GMOtrack: Generator of
Cost-effective
GMO Testing Strategies

Appendix

Formal Problem Definition

Let us represent a biological sample, possibly contain-
ing GMOs, by a pair (A, X), where A is a known set of
potentially present GMOs, and X is an unknown set of
GMOs actually present in the sample. The set X can
be any, possibly empty, subset of A. GMO traceabil-
ity requires that all the GMOs present in the sample
are identified, which corresponds to determining the
unknown set X C A.

Set X is determined by testing the sample with as-
says. A T-assay is characterized by test set T of the
GMOs it detects; T' is a non-empty subset of set A of
potentially present GMOs. We assume that we have
at our disposal a suite of assays, one T-assay for each
T € T, where T is a given collection of non-empty
subsets of set A.

We can perform T-assays on the unknown subset
X. A T-assay tells us whether X has some element
in T or not. The outcome of a T-assay performed on
X is the truth value of X NT # &, which we write as
X !'T and read “X tests T-positive”. Let us introduce
!'T as a mapping from PA to B = {false, true}, which
assigns to each subset S of A the truth value S!7T; in
formal notation:

T PA —B:S+— S!T.

In standard mathematical notation, £2A is the set
of all subsets of A, also called the powerset of A.
For a given set A of cardinality |A| there are 214 sub-
sets of A.

The outcome opposite to X testing T-positive is
XNT =@, denoted X—!T and pronounced “X tests
T-negative”. The property “tests T-negative” is then
the mapping

-IT-PA—B:S— S-I1T.

A remark is needed here. The properties ! T and = !T
consistently describe the possible outcomes of a T-

assay only under the assumption that the set of GMOs
present in the sample is in fact a subset of set A of po-
tentially present GMOs. However, it is always possi-
ble that the sample being tested contains some bacte-
rial or viral residue or an unexpected ‘unofficial’ GMO
outside A, which by chance happens to be detected by
some assays. Although the probability of this happen-
ing is low, the assays need to be divided into two types:
screening assays Jg and event-specific assays Tg. The
suite of assays 7 is the disjoint union Tg U Tg.

Screening assays generally detect more than
one GMO. For the reason expounded in the remark
above, we do not consider that a screening T-assay
reliably detects the presence of some GMO belong-
ing to T in the sample if the sample tests T-positive,
though it does reliably detect the absence of all GMOs
in T when the sample tests T-negative.

Each event-specific assay corresponds to a one-
element subset of A. We assume that our suite of
assays JTg is complete in the sense that for each a € A
there is an event-specific {a}-assay in Tg. Unlike
screening assays, event-specific assays reliably detect
GMOs: given an event-specific {a}-assay, a sample
tests {a}-positive if and only if the sample contains a.

To confirm the presence of a GMO, the correspond-
ing event-specific assay must be applied. In principle,
it is possible to determine any subset X of A of the
GMOs present in the sample, by outcomes of event-
specific assays only; performing the event-specific T-
assays for all T € T, we find X as the union of all
those (singleton test sets) T for which the sample tests
T-positive:

X =U{T|TeTs X!T}.

The role of screening assays is that their use may re-
duce the number of event-specific assays needed to
completely determine the subset X. For example, sup-
pose that a sample undergoes a combination of three
screening assays, with test sets T, T, and T3, and it
tests Ti-negative, Th-positive, and Ts-negative; then
it follows that X is a subset of B = A\ (71 U T3),
so to finish testing, only the event-specific {a}-assays
with a € B are needed. Moreover, instead of resort-
ing at this point to event-specific assays, the sample
may undergo another combination of screening assays,
and so on. It could happen that all the screening as-
says performed on the sample have positive outcomes;
in such a case the number of needed event-specific as-
says is not reduced.

The testing cost of a sample depends on the number
of performed assays and on how these assays are par-
allelized: all the assays have the same cost, but if they
are performed in parallel their cost is lower. If we split
the testing into n phases and in phase i we perform
a combination of assays U; C T, the total testing cost
is the sum of costs for all the phases:



cost = Z

i€[l..n]

g(|Wil) -

Here g is a monotonically increasing function that
maps the number of assays performed in parallel to
their cost, while the cost per assay g(k)/k is a mono-
tonically decreasing function of k.

To determine the quality of a certain combination
of assays, we must take into account probabilities of
testing outcomes. In detail: If sample X undergoes
the combination U C T of assays, then the testing
outcome is

T .. Ty
| =
X (X!T1 XITy .. X1Ty

and the probabilities just mentioned are probabilities
P(X!U). Since we assume GMO independence, the
probability of a testing outcome can be computed as

P(( /\ =T ) A (/\!Ti)) = Z 1)Ky U Ty,

irer icl kEI’UK
where ¢/ € I’ are indexes of T-assays that test nega-
tive, ¢ € I are indexes of T-assays that test positive
and ¢(UyT) is the probability that all T' € U test neg-
ative; q(T') is computed as ¢(T') = [[,cr(1 — p(a)).

GMO Traceability as an Optimization
Problem

The GMO traceability optimization problem is to find
a GMO testing strategy with the smallest expected
cost. An instance of an optimization problem can be
defined in a formal way as a tuple (D, f, extr), where

e D is the solution space (on which f is defined);
e f is the objective function f: D — R;

e cxtr is the extreme (usually min or max).

Our solution space D is a set of solutions d; we
call these solutions testing strategies. Every d =
(V,vg, E, U, P) is a tree, where V' is a set of vertices,
vg is the root of the tree, the set of edges F is a set of
ordered pairs of vertices, U: V — T associates with
each vertex V' a combination of assays, and P: E — R
are probability weights of edges. This structure also
has to satisfy the following conditions:

e edges e out of a non-terminal vertex v are in one-

to-one correspondence with testing outcomes and
are weighted by the probabilities P(e);

e for every non-terminal vertex v, the sum of the
probabilities P(e) for all edges e out of v is 1.

e for every terminal vertex ¢, every GMO a € A is
either confirmed by an event-specific assay from
T, or repudiated by any assay from 7.
The objective function f (f : D — R) is the expected
total cost of a testing strategy. It is the sum of the cost
of the first phase of testing g(|d.vp|) and the weighted
(with probabilities P;) sum of the costs of all the suc-
cessive testing phases. It is a recursive function.
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extr is min since we are looking for the feasi-
ble solution that minimizes the expected cost f
(argmingep f(d)). According to this definition, GMO
traceability is a combinatorial optimization problem.

f(d) = g(ld-vo|) +

Example:

A sample testing strategy is here exemplified on data
from Table 1, which represents the GMOs allowed on
the European Union market in the year 1997. In the
table, each line is one GMO: the first column are GMO
names and the second are the crops. The following
column represents the probabilities of the associated
GMO to be present in a sample. The other columns
represent assays: screening assays that detect specific
genetic elements inserted into GM crop genomes are
listed first, followed by event-specific assays that al-
low the identification of a unique GMO. An ‘x’ at the
intersection of a column with a row means that the
corresponding GMO has the corresponding genetic el-
ement. The data were preprocessed as described in
Section Data acquisition.

The previously introduced formal notation is instan-
tiated with data from Table 1 as follows. Set A is the
known set of potentially present GMOs: A = {RRS,
GT73, Bt176, MS1, RF1, RF2, HCN92}. TJg is a
suite of all event-specific assay-sets: = {eRRS,
eGT73, eBt176, eMS1, eRF1, eRF2, eHCN92}, where
the eGMO denotes a one element set with the GMO.
Ts is a suite of screening assay-sets: Tg = {P-35S, P-
TA29, P-nos, Cp4 EPSPS, BAR, Barstar, T-nos, T-
35S, P-35S:BAR}. An example of a screening assay-
set is P-35S = {RRS, Bt176, HCN92}, meaning that
the P-35S-assay detects RRS, Bt176 and HCN92.

An example of a testing strategy (element of D) is
shown on Figure 1. The root vy is {P-35S, T-nos}.
There are four possible testing outcomes: both neg-
ative, both positive, and one positive one negative.
Probabilities of outcomes are denoted as p1, .., p4.

The parallel cost function ¢ is here approximated
with a linear function g(k) = m - k + b for a posi-
tive integer number of assays k, while g(0) = 0. We
compute the expected cost f for the example strategy
dy on Figure 1 as follows. Note how, in a two-phase



strategy, the calculation of the total expected cost is
simplified.

fdy) = glvoh+ Y pi-fvy) =glvo)+ Y
i€[1,4] i€[1,4]
9(2) + p1 - 9(1) + p2 - 9(4) + p3 - 9(4) + pg - 9(7)

(24 p1 + 4p2 + 4p3 + Tpg)k + 2n

pi - g(lvil)

From this calculation we can see that a good testing
strategy has low probabilities associated with vertices
with large sets of assays. It can also be proven that
testing strategy d; is not optimal, since, regardless the
outcome of the first phase, eGT37-assay needs to be
performed. Therefore, it should have been included in
the first phase. The optimal two-phase testing strat-
egy employs assays P-TA29, CP4 EPSPS and T-35S
in the screening phase.

The GMOitrack algorithm

The computation of the optimal GMO testing strat-
egy by exploring the whole solution space is infeasi-
ble, since the space grows exponentially relative to
the number of assays. We have therefore simplified
the problem by reducing the solution space, limiting
the testing strategies to have two phases: a screen-
ing phase and an identification phase. The screening
phase applies screening assays only. The identifica-
tion phase consists of event-specific assays only: the
event-specific assays for GMOs that have not been re-
pudiated in the first phase are performed. By adopt-
ing this simplification, we can not guarantee to find an
optimal testing strategy, but rather to find an optimal
two-phase testing strategy.

The expected-cost function f for two-phase testing
strategies can be formulated as follows, where n is the

number of possible outcomes of the screening phase
(n = 2lvol):

fld) =

a(wo) + Y pi- gluil)

i€[1..n]

An exhaustive algorithm for finding the optimal two-

phase testing strategy is presented in Algorithm 1.
Its input is set A of GMOs a with their probabilities
P(a), a suite of screening assays T, the maximum
assays in the first phase constraint m and a parallel
cost function g. It generates and evaluates all two-
phases testing strategies with up to m assays in the
first phase and returns the best one.

The XuniqueCombinations(Tg, m) function (line 2)
returns all subsets of Tg of size up to m. Function
p(e, A) (line 5) returns the probability of outcome e
on set A. Function possible(e, A) (line 5) returns the
number of GMOs that are not repudiated by out-
come e. It is computed as those GMOs that are

screeningCost(d) + ezpected eventspecificCost =

Algorithm 1 GMOTRACK(A, Tg,m, g)

Input: set A of GMOs a with their probabilities P(a),
suite of screening assay-sets T,
maximum assays for first phase constraint m,
parallel cost function g.

Output: optimal two-phase testing strategy d.

1: d:d.assays <« {},d.cost «— oo

2: for all d;.assays in XuniqueCombinations(Ts,m) do
3:  dj.cost — g(|d;.assays|)

4 for all e in d;.outcomes do

5 d;.cost — dj.cost + p(e, A) - g(possible(e, A))
6: end for

7: if d;.cost < d.cost then

8 d«—d;

9 end if

10: end for

not in the union of assay-sets that tested negative:
possible(e, A) = |A\NU{T | T € e,~!T}|.

Note that even though this is a simplified (re-
stricted) version of the GMO traceability optimiza-
tion problem, the computational complexity is very
high (exponential relative to the number of screening
assays). If we take m = 5 for the small example in Ta-
ble 1 (9 screening assays), XuniqueCombinations (line
2) returns 381 possible solutions. For each possible so-
lution there are up to 32 possible outcomes. For every
outcome, the probability and the number of possible
GMOs need to be computed. For example, if we had
50 screening assays and m = 5, Z?zl(fo) = 2,369,935
candidate solutions would need to be checked with up
to 32 possible outcomes each. If we had 50 screening
assays and m = 8, Z?Zl(?o) = 655,023,685 candi-
date solutions would need to be checked with up to
256 possible outcomes each. For these reasons, the
GMOtrack algorithm is not scalable, but as shown in
our experiments, sufficient for practical situations.



