Data Mining and Knowledge Discovery

Part of Jožef Stefan IPS Programme - ICT3 and UL Programme - Statistics

2012 / 2013

Nada Lavrač

Jožef Stefan Institute Ljubljana, Slovenia

Course Outline

I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- Data Mining and KDD process
- DM standards, tools and visualization
 (Mladenić et al. Ch. 1 and 11)

II. Predictive DM Techniques

- Bayesian classifier (Kononenko Ch. 9.6)
- Decision Tree learning (Mitchell Ch. 3, Kononenko Ch. 9.1)
- Classification rule learning (Kononenko Ch. 9.2)
- Classifier Evaluation (Bramer Ch. 6)

III. Regression

(Kononenko Ch. 9.4)

IV. Descriptive DM

- Predictive vs. descriptive induction
- Subgroup discovery
- Association rule learning (Kononenko Ch. 9.3)
- Hierarchical clustering (Kononenko Ch. 12.3)

V. Relational Data Mining

- RDM and Inductive Logic
 Programming (Dzeroski & Lavrac
 Ch. 3, Ch. 4)
- Propositionalization approaches
- Relational subgroup discovery

Introductory seminar lecture

X. JSI & Department of Knowledge Technologies

I. Introduction: First generation data mining

- Data Mining in a nutshell
- Predictive and descriptive DM techniques
- Data Mining and KDD process
- DM standards, tools and visualization (Mladenić et al. Ch. 1 and 11)

XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications
 XXX. Recent advances: Cross-context link discovery

Jožef Stefan Institute and IPS

- Jožef Stefan Institute (JSI, founded in 1949)
 - named after a distinguished physicist Jožef Stefan (1835-1893)

j = σ**T**⁴

- leading national research organization in natural sciences and technology (~700 researchers and students)
- JSI research areas
 - information and communication technologies
 - chemistry, biochemistry & nanotechnology
 - physics, nuclear technology and safety
- Jožef Stefan International Postgraduate School (IPS, founded in 2004)
 - offers MSc and PhD programs (ICT, nanotechnology, ecotechnology)
 - research oriented, basic + management courses
 - in English

Jožef Stefan Institute **Department of Knowledge Technologies**

- Head: Nada Lavrač, Staff: 30 researchers, 10 students
- **Machine learning & Data mining**
 - ML (decision tree and rule learning, subgroup discovery, ...)
 - Text and Web mining
 - Relational data mining inductive logic programming
 - Equation discovery

Other research areas:

- Knowledge management
- Decision support
- Human language technologies

• Applications:

- Medicine, Bioinformatics, Public Health
- Ecology, Finance, ...

Basic Data Mining Task

Input: transaction data table, relational database, text documents, Web pages **Goal:** build a classification model, find interesting patterns in data, ...

Data Mining and Machine Learning

- Machine learning techniques
 - classification rule learning
 - subgroup discovery
 - relational data mining and ILP
 - equation discovery
 - inductive databases
- Data mining and decision support integration

- Data mining applications
 - medicine, health care
 - ecology, agriculture
 - knowledge management, virtual organizations

Relational data mining: domain knowledge = relational database domain data knowledge Data Background mining knowledge

patterns

mode

8

Basic DM and DS Tasks

Input: transaction data table, relational database, text documents, Web pages **Goal:** build a classification model, find interesting patterns in data, ...

experts

Input: expert knowledge about data and decision alternatives Goal: construct decision support model – to support the evaluation and choice of best decision alternatives

Decision support tools: DEXi

DM and DS integration

Basic Text and Web Mining Task

Input: text documents, Web pages

Goal: text categorization, user modeling, data visualization...

Text Mining (lectures by D. Mladenić)

Document-Atlas

Semantic-Graphs

SEKTbar

Content-Land

Prijava | Registracija | 🔤

Išči 242 events, 3706 authors, 4700 lectures, 5758 videos

DOMOV PRILJUBLJENO NOVOSTI KATEGORIJE DOGODKI LJUDJE INTERVJUJI TEČAJI ABOUT US

PRIPOROČENA PREDAVANJA:

Performance

ZADNJI DOGODKI

NOVICE:

OpenCourseWare

VideoLectures.net

UPCOMING:

/mlcued08_cambridge/

Carnegie Mellon

available via VideoLectures.net.

6. dnevi evropskega prava

- Kranjska gora, Slovenia

more on > http://videolectures.net/cmulls

out on the MIT OCW page.

Machine Learning seminars

Information extraction Ronen Feldman Volkhard Stürzbecher 2 comments

Practical Guide to Estimation of gradients Controlled Experiments on the Web: Listen to Your in classification Customers not to the Sayan Mukherjee Ron Kohavi 🛛 🤍 1 comment

MIT OpenCourseWare Collection

MITOPENCOURSEWARE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

video educational collaboration with MIT

CAMBRIDGE

more on > http://videolectures.net

We are excited to announce that we have started a

Cambridge University Engineering Department -

nine Learning @ CUED talks also available via

Carnegie Mellon Machine Learning Lunch seminar

to make Machine Learning Lunch seminar talks also

Tudi letošnjo jesen so od 20. do 22. novembra v Kranjski Gori potekali tradicionalni dnevi evropskega

Predictions and Scoring Them Jukka Suomela

KATEGORIJE:

to announce a

Department of

We established the collaboration with Machine

Learning Department at

Carnegie Mellon University

SOCIUS - Ljubljana Wit - Bunnemann Burn and Luidand a di se

več

Business Club Socius / Poslovni klub Socius

Business Club Socius was established in 1994, under the patronage of the company Socius, whose main mission is to advise

7th International Semantic Web Conference

ISWC is a major international forum where visionary and state-of-the-art research of all aspects of the Semantic Web are presented. ...

MIT 18.085 Computational Science and Engineering I - Fall 2007

This course provides a review of linear algebra, including applications to networks, structures, and estimation, Lagrange multipliers. Also covered are: ...

2nd European Semantic Technology Conference

FEATURED: več

🔚 Nagovor predsednika Republike Slovenije dr. Danila Türk

INTERVIEWS: več

videolectures.net portal

~ 10,000 lectures

http//:videolectures.net

Selected Publications

Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- Data Mining and the KDD process
- DM standards, tools and visualization (Mladenić et al. Ch. 1 and 11, Kononenko & Kukar Ch. 1)
- XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications
- XXX. Recent advances: Cross-context link discovery

Part I. Introduction

Data Mining in a Nutshell

- Predictive and descriptive DM techniques
- Data Mining and the KDD process
- DM standards, tools and visualization

What is DM

- Extraction of useful information from data: discovering relationships that have not previously been known
- The viewpoint in this course: Data Mining is the application of Machine Learning techniques to solve real-life data analysis problems

Data Mining in a Nutshell

data

Given: transaction data table, relational database, text documents, Web pagesFind: a classification model, a set of interesting patterns

Data Mining in a Nutshell

	•		A 11			
Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	knowledge discovery
01	17	myope	no	reduced	NONE	Q
02	23	myope	no	normal	SOFT	from data
O3	22	myope	yes	reduced	NONE	
04	27	myope	yes	normal	HARD	
O5	19	hypermetrope	no	reduced	NONE	
06-013						Data Mining
O14	35	hypermetrope	no	normal	SOFT	Data Mining
O15	43	hypermetrope	yes	reduced	NONE	
O16	39	hypermetrope	yes	normal	NONE	
017	54	myope	no	reduced	NONE	
O18	62	myope	no	normal	NONE	
019-023						
O24	56	hypermetrope	yes	normal	NONE	

data

Given: transaction data table, relational database, text documents, Web pages Find: a classification model, a set of interesting patterns

new unclassified instance

classified instance black box classifier

symbolic model symbolic patterns explanation

Simplified example: Learning a classification model from contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
02	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	HARD
O5	19	hypermetrope	no	reduced	NONE
06-013	•••		•••		
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
O17	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023			•••		
O24	56	hypermetrope	yes	normal	NONE

Simplified example: Learning a classification model from contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
O2	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
O4	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
06-013					
O14	ore-presbyc	hypermetrope	no	normal	SOFT
O15	ore-presbyc	hypermetrope	yes	reduced	NONE
O16	ore-presbyc	hypermetrope	yes	normal	NONE
017	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023					
O24	presbyopic	hypermetrope	yes	normal	NONE

Task reformulation: Binary Class Values

Person	Person Age		Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
02	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013			•••		
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
O17	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023			•••		
O24	56	hypermetrope	yes	normal	NO

Binary classes (positive vs. negative examples of Target class)

- for Concept learning classification and class description
 - for Subgroup discovery exploring patterns characterizing groups of instances of target class

Learning from Numeric Class Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	LensPrice
01	17	myope	no	reduced	0
O2	23	myope	no	normal	8
O3	22	myope	yes	reduced	0
O4	27	myope	yes	normal	5
O5	19	hypermetrope	no	reduced	0
O6-O13					
O14	35	hypermetrope	no	normal	5
O15	43	hypermetrope	yes	reduced	0
O16	39	hypermetrope	yes	normal	0
O17	54	myope	no	reduced	0
O18	62	myope	no	normal	0
019-023					
O24	56	hypermetrope	yes	normal	0

Numeric class values – regression analysis

Learning from Unlabeled Data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NONE
O2	23	myope	no	normal	SOFT
O3	22	myope	yes	reduced	NONE
O4	27	myope	yes	normal	MARD
O5	19	hypermetrope	no	reduced	NONE
O6-O13					<u>X</u> .
O14	35	hypermetrope	no	normal	SOFT
O15	43	hypermetrope	yes	reduced	NONE
O16	39	hypermetrope	yes	normal	NONE
017	54	myope	no	reduced	NONE
O18	62	myope	no	normal	NONE
019-023					/ \
O24	56	hypermetrope	yes	normal	NONE

Unlabeled data - clustering: grouping of similar instances - association rule learning

Data Mining: Related areas

Related areas

- Statistics, machine learning, pattern recognition and soft computing*
- classification techniques and techniques for knowledge extraction from data

*neural networks, fuzzy logic, genetic algorithms, probabilistic reasoning

Related areas

Related areas

Point of view in this course

Knowledge discovery using machine learning methods

Data Mining, ML and Statistics

- All three areas have a long tradition of developing inductive techniques for data analysis.
 - reasoning from properties of a data sample to properties of a population
- DM vs. ML Viewpoint in this course:
 - Data Mining is the application of Machine Learning techniques to hard real-life data analysis problems

Data Mining, ML and Statistics

- All three areas have a long tradition of developing inductive techniques for data analysis.
 - reasoning from properties of a data sample to properties of a population
- DM vs. Statistics:
 - Statistics
 - Hypothesis testing when certain theoretical expectations about the data distribution, independence, random sampling, sample size, etc. are satisfied
 - Main approach: best fitting all the available data
 - Data mining
 - Automated construction of understandable patterns, and structured models
 - Main approach: structuring the data space, heuristic search for decision trees, rules, ... covering (parts of) the data space

Part I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- Data Mining and the KDD process
- DM standards, tools and visualization

Types of DM tasks

- Predictive DM:
 - Classification (learning of rules, decision trees, ...)
 - Prediction and estimation (regression)
 - Predictive relational DM (ILP)
- Descriptive DM:
 - description and summarization
 - dependency analysis (association rule learning)
 - discovery of properties and constraints
 - segmentation (clustering)
 - subgroup discovery

Predictive vs. descriptive DM

Predictive DM

Descriptive DM

Predictive vs. descriptive DM

- **Predictive DM:** Inducing classifiers for solving classification and prediction tasks,
 - Classification rule learning, Decision tree learning, ...
 - Bayesian classifier, ANN, SVM, ...
 - Data analysis through hypothesis generation and testing
- **Descriptive DM:** Discovering interesting regularities in the data, uncovering patterns, ... for solving KDD tasks
 - Symbolic clustering, Association rule learning, Subgroup discovery, ...
 - Exploratory data analysis

Predictive DM formulated as a machine learning task:

• Given a set of labeled **training examples** (n-tuples of attribute values, labeled by class name)

	A1	A2	A3	Class
example1	V _{1,1}	V _{1,2}	V _{1,3}	C ₁
example2	V _{2,1}	V _{2,2}	V _{2,3}	C ₂

• By performing generalization from examples (induction) find a **hypothesis** (classification rules, decision tree, ...) which explains the training examples, e.g. rules of the form:

 $(A_i = v_{i,k}) \& (A_j = v_{j,l}) \& \dots \Rightarrow Class = C_n$

Predictive DM - Classification

- data are objects, characterized with attributes they belong to different classes (discrete labels)
- given objects described with attribute values, induce a model to predict different classes
- decision trees, if-then rules, discriminant analysis, ...

Data mining example Input: Contact lens data

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	young	myope	no	reduced	NONE
02	young	myope	no	normal	SOFT
O3	young	myope	yes	reduced	NONE
O4	young	myope	yes	normal	HARD
O5	young	hypermetrope	no	reduced	NONE
06-013			•••		
O14	ore-presbyc	hypermetrope	no	normal	SOFT
O15	ore-presbyc	hypermetrope	yes	reduced	NONE
O16	ore-presbyc	hypermetrope	yes	normal	NONE
O17	presbyopic	myope	no	reduced	NONE
O18	presbyopic	myope	no	normal	NONE
019-023			•••		
024	presbyopic	hypermetrope	yes	normal	NONE

Contact lens data: Decision tree

Type of task: prediction and classification Hypothesis language: decision trees

(nodes: attributes, arcs: values of attributes, leaves: classes)

Contact lens data: Classification rules

Type of task: prediction and classification
Hypothesis language: rules X → C, if X then C
X conjunction of attribute values, C class

tear production=reduced → lenses=NONE tear production=normal & astigmatism=yes & spect. pre.=hypermetrope → lenses=NONE tear production=normal & astigmatism=no → lenses=SOFT

tear production=normal & astigmatism=yes & spect. pre.=myope → lenses=HARD DEFAULT lenses=NONE

Task reformulation: Concept learning problem (positive vs. negative examples of Target class)

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses	
01	young	myope	no	reduced	NO	
02	young	myope	no	normal	YES	
O3	young	myope	yes	reduced	NO	
04	young	myope	yes	normal	YES	
O5	young	hypermetrope	no	reduced	NO	
06-013			•••			
O14	ore-presbyc	hypermetrope	no	normal	YES	
O15	ore-presbyc	hypermetrope	yes	reduced	NO	
O16	ore-presbyc	hypermetrope	yes	normal	NO	
O17	presbyopic	myope	no	reduced	NO	
O18	presbyopic	myope	no	normal	NO	
019-023			•••			
O24	presbyopic	hypermetrope	yes	normal	NO	

Contact lens data: Classification rules in concept learning

Type of task: prediction and classification
Hypothesis language: rules X → C, if X then C
X conjunction of attribute values, C target class

Target class: yes

tear production=normal & astigmatism=no → lenses=YES tear production=normal & astigmatism=yes & spect. pre.=myope → lenses=YES else NO

Illustrative example: Customer data

Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	yes
c2	female	19	139000	15100	yes
c3	male	55	50000	12400	no
c4	female	48	26000	8600	no
c5	male	63	191000	28100	yes
O6-O13					
c14	female	61	95000	18100	yes
c15	male	56	44000	12000	no
c16	male	36	102000	13800	no
c17	female	57	215000	29300	yes
c18	male	33	67000	9700	no
c19	female	26	95000	11000	no
c20	female	55	214000	28800	yes

Customer data: Decision trees

Predictive DM - Estimation

- often referred to as regression
- data are objects, characterized with attributes (discrete or continuous), classes of objects are continuous (numeric)
- given objects described with attribute values, induce a model to predict the numeric class value
- regression trees, linear and logistic regression, ANN, kNN, ...

Estimation/regression example: Customer data

Customer	Gender	Age	Income	Spent	
c1	male	30	214000	18800	
c2	female	19	139000	15100	
c3	male	55	50000	12400	
c4	female	48	26000	8600	
c5	male	63	191000	28100	
O6-O13				•••	
c14	female	61	95000	18100	
c15	male	56	44000	12000	
c16	male	36	102000	13800	
c17	female	57	215000	29300	
c18	male	33	67000	9700	
c19	female	26	95000	11000	
c20	female	55	214000	28800	

Customer data: regression tree

In the nodes one usually has Predicted value +- st. deviation

Predicting algal biomass: regression tree

Descriptive DM: Subgroup discovery example -Customer data

Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	yes
c2	female	19	139000	15100	yes
c3	male	55	50000	12400	no
c4	female	48	26000	8600	no
c5	male	63	191000	28100	yes
O6-O13					
c14	female	61	95000	18100	yes
c15	male	56	44000	12000	no
c16	male	36	102000	13800	no
c17	female	57	215000	29300	yes
c18	male	33	67000	9700	no
c19	female	26	95000	11000	no
c20	female	55	214000	28800	yes

Customer data: Subgroup discovery

Type of task: description (pattern discovery) **Hypothesis language:** rules $X \rightarrow Y$, if X then Y

X is conjunctions of items, Y is target class

Age > 52 & Sex = male → BigSpender = no

Age > 52 & Sex = male & Income \leq 73250 \rightarrow BigSpender = no

Descriptive DM: Clustering and association rule learning example - Customer data

					<u> </u>
Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	yes
c2	female	19	139000	15100	yes /
c3	male	55	50000	12400	no
c4	female	48	26000	8600	no
c5	male	63	191000	28100	yes
O6-O13					.X .
c14	female	61	95000	18100	yeş
c15	male	56	44000	12000	no
c16	male	36	102000	13800	no
c17	female	57	215000	29300	yes
c18	male	33	67000	9700	no
c19	female	26	95000	11000	no
c20	female	55	214000	28800	yes

Descriptive DM: Association rule learning example -Customer data

Customer	Gender	Age	Income	Spent	BigSpender
c1	male	30	214000	18800	yes
c2	female	19	139000	15100	yes
c3	male	55	50000	12400	no
c4	female	48	26000	8600	no
c5	male	63	191000	28100	yes
06-013					
c14	female	61	95000	18100	yes
c15	male	56	44000	12000	no
c16	male	36	102000	13800	no
c17	female	57	215000	29300	yes
c18	male	33	67000	9700	no
c19	female	26	95000	11000	no
c20	female	55	214000	28800	yes

Customer data: Association rules

Type of task: description (pattern discovery)

Hypothesis language: rules $X \rightarrow Y$, if X then Y

X, Y conjunctions of items

Age > 52 & BigSpender = no → Sex = male
 Age > 52 & BigSpender = no →
 Sex = male & Income ≤ 73250
 Sex = male & Age > 52 & Income ≤ 73250 →
 BigSpender = no

Predictive vs. descriptive DM: Summary from a rule learning perspective

- **Predictive DM:** Induces **rulesets** acting as classifiers for solving classification and prediction tasks
- **Descriptive DM:** Discovers **individual rules** describing interesting regularities in the data
- **Therefore:** Different goals, different heuristics, different evaluation criteria

Relational Data Mining (Inductive Logic⁵⁸ Programming) in a Nutshell

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical facts, a graph, ... **Find:** a classification model, a set of interesting patterns

Relational Data Mining (ILP)

- Learning from multiple tables
- Complex relational problems:
 - temporal data: time series in medicine, trafic control, ...
 - structured data: representation of molecules and their properties in protein engineering, biochemistry, ...

Relational Data Mining (ILP)

	customer											
	ID 1	Zip	$_{ex}^{S}$	$_{\rm St}^{ m So}$	$\lim_{ ext{com}}$	ie j	A ge	Cl ub	${ m Re}_{ m sp}$			
	/					- I						
		34677			60-7							
	3479 (43666	f	ma	80-9	90f	45	$\mathbf{n}\mathbf{m}$	re			
\square		order										
Customer ID	Order ID	Store ID \		eliv			ayn					
ш	ID	\mathbb{D}	M	lode		$ \mathbf{M} $	od	e				
] \		•								
3478	2140267	1	11	gula			sh	I				
3478	3446778	1	1	rpre			lec]					
3478	4728386	1	ITE	gula	ar		lec]	I				
3479	3233444	1	1.1	rpre		-	edi	-				
3479	3475886	12	Π,	gula	ar	CT	edi	t				
				١								
				1					tore			
				Sto	re II	D	Siz	e '	Гуре	Location		
						1		.				
				12					ranchise	v		
				17		l	arį	ge ∣i	ndep	rural		

Relational representation of customers, orders and stores.

Relational representation of customers, orders and stores.

ID	Zip	Sex	Soc St	Income	Age	Club	Resp
3478	34667	m	si	60-70	32	me	nr
3479	43666	f	ma	80-90	45	nm	re

Basic table for analysis

ID	Zip	Sex	Soc St	Income	Age	Club	Resp
3478	34667	m	si	60-70	32	me	nr
3479	43666	f	ma	80-90	45	nm	re

Data table presented as logical facts (Prolog format) customer(Id,Zip,Sex,SoSt,In,Age,Club,Re)

Prolog facts describing data in Table 2: customer(3478,34667,m,si,60-70,32,me,nr). customer(3479,43666,f,ma,80-90,45,nm,re).

Expressing a property of a relation: customer(_,_,f,_,_,_).

Relational Data Mining (ILP)

Data bases:

- Name of relation p
- Attribute of p
- n-tuple < v₁, ..., v_n > = row in
 a relational table
- relation p = set of n-tuples = relational table

Logic programming:

- Predicate symbol p
- Argument of predicate p
- Ground fact $p(v_1, ..., v_n)$
- Definition of predicate p
 - Set of ground facts
 - Prolog clause or a set of Prolog clauses

Example predicate definition:

good_customer(C) :customer(C,_,female,_,_,_,_),
order(C,_,_,_,creditcard).

Part I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
 - Data Mining and the KDD process
- DM standards, tools and visualization

Data Mining and KDD

- KDD is defined as "the process of identifying valid, novel, potentially useful and ultimately understandable models/patterns in data." *
- Data Mining (DM) is the key step in the KDD process, performed by using data mining techniques for extracting models or interesting patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

KDD Process

KDD process of discovering useful knowledge from data

• KDD process involves several phases:

- data preparation
- data mining (machine learning, statistics)
- evaluation and use of discovered patterns
- Data mining is the key step, but represents only 15%-25% of the entire KDD process

MEDIANA – analysis of media research data

- Questionnaires about journal/magazine reading, watching of TV programs and listening of radio programs, since 1992, about 1200 questions. Yearly publication: frequency of reading/listening/watching, distribution w.r.t. Sex, Age, Education, Buying power,..
- Data for 1998, about 8000 questionnaires, covering lifestyle, spare time activities, personal viewpoints, reading/listening/watching of media (yes/no/how much), interest for specific topics in media, social status
- good quality, "clean" data
- table of n-tuples (rows: individuals, columns: attributes, in classification tasks selected class)

MEDIANA – media research pilot study

- Patterns uncovering regularities concerning:
 - Which other journals/magazines are read by readers of a particular journal/magazine ?
 - What are the properties of individuals that are consumers of a particular media offer ?
 - Which properties are distinctive for readers of different journals ?
- Induced models: description (association rules, clusters) and classification (decision trees, classification rules)

Simplified association rules

Finding profiles of readers of the Delo daily newspaper

 reads_Marketing_magazine 116 → reads_Delo 95 (0.82)

- 2. reads_Financial_News (Finance) 223 → reads_Delo 180
 (0.81)
- 3. reads_Views (Razgledi) 201 → reads_Delo 157 (0.78)
- 4. reads_Money (Denar) 197 → reads_Delo 150 (0.76)
- 5. reads_Vip 181 → reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, Financial News, Views, Money and Vip read also Delo.

Simplified association rules

- 1. reads_Sara 332 → reads_Slovenske novice 211 (0.64)
- 2. reads_Ljubezenske zgodbe 283 → reads_Slovenske novice 174 (0.61)
- 3. reads_Dolenjski list 520 →

reads_Slovenske novice 310 (0.6)

- 4. reads_Omama 154 → reads_Slovenske novice 90 (0.58)
- 5. reads_Delavska enotnost 177 →

reads_Slovenske novice 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska new, Omama in Workers new read also Slovenian news.

Simplified association rules

 reads_Sportske novosti 303 → reads_Slovenski delnicar 164 (0.54)
 reads_Sportske novosti 303 → reads_Salomonov oglasnik 155 (0.51)
 reads_Sportske novosti 303 → reads_Lady 152 (0.5)

More than half of readers of Sports news reads also Slovenian shareholders magazine, Solomon advertisements and Lady.

Decision tree

Finding reader profiles: decision tree for classifying people into readers and non-readers of a teenage magazine Antena.

Part I. Introduction

- Data Mining in a Nutshell
- Predictive and descriptive DM techniques
- Data Mining and the KDD process
 - DM standards, tools and visualization

CRISP-DM

- Cross-Industry Standard Process for DM
- A collaborative, 18-months partially EC founded project started in July 1997
- NCR, ISL (Clementine), Daimler-Benz, OHRA (Dutch health insurance companies), and SIG with more than 80 members
- DM from art to engineering
- Views DM more broadly than Fayyad et al. (actually DM is treated as KDD process):

CRISP Data Mining Process

DM tools

💥 KDNuggets Direc	story: Data Mining and Knowledge Discovery - Netscape	×
<u>File E</u> dit <u>V</u> iew <u>G</u> o	<u>C</u> ommunicator <u>H</u> elp	
👔 🏾 🌿 🖁 Bookmarks	🙏 Location: http://www.kdnuggets.com/	N
▶ annunne / ⊾anne/		
KDNuggets.com	Path: <u>KDNuggets Home</u> :	1
<u>KDNuggets</u> <u>Newsletter</u>	Tools (Siftware) for Data Mining and Knowledge Discovery	
<u>Tools</u> <u>Companies</u>	Email new submissions and changes to <u>editor@kdnuggets.com</u>	
Jobs	• Suites supporting multiple discovery tasks and data preparation	
<u>Courses</u>	 Classification for building a classification model 	
<u>*KDD-99*</u>	Approach: Multiple Decision tree Rules Neural network Bayesian Other	
Solutions	 Clustering - for finding clusters or segments 	
Websites	 <u>Statistics, Estimation and Regression</u> 	
References	 Links and Associations - for finding links, dependency networks, and associations 	
Meetings	 Sequential Patterns - tools for finding sequential patterns 	
Datasets	 Visualization - scientific and discovery-oriented visualization 	
	• <u>Text and Web Mining</u>	
	Deviation and Fraud Detection	
	Reporting and Summarization	
	Data Transformation and Cleaning	
	OLAP and Dimensional Analysis	•
-	Document: Done	//

Public DM tools

- WEKA Waikato Environment for Knowledge Analysis
- KNIME Konstanz Information Miner
- R Bioconductor, ...
- Orange, Orange4WS, ClowdFlows

reprocess	Classify	Cluster	Associate	Select attributes	Visualize					
Open file Open URL Open DB			Aj	ply Filters	Repl	ace	Save.			
Base relatio Relation: Instances:	weather		Attribute	es: 5	Re	ng relation ation: weather nces: 14		Attrib	ites: 5	
Attributes in	base rela	tion			Filters					
All None Invert			Invert	AddFil	er-N unnamed	-C 0			Add	
No.	Na	me								
	outlook									
	d temperat	ure								
	i humidity windy						Del	ete		
	play				Attribu	rte info for base	e relation			
-					Na	me: humidity ing: 0 (0%)	Distinct:	10	Type: Nume Unique: 7 (50%	
						Statistic			Value	
					Minim			65.0		
					Maxim	um		96.0		
					Mean				5714285714	
					StdDe	/		10.2852	18242007051	
og										
07:31:49: Sta	arted on To	orek, 6 ma								-
			eather (14 in v weather (14							22 •

Visualization

- can be used on its own (usually for description and summarization tasks)
- can be used in combination with other DM techniques, for example
 - visualization of decision trees
 - cluster visualization
 - visualization of association rules
 - subgroup visualization

Data visualization: Scatter plot

DB Miner: Association rule visualization

💑 dbminer - [Association #1]	_ 🗆 ×
🕎 <u>F</u> ile <u>E</u> dit <u>Q</u> uery <u>V</u> iew <u>W</u> indow Options <u>H</u> elp	_ 8 ×
Dim: cost 🔽 Level: Level0 🔽 🖽 🚺 🔨 🖄 Sup% 10.	Conf% 50.0
	ю, 0, 9,

	3
Adust Height/Size : support Color: confidence (%) 1.0 - 0% 100%	

MineSet: Decision tree visualization

🖗 MineSet Tree Visualizer: risk-dt	
<u>File View Selections Display Go</u> <u>H</u> elp	
Pointer is over:	
	≞ sgi
	<u> </u>

	企
	● ● ● ● ● ● ● ● ● ● ● ● ● ●
	25
	ک
1.0	5
	\Box
	र्य <i>क</i> ्रिक्ट
stage	
.5	
Gleason Score 2	
	Dolly
recur No Yes	
Readu	NUM

Orange: Visual programming and subgroup discovery visualization

Part I: Summary

- KDD is the overall process of discovering useful knowledge in data
 - many steps including data preparation, cleaning, transformation, pre-processing
- Data Mining is the data analysis phase in KDD
 - DM takes only 15%-25% of the effort of the overall KDD process
 - employing techniques from machine learning and statistics
- Predictive and descriptive induction have different goals: classifier vs. pattern discovery
- Many application areas, many powerful tools available

Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction: First generation data mining

- Data Mining in a nutshell
- Data Mining and KDD process
- DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive and descriptive DM

(Mladenić et al. Ch. 1 and 11, Kononenko & Kukar Ch. 1)

XX. Selected data mining techniques: Advanced subgroup discovery techniques and applications

XXX. Recent advances: Cross-context link discovery

XX. Talk outline

Subgroup discovery in a nutshell

- Relational data mining and propositionalization in a nutshell
- Semantic data mining: Using ontologies in SD

Task reformulation: Binary Class Values

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
02	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
06-013					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
O17	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
019-023					
O24	56	hypermetrope	yes	normal	NO

Binary classes (positive vs. negative examples of Target class)

- for Concept learning classification and class description
 - for Subgroup discovery exploring patterns

characterizing

groups of instances of target class

Subgroup Discovery

Person	Age	Spect. presc.	Astigm.	Tear prod.	Lenses
01	17	myope	no	reduced	NO
O2	23	myope	no	normal	YES
O3	22	myope	yes	reduced	NO
O4	27	myope	yes	normal	YES
O5	19	hypermetrope	no	reduced	NO
O6-O13					
O14	35	hypermetrope	no	normal	YES
O15	43	hypermetrope	yes	reduced	NO
O16	39	hypermetrope	yes	normal	NO
017	54	myope	no	reduced	NO
O18	62	myope	no	normal	NO
O19-O23					
O24	56	hypermetrope	yes	normal	NO

- A task in which individual interpretable patterns in the form of rules are induced from data, labeled by a predefined property of interest.
- SD algorithms learn several independent rules that describe groups of target class examples
 - subgroups must be large and significant

Classification versus Subgroup Discovery

- Classification (predictive induction) constructing sets of classification rules
 - aimed at learning a model for classification or prediction
 - rules are dependent
- Subgroup discovery (descriptive induction) constructing individual subgroup describing rules
 - aimed at finding interesting patterns in target class examples
 - large subgroups (high target class coverage)
 - with significantly different distribution of target class examples (high TP/FP ratio, high significance, high WRAcc
 - each rule (pattern) is an independent chunk of knowledge

Classification versus Subgroup discovery

Subgroup discovery task

Task definition (Kloesgen, Wrobel 1997)

- **Given:** a population of individuals and a property of interest (target class, e.g. CHD)
- Find: `most interesting' descriptions of population subgroups
 - are as large as possible (high target class coverage)
 - have most unusual distribution of the target property

(high TP/FP ratio, high significance)

Subgroup discovery example: CHD Risk Group Detection

- Input: Patient records described by stage A (anamnestic), stage B (an. & lab.), and stage C (an., lab. & ECG) attributes
- **Task**: Find and characterize population subgroups with high CHD risk (large enough, distributionally unusual)
- From best induced descriptions, five were selected by the expert as most actionable for CHD risk screening (by GPs): CHD-risk ← male & pos. fam. history & age > 46 CHD-risk ← female & bodymassIndex > 25 & age > 63 CHD-risk ← ... CHD-risk ← ... CHD-risk ← ...

Characteristics of SD Algorithms

- SD algorithms do not look for a single complex rule to describe all examples of target class YES (all CHDrisk patients), but several rules that describe parts (subgroups) of YES.
- Standard rule learning approach: Using the covering algorithm for rule set construction

Characteristics of SD Algorithms

- SD algorithms do not look for a single complex rule to describe all examples of target class YES (all CHDrisk patients), but several rules that describe parts (subgroups) of YES.
- Advanced rule learning approach: using example weights in the weighted covering algorithm for repetitive subgroup construction and in the rule quality evaluation heuristics.

Weighted covering algorithm for rule set construction

- For learning a set of subgroup describing rules, SD implements an iterative weigthed covering algorithm.
- Quality of a rule is measured by trading off coverage and precision.

Weighted covering algorithm for rule set construction

Rule quality measure in SD: $q(Cl \leftarrow Cond) = TP/(FP+g)$

Rule quality measure in CN2-SD: WRAcc(CI ←Cond) = p(Cond) x [p(CI | Cond) – p(CI)] = coverage x (precision – default precision) ***Coverage** = sum of the covered weights, ***Precision** = purity of the covered examples

Weighted covering algorithm for rule set construction

In contrast with classification rule learning algorithms (e.g. CN2), the covered positive examples are not deleted from the training set in the next rule learning iteration; they are re-weighted, and a next 'best' rule is learned.

Subgroup visualization

The CHD task: Find, characterize and visualize population subgroups with high CHD risk (large enough, distributionally unusual, most actionable)

Induced subgroups and their statistical characterization

Subgroup A2 for femle patients:

High-CHD-risk IF

body mass index over 25 kg/m² (typically 29) AND age over 63 years

Supporting characteristics (computed using %2 statistical significance test) are: positive family history and hypertension. Women in this risk group typically have slightly increased LDL cholesterol values and normal but decreased HDL cholesterol values.

SD algorithms in the Orange DM Platform

- SD Algorithms in Orange
 - SD (Gamberger & Lavrač, JAIR 2002
 - APRIORI-SD (Kavšek & Lavrač, AAI 2006
 - CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2 classification rule learner to Subgroup Discovery
 - Weighted covering algorithm
 - Weighted relative accuracy (WRAcc) search heuristics, with added example weights

SD algorithms in Orange and Orange4WS

Orange

- classification and subgroup discovery algorithms
- data mining workflows
- visualization
- developed at FRI, Ljubljana

- Orange4WS (Podpečan 2010)
 - Web service oriented
 - supports workflows and other Orange functionality
 - includes also
 - WEKA algorithms
 - relational data mining
 - semantic data mining with ontologies
 - Web-based platform is under construction

Current platform and workflow developments

- CrowdFlows browser-based DM platform (Kranjc et al. 2012)
- Semantic Subgroup Discovery workflows (Vavpetič et al., 2012)

106

XX. Talk outline

- Subgroup discovery in a nutshell
 Relational data mining and propositionalization in a nutshell
 - Semantic data mining: Using ontologies in SD

Relational Data Mining (Inductive Logic Programming) in a nutshell

Relational representation of customers, orders and stores.

Given: a relational database, a set of tables. sets of logical facts, a graph, ... **Find:** a classification model, a set of interesting patterns
Relational Data Mining (ILP)

- Learning from multiple tables
 - patient records connected with other patient and demographic information
- Complex relational problems:
 - temporal data: time series in medicine, ...
 - structured data: representation of molecules and their properties in protein engineering, biochemistry, ...

Sample ILP problem: East-West trains

1. TRAINS GOING EAST

2. TRAINS GOING WEST

Deletional data representation

TRAIN_TABLE

:AR	OBJECT	NUMBE	R		_		
c1	circle	1					JE
c2	hexagon	1					JE
c3	triangle	1					
c4	rectangle	3					SE
							-
			•				
	_	<u>CAR</u>	TRAIN	SHAPE	LENGTH	ROOF	WHEELS
		c1	t1	rectangle	short	none	2
		c2	t1	rectangle	long	none	3
		c3	t1	rectangle	short	peaked	2
		c4	t1	rectangle	long	none	2

Deletional data representation

TRAIN_TABLE

AR	OBJECT	NUMBE	R				OUND
c1	circle	1					JE
c2	hexagon	1					JE
c3	triangle	1					
c4	rectangle	e 3					SE
_ 4							
			•				
		<u>CAR</u>	TRAIN	SHAPE	LENGTH	ROOF	WHEELS
	- 1	c1	t1	rectangle	short	none	2
		c2	t1	rectangle	long	none	3
		c3	t1	rectangle	short	peaked	2
		c4	t1	rectangle	long	none	2

D^ron in a nutshell

CAR

c2 c3 c4

Transform a multi-relational (multiple-table)

representation to a propositional representation (**single table**)

Proposed in ILP systems LINUS (Lavrac et al. 1991, 1994), 1BC (Flach and Lachiche 1999), ...

OBJEC	r numbe	R				CTT DUND
circle	1					JE
hexago	n 1					JE
triangle	e 1					
rectang	le 3					SE
		•				
	<u>CAR</u>	TRAIN	SHAPE	LENGTH	ROOF	WHEELS
	c1	t1	rectangle	short	none	2
	c2	t1	rectangle	long	none	3
	c3	t1	rectangle	short	peaked	2
	c4	t1	rectangle	long	none	2
	circle hexagor triangle rectang	circle 1 hexagon 1 triangle 1 rectangle 3 CAR c1 c2 c3 c3 c4	circle 1 hexagon 1 triangle 1 rectangle 3 CAR TRAIN c1 t1 c2 t1 c3 t1 c4 t1	circle 1 hexagon 1 triangle 1 rectangle 3 CAR TRAIN SHAPE c1 t1 rectangle c2 t1 rectangle c3 t1 rectangle c4 t1 rectangle	circle 1 hexagon 1 triangle 1 rectangle 3 CAR TRAIN SHAPE LENGTH c1 t1 rectangle short c2 t1 rectangle c3 t1 rectangle short c4 t1 rectangle long	circle 1 hexagon 1 triangle 1 rectangle 3 - CAR TRAIN SHAPE LENGTH ROOF C1 t1 rectangle short none c2 t1 rectangle long none c3 t1 rectangle short peaked c4 t1 rectangle long none

TRAIN TABLE

Propositionalization in a nutshell

LOAI

|2 |3 |4

Main propositionalization step: first-order feature construction

						TI	RAIN_	TABLE
<u>D</u>	CAR	OBJECT	NUMB	ER		_		
	c1	circle	1					JE
	c2	hexagor	า 1					JE
	c3	triangle	e 1					
	c4	rectangl	e 3					SE
				•				
			<u>CAR</u>	TRAIN	SHAPE	LENGTH	ROOF	WHEELS
			c1	t1	rectangle	short	none	2
			c2	t1	rectangle	long	none	3
			c3	t1	rectangle	short	peaked	2
			c4	t1	rectangle	long	none	2
				• •	<u> </u>	<u>_</u>		

Propositional learning:

 $t(T) \leftarrow f1(T), f4(T)$

Relational interpretation:

eastbound(T) \leftarrow hasShortCar(T),hasClosedCar(T).

PROPOSITIONAL TRAIN_TABLE

<u>train(T)</u>	f1(T)	f2(T)	f3(T)	f4(T)	f5(T)
t1	t	t	f	t	t
t2	t	t	t	t	t
t3	f	f	t	f	f
t4	t	f	t	f	f

				с	usto	mer					
		ID /	Zip	Sex			ne ge		Cl ub	$_{\mathrm{sp}}^{\mathrm{Re}}$	
	/				·		·				
	/		34677			60-1					
		3479	43666	t	ma	80-9	40 4	45	nm	re	
				••••		•••	ŀ				
			order								
Customer D	Or ID	der	$\frac{\text{Store}}{\mathbb{D}}$	I N)eliv Aode	ery	Pa Me	iyn odd	at e		
			\								
3478	214	10267	12	r	egula	ır	ca	\mathbf{sh}			
3478	344	16778	12	∖∣e	xpre	SS	ch	ecl	د		
3478	472	28386	17	ŀ	egula	ır	ch	ecl	c		
3479	323	3444	17	ŀ	xpre	SS	cre	edi	t		
3479	347	75886	12	L,	egula	ır	cre	edi	t		
					4						
					\Box				st	tore	
					Sto	re 🛛	DS	Size	e (Туре	Loc
									Ţ		
					12		s	mą	ull f	franchise	city

Relational representation of customers, orders and stores.

17

large indep

Location

rural

Step 1 Propositionalization

	f1	f2	f3	f4	f5	f6						fn
g 1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 ¹ 0	0	0	1	1	1	0
g5	1	1	1	0	0	0010	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

				C	isto	mer			
		ID 1	Zip	Sex			e ge	Cl ub	$_{ m sp}^{ m Re}$
		ľ					.		
	/	3478	34677	m	si	60-70	032	me	nr
/	/	3479	43666			80-9	0 45	nn	re
_/			order						
Customer	Or			Т	eliv	erv	Pay	nt	
Customer ID	07 ID		$\frac{\text{Store}}{\text{ID}}$	Ň	lode		Mod		
			\						
3478	214	0267	12	(re	egula	ar (ash		
3478	344	6778	12	\ e:	xpre	ss (hec	k	
3478	472	8386	17	- In	egula	ar (hec	k	
3479	323	3444	17	- le:	xpre	ss 🤇	red	it	
3479	347	5886	12	r,	egula	ar (red	it	
					1				
					ΓŢ			S	tore
					Sto	re ID	Siz	e	Тур
					12		\mathbf{sm}	all	franc

Relational representation of customers, orders and stores.

Location

city rural Step 1 Propositionalization

- 1. constructing relational features
- 2. constructing a propositional table

·												
	f1	f2	f3	f4	f5	f 6		1		1		\mathbf{fn}
g1	1	0	0	1	1	1	0	0	1	0	1	1
g 2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 1 0	0	0	1	1	1	0
g5	1	1	1	0	0 /	010	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

					isto	-				-
		ID ∮	Zip	s_{ex}	So St	\lim_{com}	e	A ge	Cl ub	$\operatorname{Re}_{\operatorname{sp}}$
	1									
	/	3478	34677	m	si	60-7	0	32	m	e nr
/	/	3479	43666	f	ma	80-9	0	45	nn	a re
_/			order				-			1
Customer	Or			TD	eliv	erv	P	ayı	nt	1
Customer D	ĬĎ		$\frac{\text{Store}}{D}$		lode		M	lõd	e	
			\							1
3478	214	10267	12	re	gul	ar	c	ash		
3478	344	16778	12	\ e:	rpre	ss	c]	hec	k	
3478	472	28386	17	Ire	gula	ar	c]	hec	k	
3479	323	3444	17	- les	rpre	ss	сı	red	it	
3479	347	75886	12	Π,	gula	ar	¢	red	it	
					1		•••			
					1					tore
					Sto	re II)	Siz	e	Туре
							I			
					12		- 1	-		franch
					17			lar	ge	indep

Relational representation of customers, orders and stores.

Location ... e city rural

	f1	f2	f3	f4	f5	f 6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g 2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 ¹ 0	0	0	1	1	1	0
g5	1	1	1	0	0 /	010	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Step 1 Propositionalization

	f1	f2	f3	f4	f5	f6		1	1			fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	ro l o	0	0	1	1	1	0
g5	1	1	1	0	0 4	010	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

model, patterns, ...

customer												
	ID			So St	In com		Α	Çl	Re			
	1	Zip	S ex	\mathbf{St}	com	le	ge	ub	\tilde{sp}			
	1											
	/ 3478	34677	m	si	60-7	70	32	me	nr			
/	3479	43666	f	ma	80-9	90	45	nn	n re			
		order										
Customer ID	Order	Store	elivery F			ayı	nt					
ш	լու	шļ	N	lode		M	Mode					
		\										
3478	2140267	12	, re	regular o		ca	cash					
3478	3446778	12	\ e:	xpre	press c		check					
3478	4728386	17	-	regular		cł	check					
3479	3233444	17	- le:	express		credit		it				
3479	3475886	12	h	regular			edi	it				
]		ł								
	-			1								
				μ								
									tore			
);	Siz	e '	Туре	Location		
				12	12			all	franchise	city		
						1	large i		indep	rural		

Relational representation of customers, orders and stores.

	f1	f2	f3	f4	f5	f 6		1		1		fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g 2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	10 ¹ 0	0	0	1	1	1	0
g5	1	1	1	0	0 4	010	0	1	1	0	1	0
g1	0	٥	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

118

patterns (set of rules)

RSD Lessons learned

Efficient propositionalization can be applied to individual-centered, multi-instance learning problems:

- one free global variable (denoting an individual, e.g. molecule M)
- one or more structural predicates: (e.g. has_atom(M,A)), each introducing a new existential local variable (e.g. atom A), using either the global variable (M) or a local variable introduced by other structural predicates (A)
- one or more utility predicates defining properties of individuals or their parts, assigning values to variables

feature121(M):- hasAtom(M,A), atomType(A,21)

feature235(M):- lumo(M,Lu), lessThr(Lu,-1.21)

mutagenic(M):- feature121(M), feature235(M)

Relational Data Mining in Orange4WS

 service for propositionalization through efficient first-order feature construction (Železny and Lavrač, MLJ 2006)

f121(M):- hasAtom(M,A), atomType(A,21) f235(M):- lumo(M,Lu), lessThr(Lu,1.21)

subgroup discovery using CN2-SD

mutagenic(M) \leftarrow feature121(M), feature235(M)

120

Talk outline

- Subgroup discovery in a nutshell
- Relational data mining and propositionalization in a nutshell
 - Semantic data mining: Using ontologies in SD

Semantic Data Mining in Orange4WS

- Exploiting semantics in data mining
 - Using domain ontologies as background knowledge for data mining
- Semantic data mining technology: a two-step approach
 - Using propositionalization through first-order feature construction
 - Using subgroup discovery for rule learning
- Implemented in the SEGS algorithm

Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining

Using domain ontologies (e.g. Gene Ontology) as background knowledge for Data Mining

First order feature construction

First order features with support > *min_support*

f(7,A):-function(A,'GO:0046872'). f(8,A):-function(A,'GO:0004871'). f(11,A):-process(A,'GO:0007165'). f(14,A):-process(A,'GO:0044267'). f(15,A):-process(A,'GO:0050874'). f(20,A):-function(A,'GO:0004871'), process(A,'GO:0050874'). f(26,A):-component(A,'GO:0016021'). f(29,A):- function(A,'GO:0046872'), component(A,'GO:0016020') f(122,A):-interaction(A,B),function(B,'GO:0004872'). f(223,A):-interaction(A,B),function(B,'GO:0004871'), existential process(B,'GO:0009613'). f(224,A):-interaction(A,B),function(B,'GO:0016787'), component(B,'GO:0043231').

Propositionalization

diffexp g1 (gene64499) diffexp g2 (gene2534) diffexp g3 (gene5199) diffexp g4 (gene1052) diffexp g5 (gene6036) random g1 (gene7443) random g2 (gene9221) random g3 (gene2339) random g4 (gene9657) random g5 (gene19679)

	••••											
	f1	f2	£3	f4	f5	f6						fn
g1	1	0	0	1	1	1	0	0	1	0	1	1
g2	0	1	1	0	1	1	0	0	0	1	1	0
g3	0	1	1	1	0	0	1	1	0	0	0	1
g4	1	1	1	0	1	1	0	0	1	1	1	0
g5	1	1	1	0	0	1	0	1	1	0	1	0
g1	0	0	1	1	0	0	0	1	0	0	0	1
g2	1	1	0	0	1	1	0	1	0	1	1	1
g 3	0	0	0	0	1	0	0	1	1	1	0	0
g4	1	0	1	1	1	0	1	0	0	1	0	1

Propositional learning: subgroup discovery

				-	-		-		-	-		-	_
	f1	f2	£3	f4	£5	f6						fn	
g1	1	0	0	1	1	1	0	0	1	0	1	1	AY
g2	0	1	1	0	1	1	0	0	0	1	1	0	ex
g3	0	1	1	1	0	0	1	1	0	0	0	1	
g4	1	1	1	0	1	1	0	0	1	1	1	0	f2
g 5	1	1	1	0	0	1	0	1	1	0	1	0	
g1	0	0	1	1	0	0	0	1	0	0	0	1	
g2	1	1	0	0	1	1	0	1	0	1	1	1	
g3	0	0	0	0	1	0	0	1	1	1	0	0	
g4	1	0	1	1	1	0	1	0	0	1	0	1	
													-

Overexpressed IF f2 and f3 [4,0]

127

diffexp(A) :- interaction(A,B) & function(B,'GO:0004871')

Subgroup Discovery

Subgroup Discovery

In RSD (using propositional learner CN2-SD):

Quality of the rules = Coverage x Precision

*Coverage = sum of the covered weights

*Precision = purity of the covered genes

Subgroup Discovery

RSD naturally uses gene weights in its procedure for repetitive subgroup generation, via its heuristic rule evaluation: weighted relative accuracy

Semantic Data Mining in two steps

• Step 1: Construct relational logic features of genes such as interaction(g, G) & function(G, protein_binding)

(g interacts with another gene whose functions include protein binding) and propositional table construction with features as attributes

- Step 2: Using these features to discover and describe subgroups of genes that are differentially expressed (e.g., belong to class DIFF.EXP. of top 300 most differentially expressed genes) in contrast with RANDOM genes (randomly selected genes with low differential expression).
- Sample subgroup description:

diffexp(A) :- interaction(A,B) AND
 function(B,'GO:0004871') AND
 process(B,'GO:0009613')

Summary: SEGS, using the RSD approach

- The SEGS approach enables to discover new medical knowledge from the combination of gene expression data with public gene annotation databases
- The SEGS approach proved effective in several biomedical applications (JBI 2008, ...)
 - The work on semantic data mining using ontologies as background knowledge for subgroup discovery with SEGS - was done in collaboration with I.Trajkovski, F. Železny and J. Tolar
- Recent work: Semantic subgroup discovery implemented in Orange4WS

Semantic subgroup discovery with SEGS

 SEGS workflow is implemented in the Orange4WS data mining environment

 SEGS is also implemented also as a Web applications (Trajkovski et al., IEEE TSMC 2008, Trajkovski et al., JBI 2008)

From SEGS to SDM-SEGS: Generalizing SEGS

• SDM-SEGS: a general semantic data mining

- Discovers subgroups both for ranked and labeled data
- Exploits input ontologies in OWL format
- Is also implemented in Orange4WS

Semantic Data Mining

• Semantic subgroup discovery (Vavpetič et al., 2012)

What is Semantic Data Mining

- Ontology-driven (semantic) data mining is an emerging research topic – the topic of this tutorial
- Semantic Data Mining (SDM) a new term denoting:
 - the new challenge of mining semantically annotated resources, with ontologies used as background knowledge to data mining
 - approaches with which semantic data are mined

Find: a classification model, a set of patterns

Introductory seminar lecture

X. JSI & Knowledge Technologies

I. Introduction

- Data Mining and KDD process
- DM standards, tools and visualization
- Classification of Data Mining techniques: Predictive and descriptive DM

(Mladenić et al. Ch. 1 and 11, Kononenko & Kukar Ch. 1)

XX. Selected data mining techniques:

Advanced subgroup discovery techniques and applications

XXX. Recent advances: Cross-context link discovery

The **BISON** project

- EU project: Bisociation networks for creative information discovery (<u>www.bisonet.eu</u>), 2008-2010
- Exploring the idea of bisociation (Arthur Koestler, The act of creation, 1964):
 - The mixture in one human mind of two different contexts or different categories of objects, that are normally considered separate categories by the processes of the mind.
 - The thinking process that is the functional basis of analogical or metaphoric thinking as compared to logical or associative thinking.
- Main challenge: Support humans to find new interesting associations accross domains

Bisociation (A. Koestler 1964)

The **BISON** project

- BISON challenge: Support humans to find new, interesting links accross domains, named bisociations
 - across different contexts
 - across different types of data and knowledge sources
- Open problems:
 - Fusion of heterogeneous data/knowledge sources into a joint representation format - a large information network named BisoNet (consisting of nodes and relatioships between nodes)
 - Finding unexpected, previously unknown links between BisoNet nodes belonging to different contexts

Heterogeneous data sources (BISON, M. Berthold, 2008)

Bridging concepts (BISON, M. Berthold, 2008)

Chains of associations across domains (BISON, M. Berthold, 2008)

Semantic Data Mining for DNA Microarray Data Analysis

- Semantic data mining integrates public gene annotation data through relational features
- It is implemented in the SEGS algorithm (Trajkovski, Železny, Lavrač and Tolar, JBI 2008), available in Orange4WS
- It can be combined with additional biomedical resources (BioMine), providing additional means for creative knowledge discovery from publicly available data sources

Biomine graph exploration (Toivonnen et al., Uni. Helsinki)

- **BioMine graph** contains information from public databases, including annotated sequences, proteins, orthology groups, genes and gene expressions, gene and protein interactions, PubMed articles, and different ontologies.
 - nodes (~1 mio) correspond to different concepts (such as gene, protein, domain, phenotype, biological process, tissue)
 - semantically labeled edges (~7 mio) connect related concepts
- **BioMine query engine** answers queries to potentially discover new links between entities by sophisticated graph exploration algorithms

The SEGS + BioMine Methodology

e.g. slow-vs-fast cell growth

Work by Lavrač et al. 2009, 2010 Podpečan et al. 2010

Semantic Data Mining in Orange4WS: ¹⁴⁸ SEGS + BioMine workflow implementation

SEGS output:

BioMine output:

 Mozilla Firefox
 _____X

 Eile Edit View Higtory Bookmarks Iools Help
 _____X

 Most Visited
 Petra's Home Page

 Image: Most Visited
 Petra's Home Page

 Image: Microarray_...
 See set en...

 Image: Microarray_...
 See set en...

 Image: Microarray_...
 See set en...

Project: []

Enriched genesets for class A

found by Combining p-values

#	Description	Set size	#DE_Genes	Fisher p-value (unadjusted p-value)	GSEA p-value (Enricment score)	PAGE p-value (Z-score)	Agregate p-value		
1	Func(monovalent inorganic cation transporter activity), Proc(monovalent inorganic cation transport),	<u>26</u>	<u>10</u>	0.000 (9.20e-07)	0.010 (0.362)	0.020 (3.767)	0.010		
2	Func(monovalent inorganic cation transporter activity), Proc(monovalent inorganic cation transport), Comp(integral to membrane),	<u>24</u>	<u>9</u>	0.010 (4.23e-06)	0.010 (0.352)	0.020 (3.671)	0.013		
з	Func(monovalent inorganic cation transporter activity), Proc(transport), Comp(integral to membrane),	<u>26</u>	<u>9</u>	0.010 (9.10e-06)	0.040 (0.323)	0.020 (3.801)	0.023		
× Find: garr Vext Thighlight all Match case									

Summary of SEGS + BioMine

- Semantic Data Mining algorithm SEGS discovers interesting gene group descriptions as conjunctions of concepts from three ontologies: GO, KEGG and Entrez
- Biomine finds cross-context links (paths) between concepts discovered by SEGS, using other ontologies, PubMed and other biomedical resources
- Initial results in stem cell microarray data analysis (EMBC 2009) indicate that the SEGS+Biomine methodology may lead to new insights in vitro experiments are in progress at NIB to verify and validate the preliminary insights
- A general purpose Semantic Data Mining algorithm g-SEGS is also available in Orange4WS
- New developments concern SDM implementation in ClowdFlows

Future work

- Current Semantic data mining scenario: Mining empirical data with ontologies as background knowledge
 - abundant empirical data, but
 - scarce background knowledge
- Future Semantic data mining scenario:
 - envisioning a growing amount of semantic data
 - abundance of ontologies and semantically anotated data collections
 - e.g. Linked Data
 - over 6 billion RDF triples
 - over 148 million links

Future work

- We may envision a paradigm shift from data mining to knowledge mining
- The envisioned future Semantic data mining scenario in mining the Semantic Web:
 - mining knowledge encoded in domain ontologies,
 - constrained by annotated (empirical) data collections.

• Cross-domain literature mining: Fidning bridging concepts with CrossBee (Juršič et al., 2012)

- Cross-domain literature mining: Fidning bridging concepts with CrossBee (Juršič et al., 2012)
 - Help experts in cross-domain bisociative discovery for unknown facts

- Cross-domain literature mining: Fidning bridging concepts with CrossBee (Juršič et al., 2012)
 - Help experts in cross-domain bisociative discovery for unknown facts

- Cross-domain literature mining: Fidning bridging concepts with CrossBee (Juršič et al., 2012)
 - Help experts in cross-domain bisociative discovery for unknown facts

CrossBee system

CROSS	22	Sup	ported by	BIS		$\langle 0 \rangle$	
ROSS CONTEXT BISOCIATION E	XPLORER Star	t	Downloads	Term View	Document View	BTerms	
SEARCH	B-Term Identify (Term "parox	ys	mal" Ana	lysis)			
MAIN MENU Start	2270. Paroxysmal and other features of th 1012. Paroxysmal dyseguilibrium in the mi 2164. [Paroxysmal supraventricular tachyc	> En	End >> << Start < Previous				
Downloads <u>Term View</u> Document View BTerms Display Settings	 1152. Migraine as a cause of benign parox 1393. The distinction between paroxysmal 1868. [Benign paroxysmal vertigo of child 1605. Benign paroxysmal vertigo in childh 2241. Benign paroxysmal vertigo of childh 503. [Chronic paroxysmal migraine. A rev 						
ITEM BASKET	1104. Paroxysmal arrhythmias and migraine						
Empty - drag items (terms, documents or views to this basket to save them)	Document: #2270 Go in depth, Add to basket Domain: MIG		Document: #3456 Go in depth, Add to basket Domain: MAG				
	Paroxysmal and other features of the electroencep in migraine.	pointes ty	[A case of paroxysmal tachycardia of the torsade de pointes type: the role of magnesium in the etiology and treatment				
	Document's Important Terms (ordered by import 1. paroxysmal (0,999) 2. migraine (0,855) 3. feature (0,564) 4. electroencephalogram migraine (0,053) 5. electroencephalogram (0,029)): Documen 1. parox 2. case (3. treatm 4. type (0	Document's Important Terms (ordered by importance): 1. paroxysmal (0,999) 2. case (0,855) 3. treatment (0,712) 4. type (0,711)				
	Document's Important Terms (ordered by alphat 1. electroencephalogram (0,029) 2. electroencephalogram migraine (0,053) 3. feature (0,564) 4. migraine (0,855) 5. paroxysmal (0,999)	et):	6. magne 7. role (0, 8. tachyca 9. etiology 10. de (0,	5. etiology (0,711) 6. magnesium (0,568) 7. role (0,424) 8. tachycardia (0,421) 9. etiology treatment (0,277) 10. de (0,086) 11. role magnesium (0,077) 12. tote table (0,077)			

The research was supported by the European Commission under the 7th Framework Programme FP7 ICT 2007 C FET Open project BISON 211898.

Introductory seminar lecture: Summary

- JSI & Knowledge Technologies
- Introduction to Data mining and KDD
 - Data Mining in a Nutshell
 - Predictive and descriptive DM techniques
 - Data Mining and KDD process
 - DM standards, tools and visualization
- Selected data mining techniques: Advanced subgroup discovery techniques and applications
- Recent advances: Cross-context link
 discovery