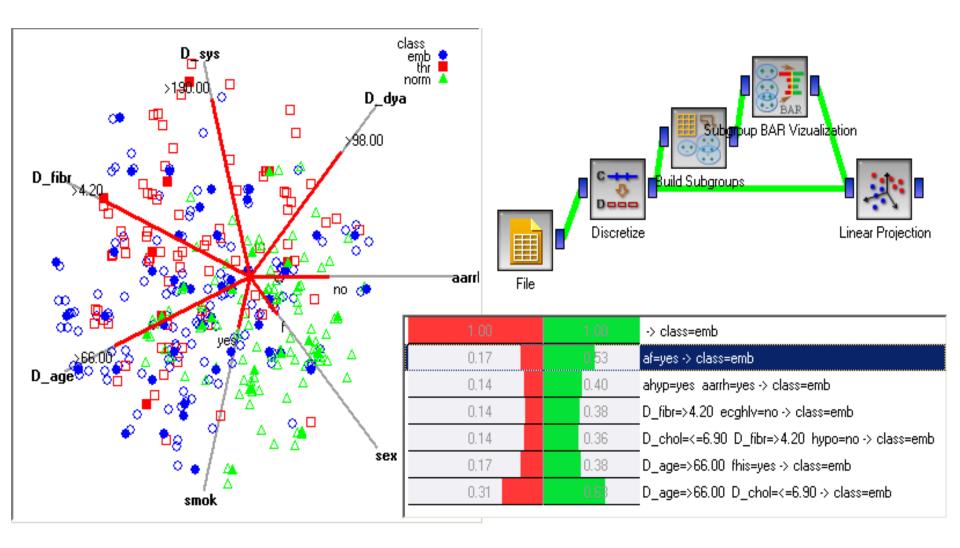
CRISP Data Mining Process



DM tools

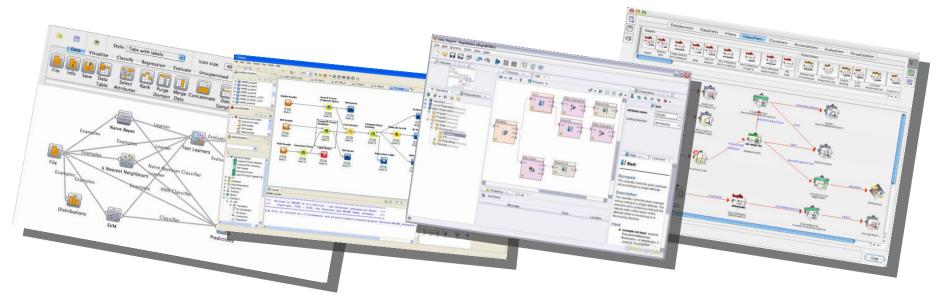
💥 KDNuggets Direc	story: Data Mining and Knowledge Discovery - Netscape	×							
<u>File E</u> dit <u>V</u> iew <u>G</u> o	<u>C</u> ommunicator <u>H</u> elp								
👔 🦋 Bookmarks	🙏 Location: http://www.kdnuggets.com/ 💽 🌍 What's Related 👔	Ν							
▶		_							
KDNuggets.com	Path: <u>KDNuggets Home</u> :								
<u>KDNuggets</u> <u>Newsletter</u>	Tools (Siftware) for Data Mining and Knowledge Discovery								
<u>Tools</u> Companies	Email new submissions and changes to <u>editor@kdnuggets.com</u>								
Jobs Courses	• <u>Suites</u> supporting multiple discovery tasks and data preparation								
<u>Courses</u> <u>*KDD-99*</u>	 <u>Classification</u> for building a classification model Approach: <u>Multiple Decision tree Rules Neural network Bayesian Other</u> 								
Solutions	<u>Clustering</u> - for finding clusters or segments								
Websites	<u>Statistics, Estimation and Regression</u>								
References	• <u>Links and Associations</u> - for finding links, dependency networks, and associations								
<u>Meetings</u>	 Sequential Patterns tools for finding sequential patterns Visualization - scientific and discovery-oriented visualization 								
<u>Datasets</u>	Text and Web Mining								
	Deviation and Fraud Detection								
	• Reporting and Summarization								
	Data Transformation and Cleaning								
	OLAP and Dimensional Analysis	-							
	Document: Done 📃 🐝 🏜 🗗 🔝 🎸	//							

Orange: Visual programming and visualization



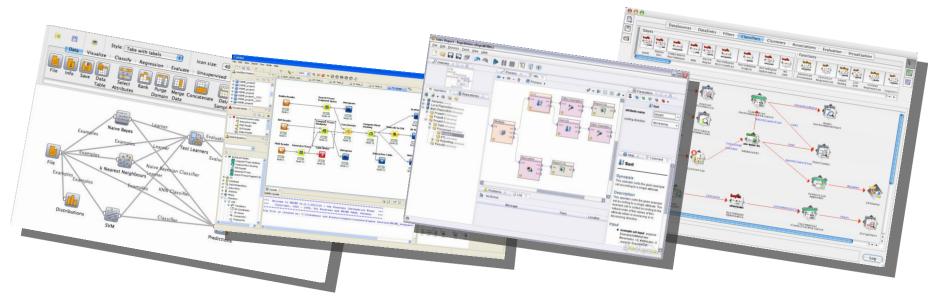
Other Second Generation Data Mining Platforms

WEKA, KNIME, RapidMiner, Orange, ...



Other Second Generation Data Mining Platforms

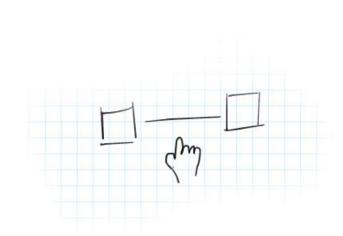
WEKA, KNIME, RapidMiner, Orange, ...



- include numerous data mining algorithms
- enable data and model visualization
- like Taverna, WEKA, KNIME, RapidMiner, Orange also enable complex workflow construction

Building scientific workflows

- consists of simple operations on workflow
 - elements drag drop cs connect



- suitable for non-experts
- good for representing complex procedures
- allow users to publicly upload their workflows so that they are available to a wider audience, perfect for experiment replication

ClowdFlows platform

Large algorithm repository

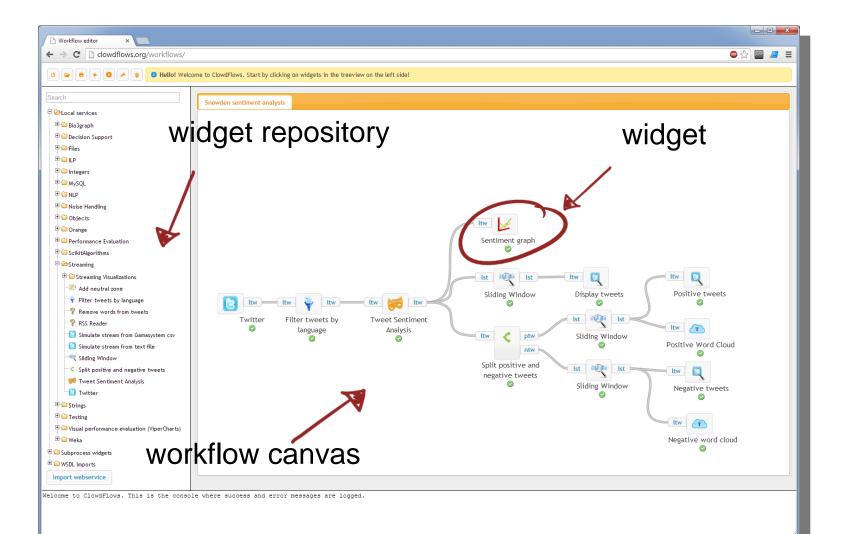
- Relational data mining
- All Orange algorithms
- WEKA algorithms as web services
- Data and results visualization
- Text analysis
- Social network analysis
- Analysis of big data streams

Large workflow repository

 Enables access to our technology heritage

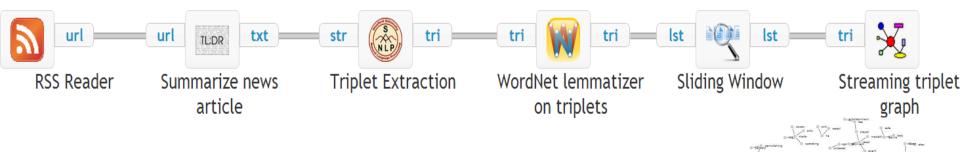
ClowdFlows
🕒 🕞 🕞 🕨 🖨 👘 📵 Hello! Welcz
Search
⊡- 🔁 Local services
🗄 🧰 Big data
🗄 🗀 Bio3graph
🗈 🗀 Decision Support
🗈 🧰 Files
⊟. <mark>⇔</mark> ILP
Leph
RSD RSD
😺 SDM-Aleph
SDM-SEGS Rule Viewer
TreeLiker
- De Wordification
🗈 🧰 Integers
🗄 🧰 MUSE
🗄 🧰 MySQL
E NLP
🗄 🧰 Noise Handling
🗄 🧰 Objects
🗄 🗀 Orange
🗄 🗀 Performance Evaluation
🕀 🧰 ScikitAlgorithms
🕀 🧰 Streaming
🕀 🧰 Strings
🗄 🦳 Testing
Visual performance evaluation (ViperCharts)
🖻 🗀 Weka
E Subprocess widgets
🗄 🗀 WSDL Imports
Import webservice

ClowdFlows user interface



"Big Data" Use Case

- Real-time analysis of big data streams
- Example: semantic graph construction from news streams. http://clowdflows.org/workflow/1729/.

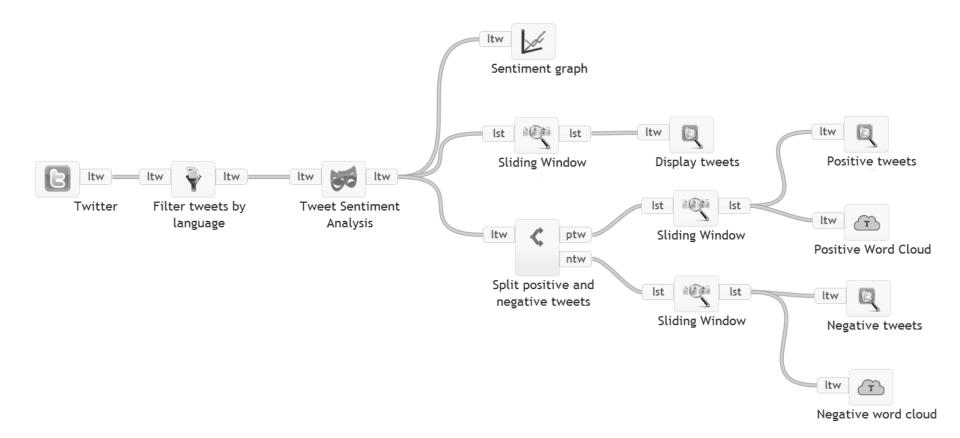


 Example: news monitoring by graph visualization (graph of CNN RSS feeds)

http://clowdflows.org/streams/data/31/1

"Big Data" Use Case

 Analysis of positive/negative sentiment of tweets in real time: http://clowdflows.org/workflow/1041/.



Part I: Summary

- KDD is the overall process of discovering useful knowledge in data
 - many steps including data preparation, cleaning, transformation, pre-processing
- Data Mining is the data analysis phase in KDD
 - DM takes only 15%-25% of the effort of the overall KDD process
 - employing techniques from machine learning and statistics
- Predictive and descriptive induction have different goals: classifier vs. pattern discovery
- Many application areas
- Many powerful tools available

Outline

- JSI & Knowledge Technologies
- Introduction to Data mining and KDD
 - Data Mining and KDD process
 - DM standards, tools and visualization
 - Classification of Data Mining techniques: Predictive and descriptive DM
- Selected data mining techniques: Advanced subgroup discovery techniques and applications
- Relation between data mining and text mining

Selected Data Mining Techniques Outline

- Subgroup discovery
- Relational data mining and
 propositionalization in a nutshell
- Semantic data mining: Using ontologies in SD

Task reformulation: Binary Class Values

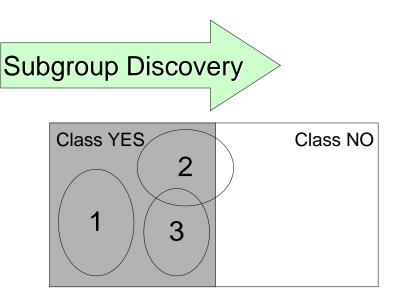
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

Binary classes (positive vs. negative examples of Target class)

- for Concept learning classification and class description
- for Subgroup discovery exploring patterns characterizing groups of instances of target class

Subgroup Discovery

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

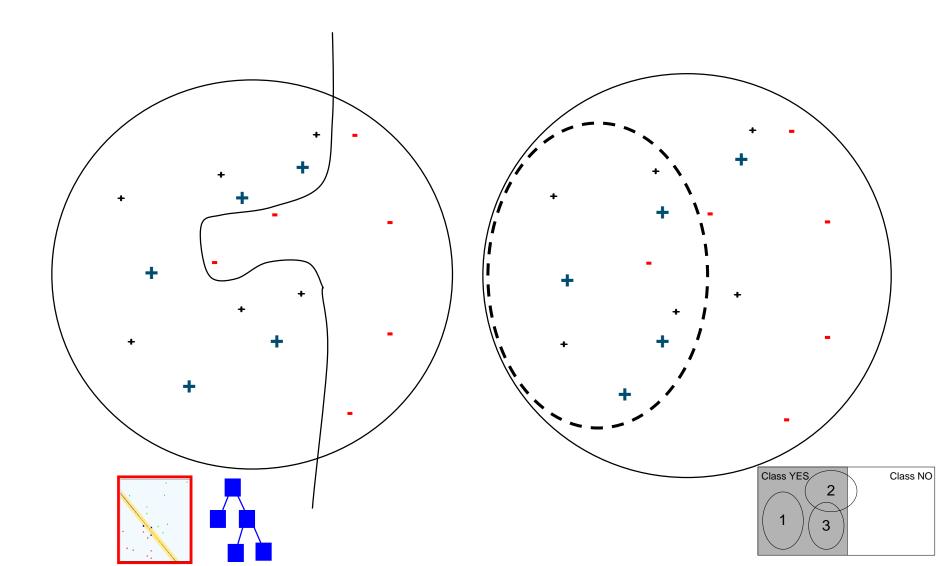


- A task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples
 - subgroups must be large and statistically significant

Classification versus Subgroup Discovery

- Classification (predictive induction) constructing sets of classification rules
 - aimed at learning a model for classification or prediction
 - rules are dependent
- Subgroup discovery (descriptive induction) constructing individual subgroup describing rules
 - aimed at finding interesting patterns in target class examples
 - large subgroups (high target class coverage)
 - with significantly different distribution of target class examples (high TP/FP ratio, high significance, high WRAcc
 - each rule (pattern) is an independent chunk of knowledge

Classification versus Subgroup discovery



Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

- Given: a population of individuals and a property of interest (target class, e.g. CHD)
- Find: `most interesting' descriptions of population subgroups
 - are as large as possible (high target class coverage)
 - have most unusual distribution of the target property

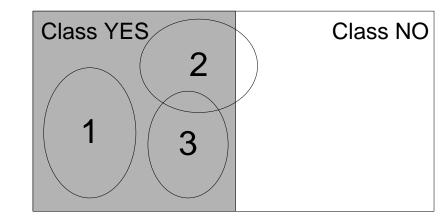
(high TP/FP ratio, high significance)

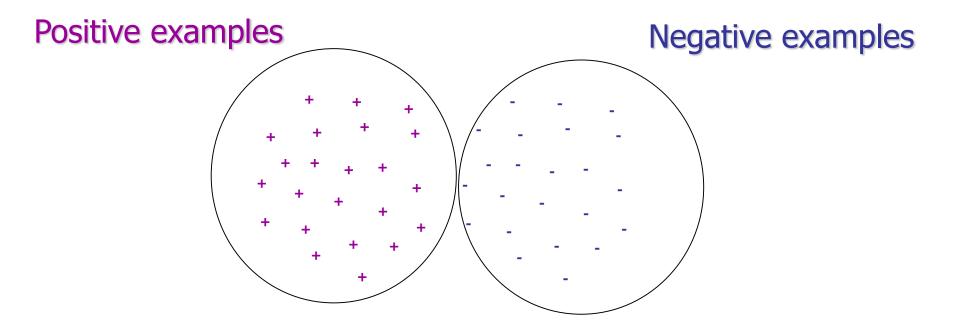
Subgroup discovery example: CHD Risk Group Detection

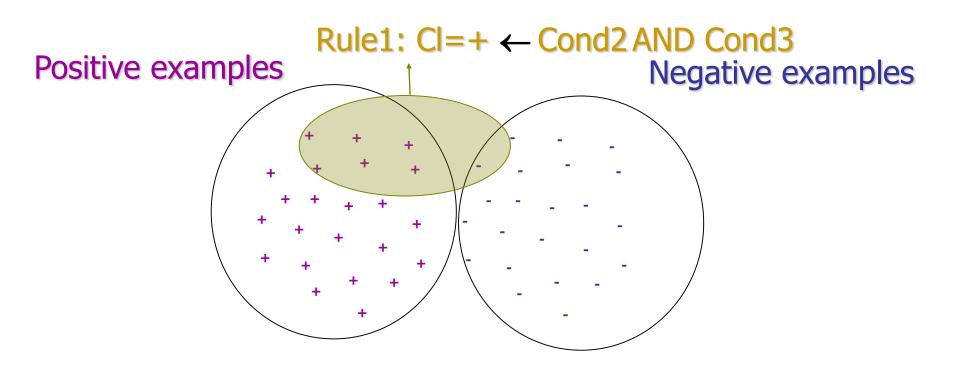
- Input: Patient records described by stage A (anamnestic), stage B (an. & lab.), and stage C (an., lab. & ECG) attributes
- **Task**: Find and characterize population subgroups with high CHD risk (large enough, distributionally unusual)
- From best induced descriptions, five were selected by the expert as most actionable for CHD risk screening (by GPs): CHD-risk ← male & pos. fam. history & age > 46 CHD-risk ← female & bodymassIndex > 25 & age > 63 CHD-risk ← ... CHD-risk ← ... CHD-risk ← ...

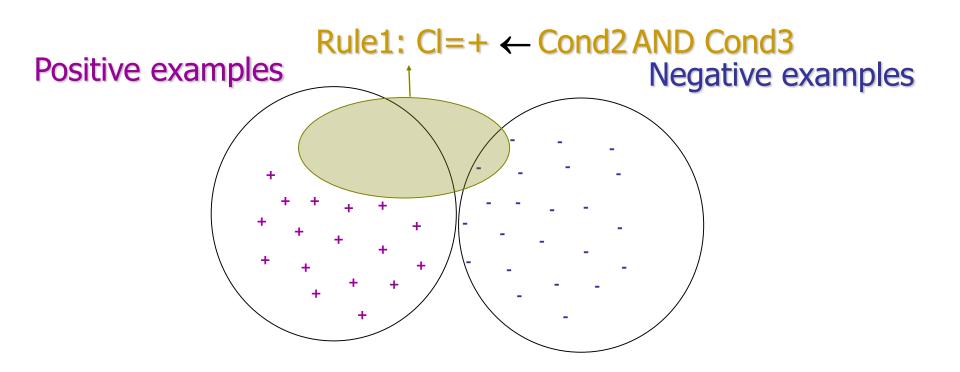
Characteristics of SD Algorithms

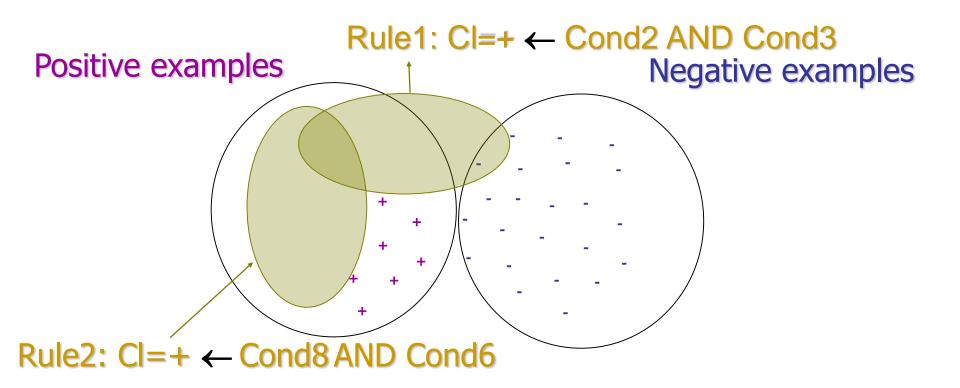
- SD algorithms do not look for a single complex rule to describe all examples of target class YES (all CHDrisk patients), but several rules that describe parts (subgroups) of YES.
- Standard rule learning approach: Using the covering algorithm for rule set construction





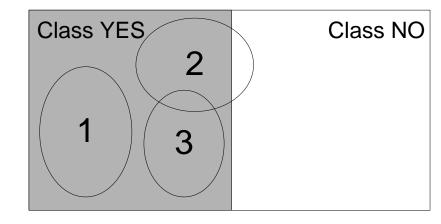




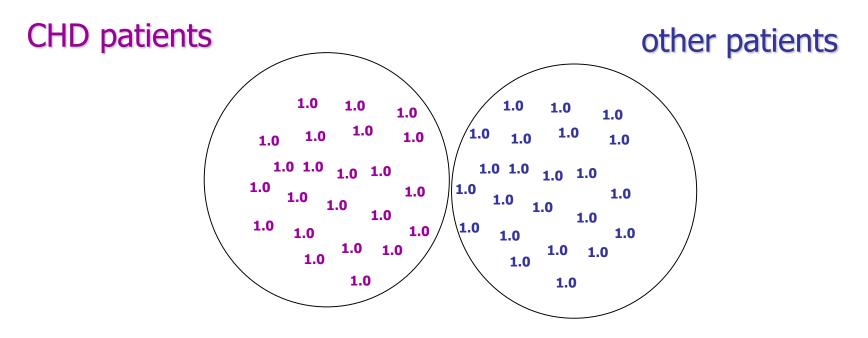


Characteristics of SD Algorithms

- SD algorithms do not look for a single complex rule to describe all examples of target class YES (all CHDrisk patients), but several rules that describe parts (subgroups) of YES.
- Advanced rule learning approach: using example weights in the weighted covering algorithm for repetitive subgroup construction and in the rule quality evaluation heuristics.

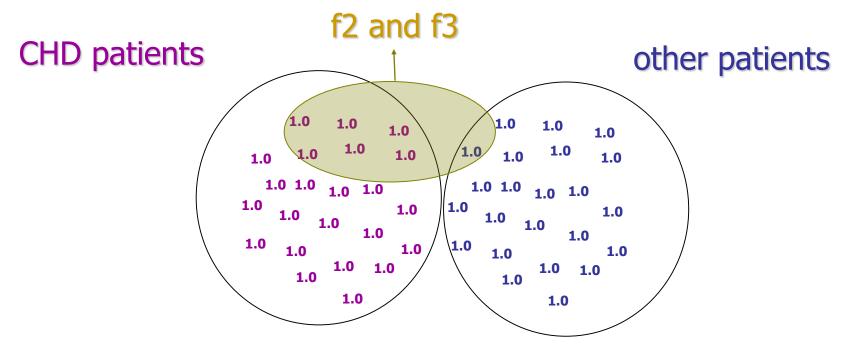


Weighted covering algorithm for rule set construction



- For learning a set of subgroup describing rules, SD implements an iterative weigthed covering algorithm.
- Quality of a rule is measured by trading off coverage and precision.

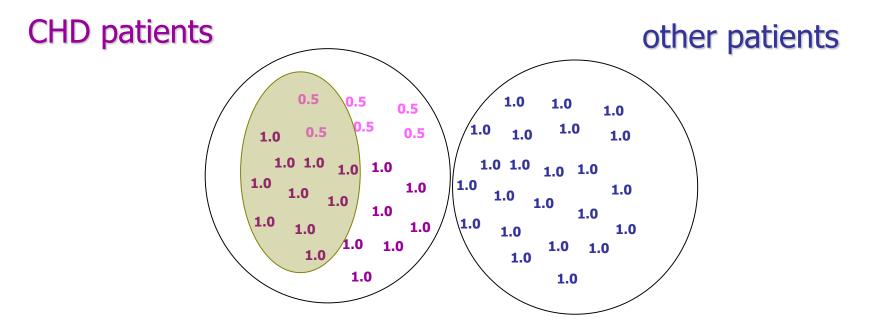
Weighted covering algorithm for rule set construction



Rule quality measure in SD: $q(Cl \leftarrow Cond) = TP/(FP+g)$

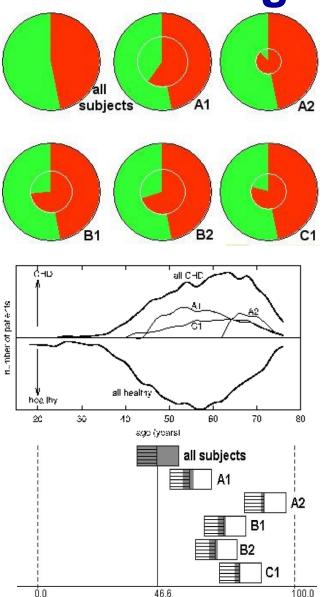
Rule quality measure in CN2-SD: WRAcc(CI ←Cond) = p(Cond) x [p(CI | Cond) – p(CI)] = coverage x (precision – default precision) ***Coverage** = sum of the covered weights, ***Precision** = purity of the covered examples

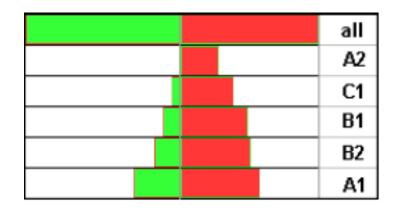
Weighted covering algorithm for rule set construction



In contrast with classification rule learning algorithms (e.g. CN2), the covered positive examples are not deleted from the training set in the next rule learning iteration; they are re-weighted, and a next 'best' rule is learned.

Subgroup visualization





The CHD task: Find, characterize and visualize population subgroups with high CHD risk (large enough, distributionally unusual, most actionable)

Induced subgroups and their statistical characterization

Subgroup A2 for femle patients:

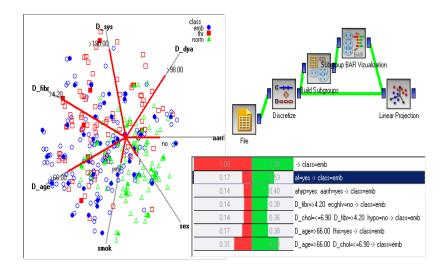
High-CHD-risk IF

body mass index over 25 kg/m² (typically 29) AND age over 63 years

Supporting characteristics (computed using \2 statistical significance test) are: positive family history and hypertension. Women in this risk group typically have slightly increased LDL cholesterol values and normal but decreased HDL cholesterol values.

SD algorithms in the Orange DM Platform

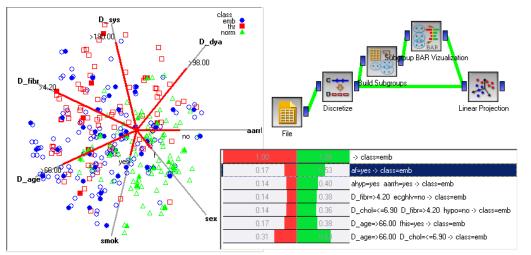
- SD Algorithms in Orange
 - SD (Gamberger & Lavrač, JAIR 2002
 - APRIORI-SD (Kavšek & Lavrač, AAI 2006
 - CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2 classification rule learner to Subgroup Discovery
 - Weighted covering algorithm
 - Weighted relative accuracy (WRAcc) search heuristics, with added example weights



SD algorithms in Orange and Orange4WS

Orange

- classification and subgroup discovery algorithms
- data mining workflows
- visualization
- developed at FRI, Ljubljana

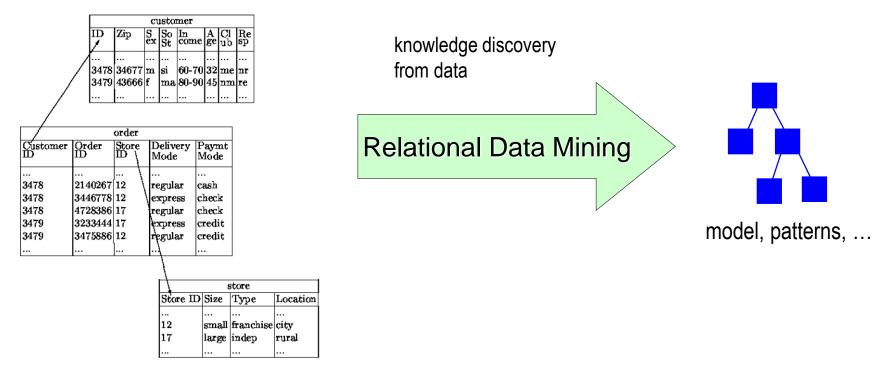


- Orange4WS (Podpečan 2010)
 - Web service oriented
 - supports workflows and other Orange functionality
 - includes also
 - WEKA algorithms
 - relational data mining
 - semantic data mining with ontologies
 - Web-based platform is under construction

Selected Data Mining Techniques Outline

- Subgroup discovery
- Relational data mining and propositionalization in a nutshell
- Semantic data mining: Using ontologies in SD

Relational Data Mining (Inductive Logic Programming) in a nutshell

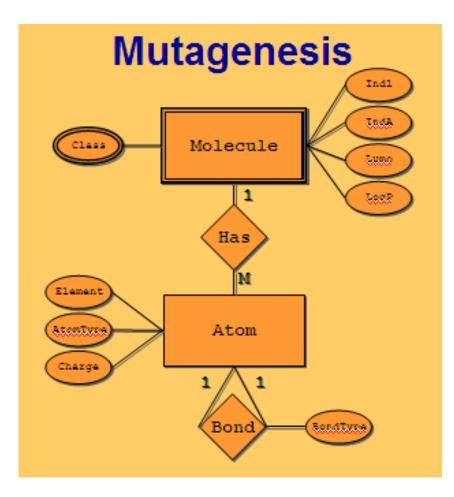


Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical facts, a graph, ... **Find:** a classification model, a set of interesting patterns

Relational Data Mining (ILP)

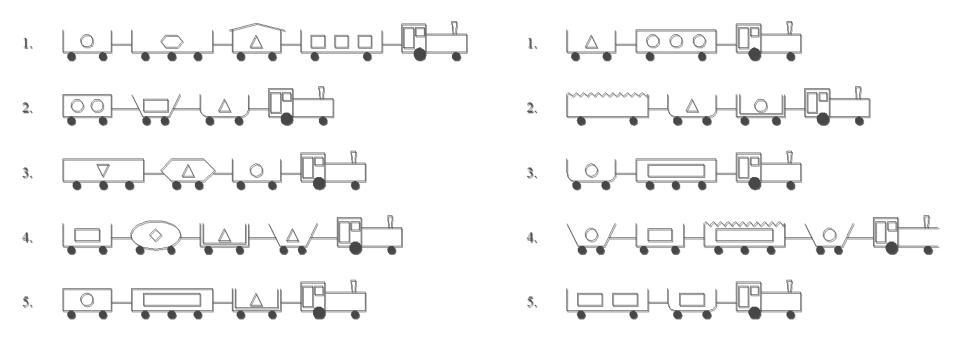
- Learning from multiple tables
 - patient records connected with other patient and demographic information
- Complex relational problems:
 - temporal data: time series in medicine, ...
 - structured data: representation of molecules and their properties in protein engineering, biochemistry, ...



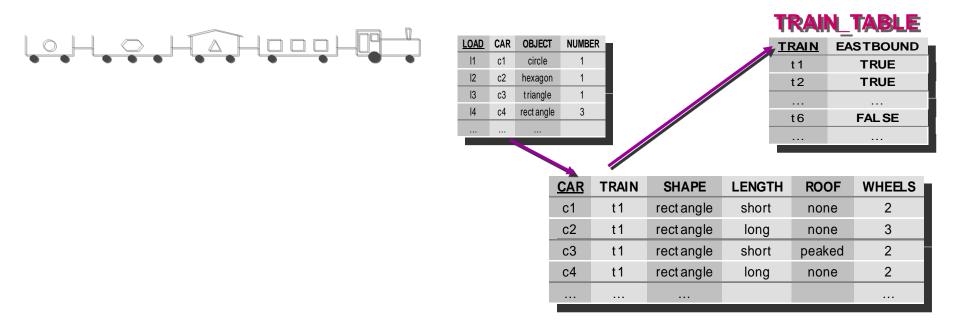
Sample ILP problem: East-West trains

1. TRAINS GOING EAST

2. TRAINS GOING WEST

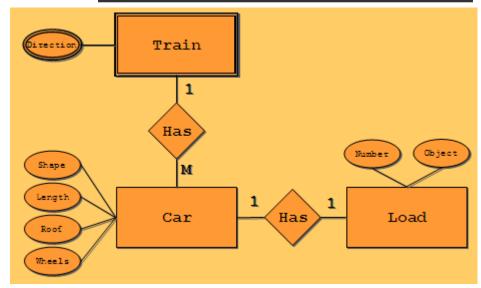


Relational data representation



Relational data representation

							KAI	L_TABLE
LOAD	CAR	OBJECT	NUMBE	R		1	RAIN	EASTBOUND
1	c1	circle	1				t 1	TRUE
12	c2	hexagon	1				t2	TRUE
13	c3	triangle	1					
4	c4	rect angle	3				t6	FAL SE
				_ //				
			CAR	TRAIN	SHAPE	LENGTH	ROO	F WHEELS
			c1	t1	rect angle	short	non	e 2
			c2	t1	rect angle	long	non	e 3
			c3	t1	rect angle	short	peak	ed 2
			c4	t1	rect angle	long	non	e 2



Propositionalization in a nutshell

LOA |1

Propositionalization task

Transform a multi-relational (**multiple-table**) representation to a propositional representation (**single table**)

Proposed in ILP systems LINUS (Lavrac et al. 1991, 1994), 1BC (Flach and Lachiche 1999), ...

						Ţ	RAIN	TABLE
<u>\D</u>	CAR	OBJECT	NUMBE	R			RAIN E	ASTBOUND
	c1	circle	1				t 1	TRUE
	c2	hexagon	1	_			t2	TRUE
	c3	triangle	1					
	c4	rect angle	9 3	_			t6	FAL SE
				_//				
			CAR	TRAIN	SHAPE	LENGTH	ROOF	WHEELS
			<u>СА</u>	TRAIN t1	SHAPE rect angle	LENGTH short	ROOF none	WHEELS 2
					-			
			c1	t1	rectangle	short	none	2
			c1 c2	t 1 t 1	rect angle rect angle	short long	none none	2 3
			c1 c2 c3	t1 t1 t1	rect angle rect angle rect angle	short long short	none none peaked	2 3 2

Propositionalization in a nutshell

Main propositionalization step: first-order feature construction

f1(T):-hasCar(T,C),clength(C,short). f2(T):-hasCar(T,C), hasLoad(C,L), loadShape(L,circle) f3(T):-...

						Ţ	RAIN	TABLE
<u>oad</u>	CAR	OBJECT	NUMBE	R		🗾 🗾	RAIN EA	
11	c1	circle	1				t 1	TRUE
12	c2	hexagon	1				t2	TRUE
13	c3	triangle	1					
4	c4	rect angle	3	_			t 6	FALSE
			CAR	TRAIN	SHAPE	LENGTH	ROOF	WHEELS
			c1	t1	rect angle	short	none	2
			c2	t1	rect angle	long	none	3
			c3	t1	rect angle	short	peaked	2
			c4	t1	rect angle	long	none	2

Propositional learning:

 $t(T) \leftarrow f1(T), f4(T)$

Relational interpretation:

eastbound(T) \leftarrow hasShortCar(T),hasClosedCar(T).

PROPOSITIONAL TRAIN_TABLE

<u>train(T)</u>	f1(T)	f2(T)	f3(T)	f4(T)	f5(T)
t1	t	t	f	t	t
t2	t	t	t	t	t
t3	f	f	t	f	f
t4	t	f	t	f	f

Relational Data Mining through Propositionalization

				CI	usto	mer					
		ID /	Zip	S ex		In con	ıе	A ge	Cl ub	Re	
	/										
	/		34677		si					nr	
	·	3479	43666	t	ma	80-9	90	45	nn		
									•••		
			order				_			1	
Customer ID	01 ID	der	$\frac{\text{Store}}{\mathbb{D}}$)eliv 10de			'ayı lod			
			\	1							
3478	214	10267	12	re	egula	ır	C	ash			
3478		16778		\le:	xpre	SS	c]	hec	k		
3478		28386			egula			hec			
3479		33444		ę.	xpre	SS		redi			
3479	347	75886	12	r)	egula	ır	C	redi	it		
					1						
					1					tore	
					Sto	re I	D	Siz	e	Туре	Loca
					12			\mathbf{sm}	all	franchise	city

Relational representation of customers, orders and stores.

17

large indep

Location

rural

·													
		f1	f2	f3	f4	f5	f 6		1		1		\mathbf{fn}
9	j 1	1	0	0	1	1	1	0	0	1	0	1	1
ç	j 2	0	1	1	0	1	1	0	0	0	1	1	0
ç	J3	0	1	1	1	0	0	1	1	0	0	0	1
ç	J4	1	1	1	0	1	10 ² 0	0	0	1	1	1	0
9	1 5	1	1	1	0	0 /	001	0	1	1	0	1	0
9	j 1	0	٥	1	1	0	0	0	1	0	0	0	1
ç	j 2	1	1	0	0	1	1	0	1	0	1	1	1
ç	J 3	0	0	0	0	1	0	0	1	1	1	0	0
9	J4	1	0	1	1	1	0	1	0	0	1	0	1

Relational Data Mining through Propositionalization

				Cl	1 sto	mer				
		ID ∮	Zip	S ex	$_{\rm St}^{\rm So}$	\lim_{com}	ıe	A ge	Cl ub	$_{\mathrm{sp}}^{\mathrm{Re}}$
	/									
		3478	34677	m	si	60-7	0	32	me	nr
	/	3479	43666	f	\mathbf{ma}	80-9	90	45	nn	ıre
	, ,									
_/			order						_	1
				15			5			
Customer	: B	aer	$\frac{\text{Store}}{\text{ID}}$		eliv Iode	ery	M	ayı lod	nt e	
	_		- +						~	
		(oociel			۰.					
3478		0267		11	gula			ush.		
3478		6778			rpre		-	iec		
3478		28386		•	gula			iec		
3479		3444		- ję:	spre			edi		
3479	347	5886	12	ΠÌ	gula	ar	сı	edi	it	
				'	ł					
					1					
					+					
					\square		_			tore
					Sto	re II		Siz	e	Туре
							- L			
					12		\$	\mathbf{m}	all	franc
					17		J	lar	ge	inde

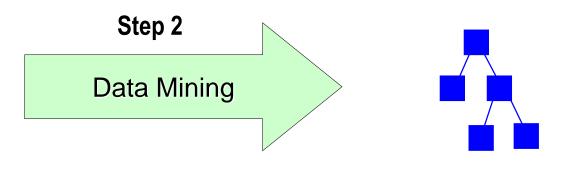
Relational representation of customers, orders and stores.

Location ... e city rural

	f1	f2	f3	f4	f5	f 6				1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	nd i o	0	0	1	1	1	0
g5	1	1	1	0	0 /	01	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Step 1 Propositionalization

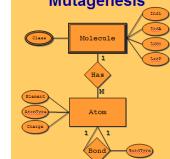
	f1	f2	f3	f4	f5	f 6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	ro l o	0	0	1	1	1	0
g5	1	1	1	0	0 /	010	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1



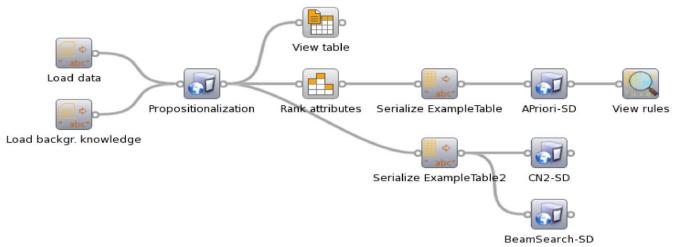
model, patterns, ...

Relational Data Mining in Orange4WS

- Propositionalization workflow in Orange4WS
- RSD as a service for propositionalization through efficient first-order feature construction Mutagenesis f121(M):- hasAtom(M,A), atomType(A,21) f235(M):- lumo(M,Lu), lessThr(Lu,1.21)
- subgroup discovery using CN2-SD



mutagenic(M) \leftarrow feature121(M), feature235(M)



Selected Data Mining Techniques Outline

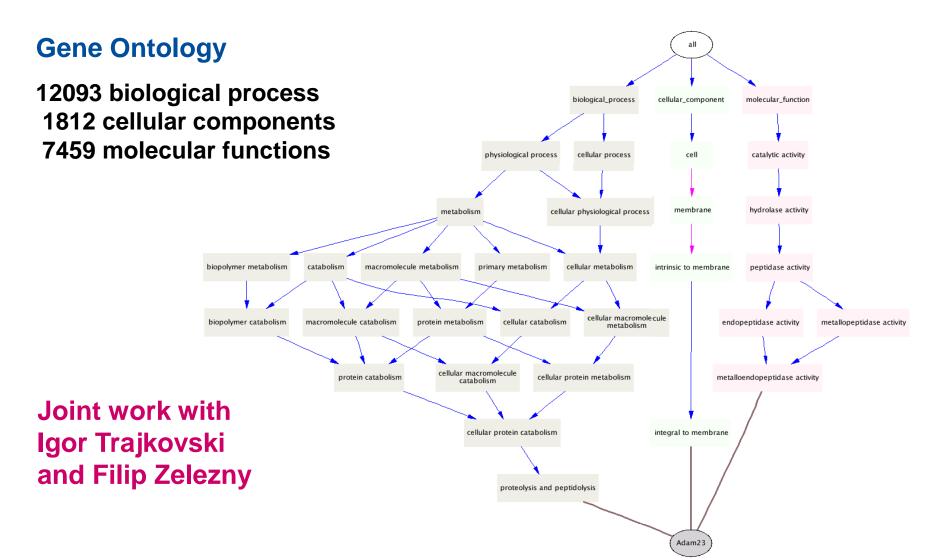
- Subgroup discovery
- Relational data mining and
 propositionalization in a nutshell

Semantic data mining: Using ontologies in SD

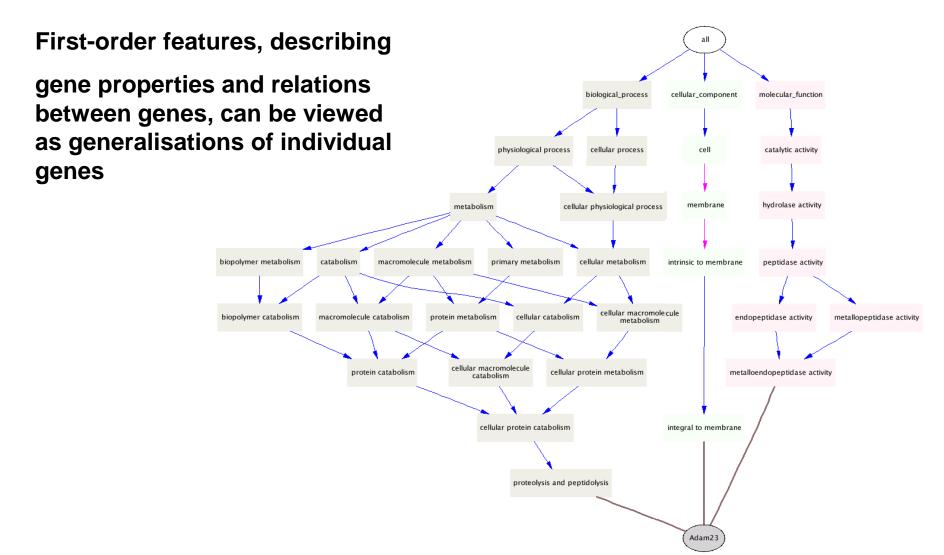
Semantic Data Mining in Orange4WS

- Exploiting semantics in data mining
 - Using domain ontologies as background knowledge for data mining
- Semantic data mining technology: a two-step approach
 - Using propositionalization through first-order feature construction
 - Using subgroup discovery for rule learning

Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining



Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining



First order feature construction

First order features with support > *min_support*

f(7,A):-function(A,'GO:0046872'). f(8,A):-function(A,'GO:0004871'). f(11,A):-process(A,'GO:0007165'). f(14,A):-process(A,'GO:0044267'). f(15,A):-process(A,'GO:0050874'). f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874'). f(26,A):-component(A,'GO:0016021'). f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020') f(122,A):-interaction(A,B),function(B,'GO:0004872'). f(223,A):-interaction(A,B),function(B,'GO:0004871'), existential process(B,'GO:0009613'). f(224,A):-interaction(A,B),function(B,'GO:0016787'), component(B,'GO:0043231').

Propositionalization

diffexp g1 (gene64499) diffexp g2 (gene2534) diffexp g3 (gene5199) diffexp g4 (gene1052) diffexp g5 (gene6036) random g1 (gene7443) random g2 (gene9221) random g3 (gene2339) random g4 (gene9657) random g5 (gene19679)

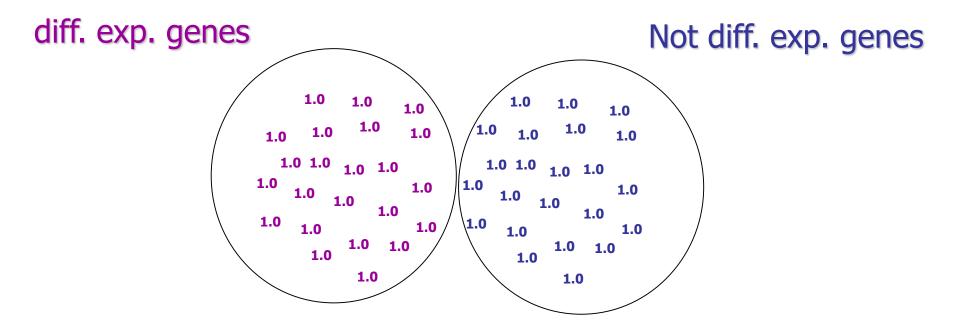
								•				
	f1	f2	£3	f4	f5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g 3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g 5	1	1	1	0	0	1	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g 3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Propositional learning: subgroup discovery

				_		-	-			-		
	f1	f2	£3	f4	f5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g5	1	1	1	0	0	1	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

f2 and f3 [4,0]

Subgroup Discovery



Subgroup Discovery



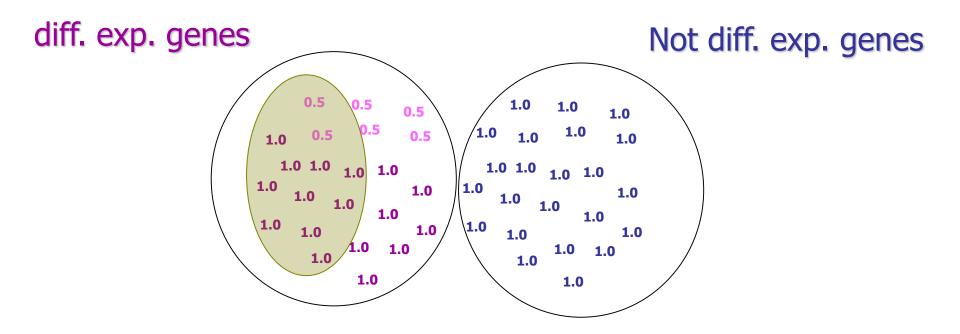
In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes

Subgroup Discovery



RSD naturally uses gene weights in its procedure for repetitive subgroup generation, via its heuristic rule evaluation: weighted relative accuracy

Semantic Data Mining in two steps

• Step 1: Construct relational logic features of genes such as interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding) and propositional table construction with features as attributes

- Step 2: Using these features to discover and describe subgroups of genes that are differentially expressed (e.g., belong to class DIFF.EXP. of top 300 most differentially expressed genes) in contrast with RANDOM genes (randomly selected genes with low differential expression).
- Sample subgroup description:

diffexp(A) :- interaction(A,B) AND

function(B,'GO:0004871') AND
process(B,'GO:0009613')

Summary: SEGS, using the RSD approach

- The SEGS approach enables to discover new medical knowledge from the combination of gene expression data with public gene annotation databases
- The SEGS approach proved effective in several biomedical applications (JBI 2008, ...)
 - The work on semantic data mining using ontologies as background knowledge for subgroup discovery with SEGS - was done in collaboration with I.Trajkovski, F. Železny and J. Tolar
 - Recent work on semantic data mining in Orange4WS, (generalizing SEGS to g-SEGS, SDM-SEGS, and SDM-Aleph) done in collaboration with A. Vavpetič

Outline

- JSI & Knowledge Technologies
- Introduction to Data mining and KDD
 - Data Mining and KDD process
 - DM standards, tools and visualization
 - Classification of Data Mining techniques: Predictive and descriptive DM
- Selected data mining techniques: Advanced subgroup discovery techniques and applications
- Relation between data mining and text mining

Data mining vs. text mining

Data mining:

- instances are objects, belonging to different classes
- instances are feature vectors, described by attribute values
- classification model is learned using data mining algorithms

Task reformulation: Binarization

Person	Young	Myope	Astigm.	Reuced tea	Lenses
O1	1	1	0	1	NO
O2	1	1	0	0	YES
O3	1	1	1	1	NO
O4	1	1	1	0	YES
O5	1	0	0	1	NO
06-013					
O14	0	0	0	0	YES
O15	0	0	1	1	NO
O16	0	0	1	0	NO
O17	0	1	0	1	NO
O18	0	1	0	0	NO
O19-O23					
O24	0	0	1	0	NO

Binary features and class values

Data mining vs. text mining

Data mining:

- instances are objects, belonging to different classes
- instances are feature vectors, described by attribute values
- classification model is learned using data mining algorithms

Text mining:

- instances are text documents
- text documents need to be transformed into feature vector representation in data preprocessing
- data mining algorithms can then be used for learning
 the model

Text mining: Words/terms as binary features

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Instances = documents Words and terms = Binary features

Text mining

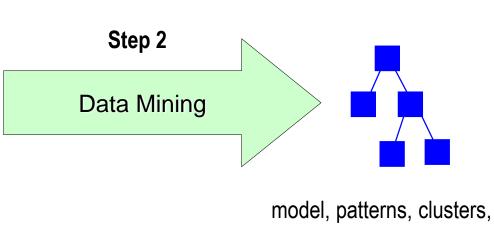
BoW vector construction

Step 1

- 1. BoW features construction
- 2. Table of BoW vectors construction

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES
d3	1	1	1	1	NO
d4	1	1	1	0	YES
d5	1	0	0	1	NO
d6-d13					
d14	0	0	0	0	YES
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO
d18	0	1	0	0	NO
d19-d23					
d24	0	0	1	0	NO



Text Mining process

- Text preprocessing for feature construction
 - StopWords elimination
 - Word stemming or lemmatization
 - Term construction by frequent N-Grams construction
 - Terms obtained from thesaurus (e.g., WordNet)
- BoW vector construction
- Data Mining of BoW vector table
 Text Categorization, Clustering, Summarization, ...

Text Mining from unlabeled data

Document	Word1	Word2		WordN	Class
d1	1	1	0	1	NO
d2	1	1	0	0	YES /
d3	1	1	1	1	NO /
d4	1	1	1	0	YES
d5	1	0	0	1	NC
d6-d13					V
d14	0	0	0	0	YAS
d15	0	0	1	1	NO
d16	0	0	1	0	NO
d17	0	1	0	1	NO NO
d18	0	1	0	0	NO NO
d19-d23					/ \
d24	0	0	1	0	NO

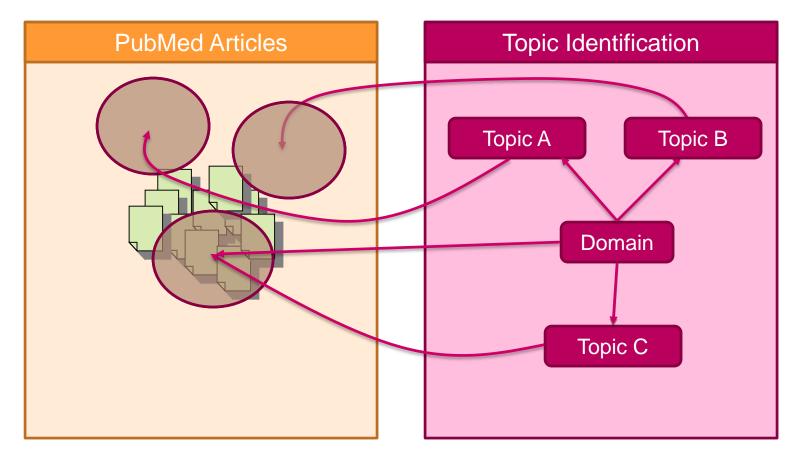
Unlabeled data - clustering: grouping of similar instances

Scientific literature in PubMed: source of knowledge for Text Mining

- Biomedical bibliographical database PubMed
- US National Library of Medicine
- More than 21M citations
- More than 5,600 journals
- 2,000 4,000 references added each working day!

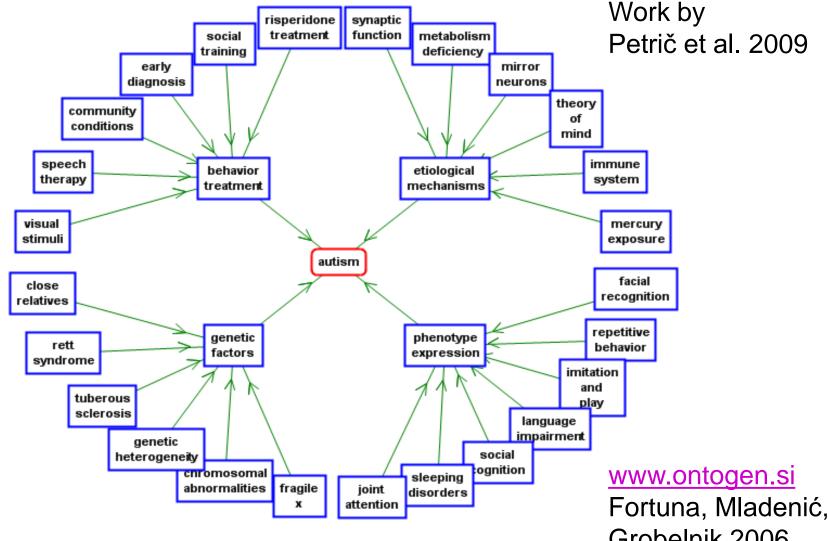
S NCBI	A service of the National Library of Medicine and the National Institutes of Health [Sign In] [Register]	
All Databases Search PubMed	PubMed Nuclectide Protein Genome Structure OMM PMC Journals Books for autism Go Clear Save Search	
	Limits Preview/Index History Clipboard Details	
About Entrez	Display Summary Show 500 Sort by Send to	
Text Version	All: 11008 Review: 1632 🕱	
Entrez PubMed	Items 1 - 500 of 11008 Page 1 of 23 Next	
Overview Help FAQ	🗆 1: <u>Fazzi E, Rossi M, Signorini S, Rossi G, Bianchi PE, Lanzi G.</u> Related Articles	
Tutorials New/Noteworthy 🔊 E-Utilities	Leber's congenital amaurosis: is there an autistic component? Dev Med Child Neurol. 2007 Jul;49(7):503-7. Abstract D: 17593121 [PubMed - in process]	
PubMed	2: Paya B, Fuentes N. Related Articles	
Services Journals Database MeSH Database Single Citation	Neurobiology of autism: neuropathology and neuroimaging studies. Actas Esp Psiquiar. 2007 Jul-Aug.35(4):271-6. PMID: 17592791 [PubMed - in process]	
Matcher Batch Citation Matcher	□ 3: <u>Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattari</u> Related Articles <u>S, Tonegawa S.</u>	
Clinical Queries Special Queries LinkOut My NCBI	Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci U S A. 2007 Jun 25; [Epub ahead of print] PMID: 17592139 [PubMed - as supplied by publisher]	
Related Resources	4: Scheeren AM, Stauder JE. Related Articles	
Order Documents NLM Mobile NLM Catalog	Broader Autism Phenotype in Parents of Autistic Children: Reality or Myth?	
NLM Gateway	J Autism Dev Disord. 2007 Jun 23; [Epub ahead of print] PMID: 17588199 [PubMed - as supplied by publisher]	•

Text Mining Example: Clustering of PubMed Articles



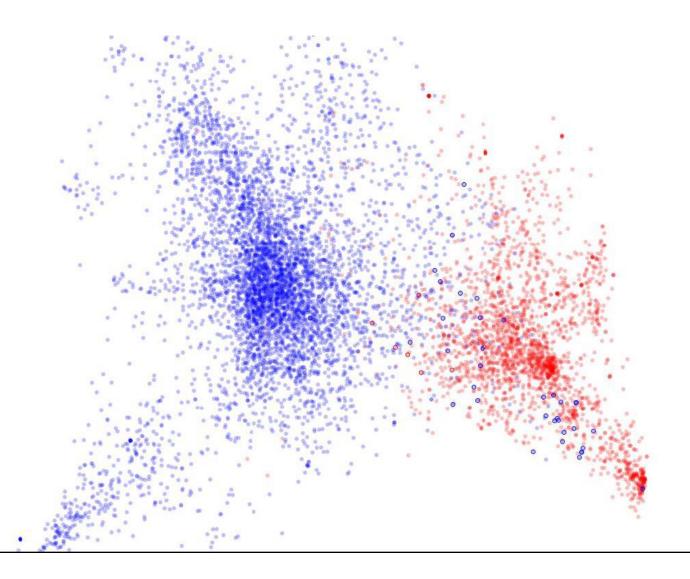
Slide adapted from D. Mladenić, JSI

OntoGen Applied to Clustering of PubMed Articles on Autistic Spectrum Disorders



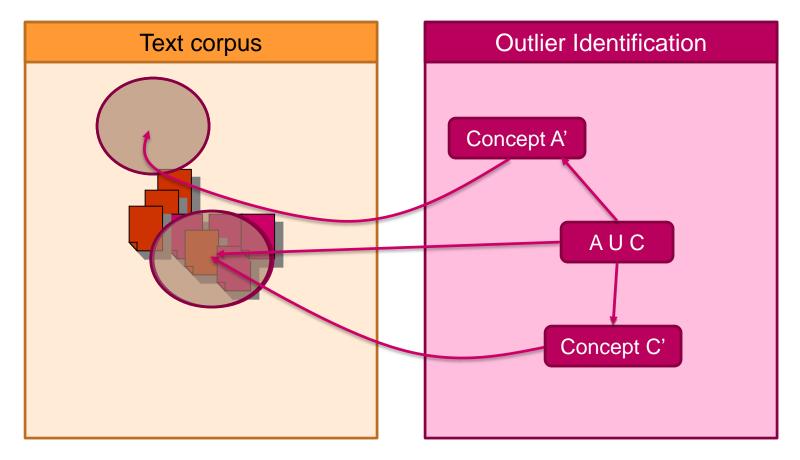
Grobelnik 2006

Outlier analysis from two document sets



2-dimensional projection of documents (about autism (red) and calcineurin (blue). Outlier documents are bolded for the user to easily spot them.

Using OntoGen for Outlier Document Identification



Slide adapted from D. Mladenić, JSI

Using OntoGen on autism-calcineurin data: Outlier calcineurin document CN423

B OntoGen Text Garden			
Concepts	Ontology details		
New Move Delete	Ontology visualization Concept's documents Concept Visualization		
Proot A' autism C' calcineurin C' calcineurin C' calcineurin Concept properties Details Suggestions Relations Name: A' autism Change Suggest Keywords: children, autism, patient, autistic, disorders, group, behaviors, asd, social, transplantation SVM Keywords: calc Calc 10285 Unused documents: 10285 Avg. similarity: calc	Apply Reset Show: Context documents Sort by: Similarity Document Similarity		

Work by Petrič et al. 2010

Summary

- JSI & Knowledge Technologies
- Introduction to Data Mining and KDD
 - Data Mining and KDD process
 - DM standards, tools and visualization
 - Classification of Data Mining techniques: Predictive and descriptive DM
- Selected Data Mining techniques: Advanced subgroup discovery techniques and applications
- Relation between data mining and text mining