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This paper addresses a data analysis task, known as contrast set mining, whose goal is to find differences
between contrasting groups. As a methodological novelty, it is shown that this task can be effectively
solved by transforming it to a more common and well-understood subgroup discovery task. The transfor-
mation is studied in two learning settings, a one-versus-all and a pairwise contrast set mining setting,
uncovering the conditions for each of the two choices. Moreover, the paper shows that the explanatory
potential of discovered contrast sets can be improved by offering additional contrast set descriptors,
called the supporting factors. The proposed methodology has been applied to uncover distinguishing
characteristics of two groups of brain stroke patients, both with rapidly developing loss of brain function
due to ischemia:those with ischemia caused by thrombosis and by embolism, respectively.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The goal of automated data analysis is to construct models or
discover interesting patterns in the data. In many domains, includ-
ing medical data analysis, model construction and pattern discov-
ery are frequently performed by rule learning, as the induced rules
are easy to be interpreted by human experts. The standard classi-
fication rule learning task is to induce classification/prediction
models from labeled examples [4]. Opposed to predictive rule
induction, which goal is to induce a model in the form of a set of
rules, the goal of descriptive rule induction is to discover individual
patterns in the data, described in the form of individual rules.
Descriptive induction algorithms include association rule learners
[1], clausal discovery algorithms [20,19], as well as contrast set
mining [3,24] and subgroup discovery algorithms [25,8,17,2].

This paper addresses a data analysis task where groups of
examples are given and the goal is to find differences between
these contrasting groups. This data analysis task, named contrast
set mining, was first presented in Ref. [3]. We transform the con-
trast set mining task to a subgroup discovery task [25,8,17,2],
whose goal is to find descriptions of groups of individuals with
ll rights reserved.
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unusual distributional characteristics with respect to the given
property of interest. By doing so, this paper shows that even
though the contrast set mining and subgroup discovery tasks are
different, subgroup discovery techniques can de used to achieve
the goal of contrast set mining. It also shows that the subgroup dis-
covery approach to contrast set mining—as implemented in the Or-
ange [6] open source data mining toolbox—can solve some open
issues of existing contrast set mining approaches, like choosing
an appropriate search heuristic, selecting the level of generality
of induced rules, avoiding of overlapping rules, and presenting
the results to the end-user.

The formally justified pairwise transformation of contrast set
mining to subgroup discovery—called the round robin subgroup
discovery approach to contrast set mining—is performed pairwise,
for every pair of contrasting groups (i.e., for every pair of classes in
a multi-class problem setting). This setting can, however, in some
circumstances lead to poor results. The analysis of the reasons for
this undesired performance has triggered the development of an
alternative method, called the one-versus-all transformation of
contrast set mining to subgroup discovery, justified by improved
results in our experiments, as confirmed by the medical expert.

We argue that a descriptive induction task should not be con-
cluded when individual rules are discovered, as the discovered
rules typically uncover only the principal characteristics of the
analyzed groups. To enable a better interpretation and improve
the understanding of the uncovered characteristics, other proper-
ties that support the extracted rules are also important. In sub-
group discovery these additional properties are called the
supporting factors [10]. In this paper we adapt the concept of
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supporting factors from subgroup discovery to contrast set mining,
to fit the definition and the goals of contrast set mining.

The proposed approach to contrast set mining through sub-
group discovery is in this paper applied to a real-life problem of
analyzing a dataset of patients with brain ischemia, where the goal
of data analysis is to determine the type of brain ischemia from risk
factors obtained from anamnesis, physical examination, laboratory
tests and ECG data. The achieved results are interpreted by a med-
ical specialist.

This paper is organized as follows. Section 2 presents the back-
ground technologies: contrast set mining and subgroup discovery.
Section 3 provides the motivation for the new approach of contrast
set mining through subgroup discovery, by presenting the brain
ischemia data analysis problem, and the motivation for developing
specific techniques for contrast set mining (illustrated by the
shortcomings of the standard machine learning techniques). This
section also presents the implementation and a novel method for
contrast set visualization. Section 4 provides a unifying view on
contrast set mining and subgroup discovery by unifying the termi-
nology, the tasks and the rule quality measures. In Section 5 we
present the experiments performed on the brain ischemia data
and a refinement of the contrast set mining setting that is appro-
priate for distinguishing between similar diseases. Section 6 is ded-
icated to supporting factors as a mechanism to improve the
explanatory potential of contrast set mining.
1 Confidence is the proportion of positive examples in all examples covered by the
rule. This metric is known under many different names, e.g., confidence in association
rule mining, or precision in information retrieval.
2. Background technologies: contrast set mining and subgroup
discovery

Data analysis tasks that try to find differences between con-
trasting groups are very common. When end-users are interested
in analyzing different groups, they are usually not interested in
analyzing all the patterns that discriminate one group of individu-
als from the other contrasting groups, as the interpretation of large
amounts of patterns is too difficult. They typically prefer a small
set of representative and interpretable patterns that are novel,
potentially interesting and preferably unexpected.

This paper investigates two approaches to finding interesting
group descriptors: contrast set mining and subgroup discovery.
Contrast set mining is a data mining technique specifically devel-
oped for finding differences between contrasting groups (described
in Section 2.1). Subgroup discovery is aimed at finding descriptions
of interesting subgroups in the data (described in Section 2.2). In
Section 4.1 we show how to unify the terminology used in these
two—until now separate—areas of research.

2.1. Contrast set mining

The problem of mining contrast sets was first defined in [3] as
finding contrast sets as ‘‘conjunctions of attributes and values that
differ meaningfully in their distributions across groups”. Our defi-
nitions are epitomized from [24], which are based on the defini-
tions from [3] with some notational differences for better
enabling the comparison with subgroup discovery. Let
A1;A2; . . . ;Ak, be a set of k variables called attributes. Each Ai can
take on values from the set fvi1; vi2; . . . ; vimg. Given a set of mutu-
ally exclusive user defined groups G1;G2; . . . ;Gn of data instances,
a contrast set is a conjunction of attribute–value pairs (with no Ai

occurring more than once). A contrast set is equivalent to an item-
set in association-rule discovery when applied to attribute–value
data. Similar to an itemset, we measure the support of a contrast
set. However, support is defined with respect to each group. The
support of a contrast set X with respect to a group Gi is the percent-
age of examples in Gi for which contrast set X is true (denoted as
supportðX;GiÞ).
It was shown in [24] that contrast set mining can be viewed as a
special case of a more general rule learning task, and that a con-
trast set can be interpreted as an antecedent of a rule, and group
Gi—for which it is characteristic—as the rule consequent: X ! Gi.

Contrast set discovery seeks to find all contrast sets whose sup-
port differs meaningfully across groups. Once all significant (Eq. 1)
and large (Eq. 2) contrast sets are found, a subset which is ‘interest-
ing’ should be presented to the end user [3]. Formally,

ðXjGiÞ–pðXjGjÞ ð1Þ

SuppDiff ðX;Gi;GjÞ ¼ jsupportðX;GiÞ � supportðX;GjÞj > d ð2Þ

where X is the contrast set and d is a user-defined threshold called
the minimum support-difference. Contrast sets for which Eq. (1) is
statistically supported are called significant and those for which
Eq. (2) is satisfied are called large. Note that these are different
expressions of the same core principle, that the frequency of the
contrast set must differ meaningfully across groups. Eq. (1) provides
the basis of a statistical test of ‘meaningful’, while Eq. (2) provides a
quantitative test thereof.

The STUCCO algorithm (Search and Testing for Understandable
Consistent Contrasts), proposed in the original contrast set mining
paper [3], is based on the Max-Miner rule discovery algorithm [13].
STUCCO discovers a set of contrast sets along with their supports
on groups. STUCCO employs a number of pruning mechanisms. A
potential contrast set X is discarded if it fails a statistical test for
independence with respect to group variable Gi. It is also subjected
to what is in [23] called a test for productivity which is based on the
notion of confidence.1 A rule X ! Gi is productive iff

8Z � X : confidenceðZ ! GiÞ < confidenceðX ! GiÞ

that is, a more specific contrast set must have higher confidence
than any of its generalizations. Further tests for minimum counts
and effect sizes may also be imposed. STUCCO introduced a novel
variant of the Bonferroni correction for multiple tests which applies
ever more stringent critical values to the statistical tests employed
as the number of conditions in a contrast set is increased. When
using rule learners (e.g., OPUS-AR and C4.5 rules) for contrast set
mining [24], the user needs to select a quality measure (choosing
between support, confidence, lift, coverage and leverage). In this
setting the number of generated rules largely exceeds the number
of rules generated by STUCCO, unless pruned by the user-defined
maximum number of rules parameter. Expert interpretation of rules
can be difficult due to a large amount of rules and sometimes also
due to their specificity.

2.2. Subgroup discovery

The task of subgroup discovery is defined as follows: given a
population of individuals and a property of those individuals that
we are interested in, find population subgroups that are statisti-
cally ‘most interesting’, e.g., are as large as possible and have the
most unusual distributional characteristics with respect to the
property of interest [25]. The result of subgroup discovery is a
set of subgroup descriptions, where a subgroup description is a con-
junction of features defined as follows.

Let A1;A2; . . . ;Ak, be a set of k variables called attributes. An
attribute Ai is categorical if it has a predefined and limited set of
possible values fvi1; vi2; . . . ; vimg and is continuous if it can take
any value within a certain range ½min;max�. Features are of the
form Ai ¼ vij for categorical attributes, and Ai > value or
Ai 6 value for continuous attributes.



Fig. 1. Distribution of diagnosis of patients in the brain ischemia dataset.
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Members of a subgroup are instances from the dataset that cor-
respond to the subgroup description. Good subgroups are large
(descriptions covering many examples with the given property of
interest), and have a significantly different distribution of exam-
ples with the given property compared to its distribution in the en-
tire population.

Since subgroup descriptions are conjunctions of features that
are characteristic for a selected class of individuals (class C, repre-
senting the investigated property of interest), a subgroup descrip-
tion can be seen as a condition part of a rule X ! C, therefore
subgroup discovery can be seen as a special case of a more general
rule learning task.2

Subgroup discovery algorithms include adaptations of rule
learning algorithms to perform subgroup discovery [9,14,17], algo-
rithms for relational subgroup discovery [22,25] and algorithms for
exploiting background knowledge for discovering non-trivial sub-
groups [2], among others. Presenting subgroup discovery results
to end-users has also been explored [15,11].

3. Motivation and methodology overview

This section provides a motivation for the development of a new
methodology for contrast set mining. First, it presents the brain
ischemia data analysis problem which is used to illustrate the po-
tential of the proposed methodology. Next, it presents results of
standard machine learning approaches to distinguishing between
patients with stroke due to ischemia caused by thrombosis, pa-
tients with stroke due to ischemia caused by embolism, and pa-
tients with normal CT test results, and discusses the
disadvantages of these approaches when used for distinguishing
between these contrasting groups of patients. Finally, it provides
the methodology overview by explaining the individual steps of
the methodology, and discusses some implementation issues.

3.1. Brain ischemia data analysis problem

Stroke or cerebrovascular accident (CVA) is the clinical designa-
tion for a rapidly developing loss of brain function due to a distur-
bance in the blood vessels supplying blood to the brain. This
phenomenon can be due to ischemia caused by thrombosis or
embolism, or due to a hemorrhage (bleeding). About 80% of all
strokes are ischemic while the remaining 20% are caused by
bleeding.

A stroke occurs when blood supply to a part of the brain is inter-
rupted, resulting in tissue death and loss of brain function [21].
Thrombi or emboli due to atherosclerosis commonly cause ische-
mic arterial obstruction. Atheromas, which underlie most thrombi,
may affect any major cerebral artery. Atherothrombotic infarction
occurs with atherosclerosis involving selected sites in the extracra-
nial and major intracranial arteries. Cerebral emboli may lodge
temporarily or permanently anywhere in the cerebral arterial tree.
They usually come from atheromas (ulcerated atheroscleritic pla-
ques) in extracranial vessels or from thrombi in a damaged heart
(from mural thrombi in atrial fibrillation). Atherosclerotic or
hypertensive stenosis can also cause a stroke.

For simplicity, in this paper we refer to brain stroke due to
ischemia caused by embolism as embolic stroke, and brain stroke
due to ischemia caused by thrombosis as thrombotic stroke.

The brain ischemia dataset available for the analysis consists of
records of patients who were treated at the Intensive Care Unit of
the Department of Neurology, University Hospital Center ‘‘Zagreb”,
2 Notice that in concept learning the task is to find rules that describe concept C.
Examples of concept C are considered the positive examples while the others,
belonging to C, are considered the negative examples of concept C.
Zagreb, Croatia, in year 2003. In total, 300 patients are included in
the database:

� Two hundred and nine patients with the computed tomography
(CT) confirmed diagnosis of stroke: 125 with embolic stroke, 80
with thrombotic stroke and 4 undefined.

� 91 patients who entered the same hospital department with
brain stroke neurological symptoms and disorders, but were
diagnosed (based on outcomes of neurological tests and CT) as
patients with transient ischemic attack (TIA, 33 patients),
reversible ischemic neurological deficit (RIND, 12 patients),
and severe headache or cervical spine syndrome (46 patients).
For simplicity, these patients are referred to as patients with
normal CT.

The distribution of patients is shown in Fig. 1. Patients are de-
scribed with their diagnosis and 26 descriptors representing anam-
nesis, physical examination, laboratory tests data and ECG data.
Anamnesis data: aspirin therapy (asp), anticoagulant therapy (aco-
ag), antihypertensive therapy (ahyp), antiarrhytmic therapy
(aarrh), lipid-lowering therapy—statin (stat), hypoglycemic ther-
apy (hypo), sex (sex), age (age), present smoking (smok), stress
(str), alcohol consumption (alcoh), family anamnesis (fhis). Physical
examination data: body mass index (bmi), systolic blood pressure
(sys), diastolic blood pressure (dya), and examination of the fundus
oculi (fo). Laboratory tests data: uric acid (ua), fibrinogen (fibr), glu-
cose (gluc), total cholesterol (chol), triglyceride (trig), platelets
(plat), and prothrombin time (pt). ECG data: heart rate (ecgfr), pres-
ence of atrial fibrillation (af), and signs of left ventricular hypertro-
phy (ecghlv).

It must be noted that this dataset does not include any healthy
individuals but consists of patients with serious neurological
symptoms and disorders. In this sense, the available database is
particularly appropriate for studying the specific characteristics
and subtle differences that distinguish between patients with dif-
ferent neurological disorders. The detected relationships can be ac-
cepted as generally true characteristics for these patients.3

In this paper, the goal of data analysis is to discover regularities
that discriminate between thrombotic stroke and embolic stroke
patients. Despite the fact that the immediate treatment for both
types of ischemic strokes is the same, the distinction between
thrombotic stroke and embolic stroke patients is important in later
phases of patient recovery and to better determine the risk factors
of the specific diseases. An example rule, induced by our method-
ology of contrast set mining through subgroup discovery, is

ahyp ¼ yes AND aarrh ¼ yes ! class ¼ emb

This rule, interpreted as ‘‘ischemic stroke patients with antihy-
pertensive therapy and antiarrhytmic therapy tend to have emboli
as main cause of stroke”, represents a contrast set for embolic
stroke patients in contrast with thrombotic stroke patients. It
should be further interpreted as ‘‘since both antihypertensive ther-
apy and antiarrhytmic therapy are therapies for cardiovascular dis-
3 Not that the computed evaluation measures only reflect characteristics specific to
the available database, not necessarily holding for the general population or other
medical institutions.



Fig. 2. A strongly pruned decision tree aimed at distinguishing between patients
with embolic stroke and thrombotic stroke. Every node of the decision tree is
represented by a circle–rectangle pair. In the circle, the distribution of the classes of
the examples belonging to the node is visualized. The rectangle contains the
information on the majority class of the node (first line), the percentage of the
majority class (second line) and, depending on whether the node is an inner node of
the tree or a leaf, the attribute to test or the prediction of the leaf.
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orders, ischemic stroke patients with cardiovascular disorders tend
to have emboli as main cause of stroke”. Therapies themselves are,
in line with medical knowledge, not causing strokes.

3.2. Motivation for contrast set mining

A common question of exploratory data analysis is ‘‘What are
the differences between the given groups?” where the groups are
defined by a property of individuals that distinguishes one group
from the others. For example, the distinguishing property that
we want to investigate could be the gender of patients and a ques-
tion to be explored can be ‘‘What are the differences between
males and females affected by a certain disease?” or, if the property
of interest was the response to a treatment, the question can be
‘‘What are the differences between patients reacting well to a se-
lected drug and those that are not?” Searching for differences is
not limited to any special type of individuals: we can search for dif-
ferences between molecules, patients, organizations, etc. In this
paper we address the problem of exploring the differences be-
tween two groups of ischemic stroke patients: patients with
thrombotic stroke and those with embolic stroke.

Despite the availability of specific contrast set mining tech-
niques, some of which adapt classification rule learners to contrast
set mining [24], we provide further motivat for the development of
our methodology by showing the inadequacy of standard machine
learning techniques for contrast set mining. To do so, we use a
standard decision tree learner and a standard classification rule
learner, and show their shortcomings for contrast set mining.

3.2.1. Inadequacy of decision tree learners for CSM
We used a decision tree learner [18], implemented in the Or-

ange data mining toolbox [6], to induce decision trees shown in
Figs. 2 and 3, contrasting between patient groups with embolic
stroke ðembÞ and thrombotic stroke ðthrÞ with and without the
presence of the third group of patients with normal ðnormCTÞ brain
CT test results, respectively. To explore the capability of decision
tree learning for contrast set mining we have applied harsh prun-
ing parameters to induce small and comprehensible decision trees
from the available data.4

Let us evaluate decision tree learning as a potential method for
contrast set mining. In the contrast set mining setting, the main
advantage of decision trees is the simplicity of their interpretation.
On the other hand, there are several disadvantages. All the con-
trasting patterns (rules formed of decision tree paths) include the
same root attribute, which is disadvantageous compared to con-
4 Note that the data is very noisy, hence the induced decision trees have a low
classification accuracy: 75.61% accuracy for a two-class problem, and 58% accuracy
for a three-class problem, estimated by 10 fold cross-validation, respectively.
trast set rule representations. Due to attribute repetition and thus
a limited set of attributes appearing in decision tree paths, the vari-
ety of contrasting patterns is very limited. Another well-known
problem of decision trees is their sensitivity to changes in the data:
a small change in the training set may completely change the set of
attributes appearing in the nodes of the tree.

3.2.2. Inadequacy of Classification Rule Learners for CSM
Classification rules overcome some disadvantages of decision

trees. We experimented with JRip; the Java implementation of
the Ripper algorithm [5]. From the results in Table 1 we can see
that classification rules do not all share the same key feature, but
there are other disadvantages of classification rules making them
inappropriate for contrast set mining. First, the rules are generated
consequently by a covering algorithm, which implies that they also
need to be read and interpreted consequently—they are not inde-
pendent ‘chunks of knowledge’. The second disadvantage is the
low coverage of classification rules which is undesired in contrast
set mining. Last, in the concrete example in Table 1, only the last
‘generic’ rule has as a consequent embolic stroke patients—in the
entire ruleset there is no description of embolic stroke patients
at all.

3.3. Overview of the proposed methodology and its implementation

The novel contrast set mining methodology, proposed in this
paper, is performed in the following steps:

� preprocess the data (to comply with the data format of the
selected data mining toolbox),

� for each target class, transform the contrast set mining problem
into adequate subgroup discovery problems (see Section 4),

� induce a set of subgroup descriptions for every subgroup discov-
ery problem,

� list and visualize the induced subgroup descriptions (see Section
5),

� provide additional explanations by inducing the supporting fac-
tors (see Section 6), and

� evaluate the results in collaboration with the domain expert.

We here briefly describe the APRIORI-SD subgroup discovery
algorithm [14] which was used in our experiments. APRIORI-SD
is an adaptation of the APRIORI-C algorithm [12] for mining classi-
fication rules with association rule learning techniques. The main
modifications of the APRIORI-C classification rule learner, making
it appropriate for subgroup discovery, involve the implementation
of an example weighting scheme in rule post-processing, a modi-
fied weighted relative accuracy heuristic incorporating example
weights (see Eqs. 4 and 5 for the original WRAcc heuristic and its
modification with example weights), and a probabilistic classifica-
tion scheme. In brief, in APRIORI-SD, the set of potential rules (sub-
group descriptions) is generated by executing the APRIORI-C
algorithm. When selecting individual rules, APRIORI-SD repeatedly
finds a subgroup with the highest weighted relative accuracy (by
taking into account example weights) among subgroup description
candidates (APRIORI-C rules) and decreases example weights of
covered examples. This is repeated until WRAcc is greater than
zero.

We have chosen to implement the proposed methodology in
the Orange data mining toolbox [6]. We implemented three algo-
rithms that are adaptations of rule learners to perform the sub-
group discovery task: SD [9], CN2-SD [17] and APRIORI-SD [14]
with some minor adaptations compared to the descriptions in
the original papers. The implementation differences arise from
the internal representation of the data in Orange, based on attri-
butes and not on features (attribute–values). Data need to be dis-



Fig. 3. A pruned decision tree aimed at distinguishing between patients with embolic stroke, thrombotic stroke and patients with normal brain CT test results.

Table 1
Classification rules generated by JRip aimed at distinguishing between patients with
embolic stroke, thrombotic stroke and patients with normal brain CT test results

sys P 200 AND chol P 5:1! class ¼ thr
chol P 7:1 AND plat P 198! class ¼ thr
fibr P 5 AND af ¼ no AND ecghlv ¼ yes! class ¼ thr)
fibr 6 3:8 AND au 6 305! class ¼ normal
fibr 6 4:2 AND chol P 6:3! class ¼ normal
age 6 66 AND ecgfr P 75 ANDpt P 0:8 AND gluc 6 6:8! class ¼ normal
! class ¼ emb

Tenfold cross-validated classification accuracy is 65%.
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cretized in the preprocessing phase, as the implementations con-
struct attribute–value pairs from discretized data on the fly while
constructing the subgroup describing rules. Despite this data rep-
resentation limitation, the algorithm reimplementation in Orange
is valuable, as it offers various data and model visualization tools
and has excellent facilities for building new visualizations.

Orange goes beyond static visualization, by allowing the inter-
action of the user and combination of different visualization tech-
niques. In Fig. 4 an example of a visual program in the Orange
visual programming tool Orange Canvas is shown.5 The first widget
from the left (File) loads the dataset (in this example we load the
Brain Ischemia dataset with three classes). The following widget
(Discretize) takes care of data discretization in the preprocessing
phase. It is followed by the widget Build Subgroups which is in charge
of building subgroups. In this widget the user chooses the algorithm
for subgroup discovery and sets the algorithm parameters.

The widget Subgroup Bar Visualization provides the visualization
of the subgroups. It can be connected to several other widgets for
data visualization. In our case we connected it to the existing Linear
Projection visualization (see the left-hand side of Fig. 4) which visu-
alizes the entries of the entire dataset as empty shapes and the en-
tries belonging to the group selected in the Subgroup Bar
Visualization widget as full shapes. By moving the mouse over a
certain shape in the Linear Projection widget a detailed description
of the entry is displayed.

4. Proposed methodology: contrast set mining by
transformation to subgroup discovery

Even though the definitions of subgroup discovery and contrast
set mining appear to be substantially different, this section pro-
5 This visual program is just one example of what can be done by using the
Subgroup discovery tool implemented in Orange. Subgroup evaluation and different
method for visualizing the contents of subgroups are also available.
vides a proof of the compatibility of the two tasks and of the used
rule quality measures. It is also shown that by transforming a con-
trast set mining task to a subgroup discovery task, one can solve
the following currently open issues of contrast set mining [24]:
selecting the most appropriate heuristics for identifying interesting
contrast sets, avoiding of overlapping rules, and presenting con-
trast sets to the end-user.

4.1. Unifying the terminology of subgroup discovery and contrast set
mining

As contrast set mining and subgroup discovery were developed
in different research communities, each has developed its own ter-
minology, therefore a common terminology needs to be estab-
lished before proceeding. In order to show the compatibility of
contrast set mining and subgroup discovery tasks, we first define
the compatibility of terms used in different communities as follows:
terms are compatible if they can be translated into equivalent log-
ical expressions and if they bare the same meaning, i.e., if terms
from one community can replace terms used in another
community.

To show that terms used in contrast set mining (CSM) can be
translated to terms used in subgroup discovery (SD), Table 2 pro-
vides a term dictionary through which we translate the terms used
in CSM and SD into a unifying terminology of rule learning, or more
specifically, concept learning. In concept learning, class C is consid-
ered as the property of interest and examples with this property as
positive examples of C. The negative examples are formed of exam-
ples of all other classes.

Note at this point the main terminological and conceptual mis-
match between contrast set mining and subgroup discovery. First,
in contrast set mining, the contrasting groups are the input to the
algorithm, while in subgroup discovery, the subgroups are the out-
put of the algorithm. Furthermore, in contrast set mining all the
contrasting groups have the same importance while in subgroup
discovery there is only one property of interest and all the terminol-
ogy is centralized around this property (the true positives, true po-
sitive rate, etc.).
4.2. Task transformation

The definitions of contrast set mining and subgroup discovery
appear different: contrast set mining searches for discriminating
characteristics of groups called contrast sets, while subgroup dis-
covery searches for subgroup descriptions. Despite these apparent
differences this section shows that every contrast set mining task
can be translated into a sequence of subgroup discovery tasks.



Table 2
Synonyms for terms used in contrast set mining and subgroup discovery

Contrast set mining (CSM) Subgroup discovery (SD) Rule learning (RL)

Contrast set Subgroup description Rule conditions
Groups Class/property Classes/concepts
G1; . . . ;Gn C C1; . . . ;Cn

Attribute–value pair Feature Condition
Examples in groups Examples of Examples of
G1; . . . ;Gn C and C C1; . . . ;Cn

Examples for which the contrast set is true Subgroup of examples covered examples

Fig. 4. An example of a visual program in the interactive interface for subgroup discovery implemented in Orange.

118 P. Kralj Novak et al. / Journal of Biomedical Informatics 42 (2009) 113–122
A special case of contrast set mining considers only two con-
trasting groups Gi and Gj. In this situation, the task of contrast
set mining is to find characteristics of one group discriminating it
from the other and vice versa. Using the dictionary of Table 2 it
is trivial to show that a two-group contrast set mining task
CSMðGi;GjÞ can be directly translated into the following two sub-
group discovery tasks: SD(C ¼ Gi vs. C ¼ Gj) and SD(C ¼ Gj vs.
C ¼ Gi). Since this translation is possible for a two-group contrast
set mining task, it is—by induction—also possible for a general con-
trast set mining task involving n contrasting groups. The induction
step is as follows:

CSMðG1; . . . ;GnÞ

for i ¼ 2 to n do

for j ¼ 1; j–i to n� 1 do

SDðC ¼ Gi vs: C ¼ GjÞ

Putting contrast set mining and subgroup discovery in a broader
rule learning context, note that there are two main ways of induc-
ing rules in multi-class learning problems: learners either induce
the rules that characterize one class compared to the rest of the
data (the standard one-versus-all setting, used in most classifica-
tion rule learners), or alternatively, they search for rules that dis-
criminate between all pairs of classes (known as the round robin
approach to classification rule learning, proposed in [7]). Subgroup
discovery is typically performed in a one-versus-all rule learning
setting, typically focusing on generating subgroup descriptions of
a single target class. On the other hand, contrast set mining imple-
ments a round robin approach (of course, with different heuristics
and goals compared to classification rule learning). Note that we
have shown above that using a round robin setting, a general n
group contrast set mining task can be translated into a sequence
of subgroup discovery tasks.
4.3. Compatibility of rule quality measures

Rule quality measures are usually based on the covering prop-
erty of rules, given the positive (target) class in the rule head. For
instance, the true positive rate TPrðX ! YÞ is defined as the per-
centage of positive examples correctly classified as positive by rule
X ! Y , and the false positive rate FPrðX ! YÞ is defined as percent-
age of negative examples incorrectly classified as positive by rule
X ! Y . We illustrate these measures in Table 3 and in Fig. 5.

In this section we show that the rule quality measures support
difference (SuppDiff) used in contrast set mining and weighted rela-
tive accuracy (WRAcc) used in subgroup discovery are compatible,
using the following definition of compatibility: rule quality mea-
sures h1 and h2 are compatible if

8 pairs of rules Ri and Rj : h1ðRiÞ > h1ðRjÞ () h2ðRiÞ > h2ðRjÞ:

A measure of contrast set quality defined in [3] is the support
difference (see Eq. 2). We here show that the support difference
heuristic can be rewritten, using the dictionary in Table 3 and
equations from Fig. 5, as follows:

SuppDiff ðX;G1;G2Þ ¼supportðX;G1Þ � supportðX;G2Þ
¼TPrðX ! G1Þ � TPrðX ! G2Þ
¼TPrðX ! G1Þ � FPrðX ! G1Þ

where TPr and FPr denote the true positive rate and the false posi-
tive rate, respectively.

Several heuristics have been developed and used in the sub-
group discovery community. We will consider here only the
weighted relative accuracy which is used in subgroup discovery
algorithms CN2-SD [17] and APRIORI-SD [14]. The weighted rela-
tive accuracy heuristic optimizes two contrasting factors: rule cov-



Table 3
Rule quality measures used in two-group contrast set mining and subgroup discovery,
where group G1 from contrast set mining is considered as property of interest C in
subgroup discovery

Contrast set mining (CSM) Subgroup discovery (SD) Rule learning (RL)

Groups G1 and G2 Classes C and C Classes C and C
Support of contrast set on G1 True positive rate True positive rate
Support of contrast set on G2 False positive rate False positive rate

Fig. 5. On the left: the large rectangle represents the whole dataset divided into
two groups: G1 and G2. The ellipse represents the subgroup of examples defined by
conditions X. On the right: the formulas for the true and false positive rate, showing
that FPrðX ! G1Þ ¼ TPrðX ! G2Þ.
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erage pðXÞ (the size of the subgroup), and distributional unusual-
ness pðYjXÞ � pðYÞ (the difference between the proportion of posi-
tive examples in the subgroup describing rule and the proportion
of positives in the entire example set). The weighted relative accu-
racy heuristic is here written in terms of probabilities as follows:

WRAccðX ! YÞ ¼ pðXÞ � ðpðY jXÞ � pðYÞÞ ð3Þ

Below we demonstrate that the weighted relative accuracy
known from subgroup discovery and the support difference be-
tween groups used in contrast set mining are compatible, which
is derived as follows.6:

WRAccðX ! YÞ ¼pðXÞ � ½pðY jXÞ � pðYÞ� ¼ pðY � XÞ � pðYÞ � pðXÞ
¼pðY � XÞ � pðYÞ � ½pðY � XÞ þ pðY � XÞ�
¼ð1� pðYÞÞ � pðY � XÞ � pðYÞ � pðY � XÞ
¼pðYÞ � pðYÞ � pðXjYÞ � pðYÞ � pðYÞ � pðXjYÞ
¼pðYÞ � pðYÞ � ½pðXjYÞ � pðXjYÞ�
¼pðYÞ � pðYÞ � ½TPrðX ! YÞ � FPrðX ! YÞ�

Since the distribution of examples among classes is constant for
any dataset, the first two factors pðYÞ and pðYÞ are constant within
a dataset. Therefore, when maximizing the weighted relative accu-
racy, one is maximizing the second factor
½TPrðX ! YÞ � FPrðX ! YÞ�, which actually is the support difference
in a two group contrast set mining problem:

WRAccðX ! YÞ ¼WRAccðX ! G1Þ
¼pðG1Þ � pðG2Þ � ½supportðX;G1Þ � supportðX;G2Þ�
4.4. Solving other contrast set mining open issues through subgroup
discovery

Open issues of contrast set mining, identified by [24] are: choos-
ing an appropriate search heuristic (see the solution to this open is-
sue in Section 4.3 above), avoiding of too many overlapping rules,
and presenting the results to the end-user. We have also identified
dealing with continuous attribute values as an open issue.

4.4.1. Avoiding of too many overlapping rules
Webb et al. [24] show that contrast set mining is a special case

of the more general rule discovery task, but the comparison of
6 These equations were derived by Peter Flach in another context, see [16]
STUCCO, OPUS_AR and C4.5 shows that rules obtained from stan-
dard rule learners are a superset of rules obtained by STUCCO.
Moreover, the number of rules generated by OPUS_AR largely ex-
ceeds the number of rules generated by STUCCO, unless pruned
by the user-defined maximum number of rules parameter.

Complicated pruning mechanisms are used in STUCCO in order
to overcome this problem. Pruning of generated contrast sets re-
moves contrast sets that, while significant and large, derive these
properties only due to being specializations of more general con-
trast sets: any specialization is pruned that has similar support
to its parent or that fails a v2 test of independence with respect
to its parent. Details of the relatively complex pruning mechanisms
are elaborated in [3].

In subgroup discovery algorithms like CN2-SD [17] this problem
is elegantly solved by using the weighted covering approach with
the intention to ensure the diversity of rules induced in different
iterations. The weighted covering algorithm starts by constructing
and selecting the first rule, i.e., the ‘best’ rule with the highest va-
lue of the WRAcc heuristic, defined in Eq. 3 and computed as
follows:

WRAccðX;YÞ ¼ pþ n
P þ N

� p
pþ n

� P
P þ N

� �
ð4Þ

where p and n are the numbers of covered positive and negative
examples (i.e., p ¼ jTPj and n ¼ jFPj, the numbers of true positives
and false positives, respectively), and P and N are the numbers of
all positive and negative examples in the dataset. Having selected
the first rule, the weights of positive examples covered by the rule
are decreased. To do so, the rules covering each positive example
are counted. All example counts cðeÞ are initially set to 1. The exam-
ple weights are computed as wðeÞ ¼ 1

cðeÞ, and in each iteration of the
algorithm the example counts are recomputed, leading to decreased
example weights. For that purpose, the CN2-SD and the APRIORI-SD
algorithm use the weighted relative accuracy heuristic, modified
with example weights, as defined in Eq. (5) below:

WRAcc0ðX;YÞ ¼ p0 þ n
P0 þ N

� p0

p0 þ n
� P

P þ N

� �
ð5Þ

where p0 ¼
P

TPðRÞwðeÞ is the sum of the weights of all covered posi-
tive examples, and P0 is the sum of the weights of all positive
examples.

Although the weighted covering approach cannot guarantee the
statistical independence of generated rules, it aims at ensuring
good diversity of a relatively small set of rules.

4.4.2. Handling continuous attribute values
Subgroup discovery algorithms SD [9], CN2-SD [17] and APRI-

ORI-SD [14] use a feature-based data representation, where attri-
bute values needed for the construction of features are generated
automatically from the data. In this way, subgroup discovery algo-
rithms overcome this deficiency of contrast set mining.

4.4.3. Presenting the results to the end-user
Presenting subgroup discovery results to the end-user is an

interesting research problem. Several methods for subgroup visu-
alization have been proposed (see an overview in [11]). When visu-
alizing contrast set mining results on two groups, these methods
can be easily adopted without much adaptation. For example, the
pie chart visualization can easily be adapted for multi-class visual-
ization, while more advanced visualizations, like the distribution of
a subgroup by a continuous attribute, require more inventiveness
for being used for multi-class results visualizations.

In this work we propose a new subgroup visualization tech-
nique called visualization by bar charts, shown in Figs. 6 and 7. In
this visualization, the first row is used to visualize the distribution
of positive and negative examples in the entire example set. The



Fig. 6. Characteristic descriptions of embolic stroke patients displayed in the bar
chart subgroup visualization: on the right side the positive cases, in our case
embolic stroke patients, and on the left hand side the others—thombotic stroke
patients and those with normal CT.

Fig. 7. Characteristic descriptions of thrombotic stroke patients.
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area at the right hand side represents the positive examples (one
group, in the contrast set mining terminology), and the area at
the left hand side represents the negative examples (the other
group). The following rows present the induced subgroup descrip-
tions, together with the fractions of positive and negative examples
covered. Subgroups are sorted by the relative share of the positive
examples in the subgroup.

This visualization method can help estimating the quality of the
results by allowing for simple comparisons between subgroups. It
is intuitive and simple, and therefore easy to be interpreted by the
end-user. However, as this visualization does not display the con-
tents of the data, it should best be used in hand with other visual-
ization methods, e.g., together with those available in the Orange
data mining toolbox (see Fig. 4) in order to allow for more detailed
exploration.

5. Application of contrast set mining to the problem of
distinguishing between similar diseases

The goal of our experiments was to find characteristic differ-
ences between patients with embolic and thrombotic stroke. We
have approached this problem in three ways: first by standard ma-
chine learning algorithms (see Section 3.2), second by the round
robin transformation of contrast set mining to subgroup discovery
(Section 5.1), and finally by a one-versus-all transformation of con-
trast set mining to subgroup discovery (Section 5.2). The latter two
are outlined below.

5.1. Experimental evaluation of the round robin CSM

To find characteristic differences between patients with em-
bolic and thrombotic stroke we applied the mathematically correct
round robin transformation from contrast set mining to subgroup
discovery, described in Section 4. We ran this experiment and
asked the expert for interpretation.

The resulting rules mainly include the feature af ¼ no for
thrombotic stroke patients and af ¼ yes for embolic stroke pa-
tients, which are very typical for the corresponding diseases. How-
ever, the rules turned out to be non-intuitive to the medical expert.
For example, the rule

af ¼ yes AND sys < 185 AND fo ¼ 1! class ¼ emb

covering many embolic and just one thrombotic stroke patient
ðp ¼ jTPj ¼ 33; n ¼ jFPj ¼ 1Þ was interpreted as patients with sus-
pected thromb in the heart in atrial fibrillation ðaf ¼ yesÞ, visible con-
sequences of hypertension in the eyes ðfo ¼ 1Þ, and with normal or
high—but not extremely high (not over 185)—systolic blood pressure.7
7 High blood pressure is characteristic for both diseases and the boundary 185 is
very high, since blood pressure above 139 is already considered high in medical
practice. In our dataset there are 56 patients with sys > 185.
We have further investigated the reasons why the rules were
relatively difficult to be interpreted by the medical expert. One rea-
son is the difficulty of the contrast set mining task itself: physicians
are not used to distinguish between two types of the disease given
the condition that a patient has a disease, but are rather used to
find characteristics for a specific disease compared to the entire
population. Another reason are rules like the rule listed below:

fhis ¼ yes AND smok ¼ yes AND asp ¼ no AND dya < 112:5! class

¼ emb

This contrast set describing rule has good covering characteris-
tics ðjTPj ¼ 28; jFPj ¼ 4Þ, but practically describes healthy people
with family history of brain stroke. It is undoubtedly true that this
pattern is present in the dataset, but the discovered pattern does
not describe the reason why these patients are embolic stroke pa-
tients; the round robin CSM algorithm could not detect that the
combination of these features is not useful for group differentiation
from the medical point of view as it simply did not have the normal
CT people as a reference. This lesson learned has lead us to the
development of a different approach to contrast set mining: the
one-versus-all CSM algorithm whose experimental evaluation is
described below.

5.2. Experimental evaluation of the one-versus-all CSM

As the medical expert was not satisfied with the results of the
comparison of thrombotic and embolic stroke patients induced
by the round robin CSM algorithm, we further investigated the rea-
sons for the expert’s dissatisfaction and learned a lesson in medical
contrast set mining: to overcome the problems related to the origi-
nal definition of contrast set mining we need to modify the defini-
tion of the contrast set mining task as addressed in this paper as
follows. Instead of using the round robin approach where we com-
pare classes pairwise, we may better use the one-versus-all ap-
proach which is standard in classification rule learning and
subgroup discovery. In this way we give the algorithm also the
information about the normal CT patients.

In particular, in our dataset composed of three groups of pa-
tients (as described in Section 3.1 and shown in Fig. 1), to find
the characteristics of embolic stroke patients we should perform
subgroup discovery on the embolic stroke group compared to the
rest of the patients (thrombotic stroke patients and those with a
normal CT). Similarly, when searching for characteristics of throm-
botic stroke patients, we should compare them to the rest of the
patients (those with embolic stroke and those with a normal CT).

In this setting, we ran the experiment with the Orange imple-
mentation of APRIORI-SD,8 and got the results shown in Figs. 6
and 7.

Note that stroke caused by embolism is most commonly caused
by heart disorders. The first rule shown in Fig. 6 has only one con-
dition confirming the presence of atrial fibrillation ðaf ¼ yesÞ as an
8 We used the following parameter values: minimal support = 15%, minimal
confidence = 30%, the parameter for tuning the covering properties k ¼ 5.



Table 4
Supporting factors for contrast set CS1

CS1 Thrombotic Embolic

fo high 0.82 0.73 0.76
af = yes 80% 13% 53%
ahyp = yes 100% 81% 70%
aarrh = yes 100% 19% 45%
chol low 5.8 6.59 5.69
rrsys low 159 178 159
rrdya low 92 100 92
ecgfr high 87 77 94
acoag = yes 24% 5% 16%
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indicator for embolic stroke. The combination of features from the
second rule also shows that patients with antihypertensive therapy
ðahyp ¼ yesÞ and antiarrhytmic therapy ðaarrh ¼ yesÞ, therefore pa-
tients with heart disorders, are prone to embolic stroke.

Thrombotic stroke is most common with older people, and of-
ten there is underlying atherosclerosis or diabetes. In the rules dis-
played in Fig. 7 the features presenting diabetes do not appear. The
rules describe patients with elevated diastolic blood pressure and
fibrinogen, but without heart or other disorders. High cholesterol,
age and fibrinogen values appear characteristic for all ischemic
strokes.
9 Note that the computation of supporting factors differs if CS1 is interpreted as a
subgroup or as a contrast set. In Table 4 the top four supporting factors are
characteristic for group CS1, regardless if it is considered as a subgroup or as a
contrast set, while the next five supporting factors are characteristic for CS1 only if
considered as a contrast set to thrombotic.

Table 5
Supporting factors for contrast set CS2

CS2 Embolic Thrombotic

age high 74.2 69.85 69.29
chol high 6.3 5.69 6.59
fibr high 5.25 4.51 4.85
fo low 0.64 0.76 0.73
af = no 100% 47% 88%
smoke = no 73% 46% 55%
rrsys high 180 159 178
ecghlv = yes 60% 37% 61%
acoag = no 100% 84% 95%
aarh = no 93% 55% 81%
6. Supporting factors for contrast set mining

The descriptive induction task is not concluded when individual
rules are discovered. A property of the discovered rules is that they
contain only the minimal set of principal characteristics for distin-
guishing between the classes. For interpretation and understand-
ing purposes other properties that support the detected rules are
also relevant. In subgroup discovery these properties are called
supporting factors. They are used for improved human under-
standing of the principal factors and for the support in decision
making processes. This section explores an approach to improving
contrast set mining explanatory potential by using supporting
factors.

6.1. Supporting factors in subgroup discovery

In subgroup discovery the features that appear in subgroup
descriptions are called the principal factors, while the additional
features that are also characteristic for the detected subgroup are
called the supporting factors [10]. For every detected subgroup
the supporting factors detection process is repeated for every attri-
bute separately. For numerical attributes their mean values are
computed while for categorical attributes the relative frequency
of the most frequent or medically most relevant category is com-
puted. The mean and relative frequency values are computed for
three example sets: for the subset of positive examples that are in-
cluded into the pattern, for the set of all positive examples, and fi-
nally for the set of all negative examples (the control set).

The necessary condition for a feature to be determined as a sup-
porting factor is that its mean value or the relative frequency of the
given attribute value must be significantly different between the
target pattern and the control example set. Additionally, the values
for the pattern must be significantly different from those in the
complete positive population. The reason is that if there is no such
difference then such a factor is supporting for the whole positive
class and not specific for the pattern.

The statistical significance between example sets can be deter-
mined using the Mann–Whitney test for numerical attributes and
using the v2 test of association for categorical attributes. The deci-
sion which statistical significance is sufficiently large can depend
on the medical context. Typically the cut-off values are set at
p < 0.01 for the significance with respect to the control set and
p < 0.05 for the significance with respect to the positive set.

6.2. Supporting factors for contrast sets

Even though contrast set mining and subgroup discovery are
very similar, there is a crucial difference between these two data
mining tasks: in subgroup discovery there is only one property of
interest and the goal is to find characteristics common to sub-
groups of individuals that have this property. On the other hand,
in contrast set mining there are several groups of individuals and
the goal is to find differences between these groups. Therefore
the notion of supporting factor from subgroup discovery cannot
be directly adopted for contrast set mining.

We propose and show in our experiments a way of generalizing
the supporting factors from subgroup discovery to contrast set
mining. Since the goal of contrast set mining is to find differences
between contrasting groups, there is no need for the values of sup-
porting factors being significantly different from those in the entire
positive population. Another difference from subgroup discovery
supporting factors is that instead of presenting to the domain ex-
pert only the values of supporting factors for the positive class,
we also show the distribution (for categorical) or the average (for
numeric) attributes for the negative set and for the entire positive
set.

Since the interpretation of all the patterns discovered and pre-
sented in Section 5.2 is out of the scope of this paper, we focus only
on two contrast sets: Contrast set CS1 : ðTPr ¼ 0:4; FPr ¼ 0:14Þ

ahyp ¼ yes AND aarrh ¼ yes! class ¼ emb

Contrast set CS2 : ðTPr ¼ 0:56; FPr ¼ 0:2Þ

age > 66 AND trig > 1 AND af ¼ no AND acoag ¼ no! class ¼ thr

The first of the selected contrast sets is intuitive to interpret
since both primary factors are treatments for cardiovascular disor-
ders. The supporting factors for this set are shown in Table 4. We
can see that the first four supporting factors (as well as the two pri-
mary factors) for this contrast set are all about cardiovascular dis-
orders and therefore they substantiate the original interpretation.
It is therefore legitimate to say that embolic stroke patients are pa-
tients with cardiovascular disorders while cardiovascular disorders
are not characteristic for thrombotic stroke patients.9
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The second selected contrast set is vague and is not directly
connected with medical knowledge. High age and triglyceride val-
ues are characteristic for thrombotic stroke, but the boundary val-
ues in the contrast set are not very high. The rest of the features in
this contrast set indicate no presence of atrial fibrillation and no
anticoagulant therapy: again nothing specific. The supporting fac-
tors for this set are shown in Table 5. They include high cholesterol
and fibrinogen, low fundus oculi and non-smoker. These patients
are old and they do not have cardiovascular disorders.

The experiments show the advanced interpretability of the dis-
covered contrast sets achieved by adding the supporting factors.
The presented approach to the detection of supporting factors ni-
cely supplements contrast set mining and enables in depth analy-
sis. These examples indicate that the supporting factors
appropriately complement the primary factors and can help the
expert interpretation to move from speculation towards better jus-
tified medical conclusions.

7. Conclusions

This paper has shown that contrast set mining and subgroup
discovery are very similar data mining tasks, and has presented ap-
proaches to contrast set mining by transforming the contrast set
mining task to a subgroup discovery task. We have also shown that
the subgroup discovery approach to contrast set mining solves sev-
eral open issues of contrast set mining. Moreover, in the brain
ischemia data analysis application, we have demonstrated that,
in the problem of distinguishing between similar classes, the right
task to address is the one-versus-all contrast set mining task rather
then the classical pairwise (round robin) formulation of the task.
Finally, we have improved the explanatory potential of discovered
contrast sets by offering additional contrast set descriptors, called
the supporting factors. A remaining open issue of contrast set min-
ing is the evaluation and the visualization of contrast set mining
results on several contrasting groups, which is the topic of further
work.
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