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The paper presents a historical overview of data mining tools and applications in the field of biomed-
ical research, developed at the Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana,
Slovenia. It first outlines subgroup discovery and selected relational data mining approaches, with the
emphasis on propositionalization and relational subgroup discovery, which prove to be effective for data
analysis in biomedical applications. The core of this paper describes recently developed approaches to
semantic data mining which enable the use of domain ontologies as background knowledge in data anal-
ysis. The use of the described tools is illustrated on selected biomedical applications.

Povzetek: Prispevek opisuje zgodovinski pregled razvoja orodij rudarjenja podatkov na področju
biomedicine.

1 Introduction
Data analysis in biomedical applications aims at extracting
potentially new relationships from data and providing
insightful representations of detected relationships.
Methods for symbolic data analysis are preferred since
highly accurate but non-interpretable classifiers are fre-
quently considered useless for medical practice. Subgroup
discovery techniques [7, 20] are of interest to biomedical
research, as they enable the discovery of patient subgroups
from classified patient data, where the induced subgroup
descriptions have the form of descriptive rules.

Let us illustrate the results of subgroup discovery in two
biomedical applications. In the first application [4], the
induced subgroup descriptions suggest how to select indi-
viduals for population screening, concerning high risk for
coronary heart disease (CHD). One of the discovered rules
describes a group of overweight female patients older than
63 years:

High CHD Risk ← gender = female &

age > 63 years &

body mass index > 25kg/m
2

In the second application [16], subgroup describing rules
suggest genes that are characteristic for a given cancer type
(leukemia), distinguishing it from other 13 cancer types
(CNS, lung cancer, etc.):

Leukemia← KIAA0128 is diff_expressed &

prostaglandin d2 synthase is not diff_expressed

The following sections presents the evolution of tools and
techniques from inductive logic programming and rela-
tional data mining through special purpose systems for
bioinformatics to general purpose semantic data mining
approaches which enable the use of domain ontologies as

background knowledge for data analysis. We conclude by
describing new challenges in the focus of our current and
future research.

2 Relational data mining for
biomedical applications

We first present selected approaches to inductive logic pro-
gramming (ILP) [11, 9] and relational data mining (RDM)
[1] which showed a great potential for biomedical research
due to their capacity of using background knowledge in the
learning process. From the available background know-
ledge (encoded as logical facts or rules) and a set of clas-
sified examples (encoded as a set of logical facts), an
ILP/RDM algorithm derives a hypothesized logic program
which explains the positive examples. While ILP focuses
on data and background knowledge represented in a logical
formalism, RDM assumes that the background knowledge
and data are encoded in a unique relational database format.
Compared to standard data mining techniques where the
input data is typically stored in a single data table (e.g., in
Excel), the input to an ILP/RDM algorithm is thus much
more complex.

Propositionalization [8] is a RDM approach, which has
been applied in several biomedical applications. Con-
sider relational subgroup discovery, an approach effec-
tively implemented in the RSD algorithm [2]. RSD gen-
erates descriptive rules as conjunctions of terms which
encode background knowledge concepts. RSD performs
example-weighting [10] (used in the so-called weighted
covering algorithm) and uses the weighted relative accu-
racy (WRAcc) measure as a heuristic for rule selection. For
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Figure 1: Semantic data mining schema

example, an induced description of gene group A, discov-
ered by RSD for the CNS (central nervous system) cancer
class in the problem of distinguishing between 14 cancer
types determines group A of differentially expressed genes
in CNS as a conjunction of two relational features [17]:
geneGroup(A) ← fi(A)&fk(A), where the two features,
fi(A) and fk(A), constructed in the propositionalization
step of RSD, are:
fi(A) : interaction(A,B) &

process(B,‘phosphorylation’)
fk(A) : interaction(A,B) &

process(B,‘negative regulation of apoptosis’) &
component(B,‘intracellular

membrane-bound organelle’)

3 Semantic subgroup discovery
The RSD approach to relational subgroup discovery, which
was successfully applied to mining microarray data [16],
was the first step towards developing a novel data mining
methodology, referred to as semantic subgroup discovery.
The process of semantic data mining is illustrated in Figure
1.

The proposed semantic data mining methodology
enables the generation of descriptive rules explaining the
instances of a target class as conjunctions of ontology
terms/concepts appearing in bioinformatics ontologies
such as the well-known Gene Ontology (GO), KEGG
and ENTREZ. An early approach to semantic subgroup
discovery, named SEGS, is outlined below, followed by
an outline of the SegMine methodology, which upgrades
SEGS with a link discovery step.

3.1 Semantic subgroup discovery with
SEGS

In many biomedical applications the goal of data analysis
is gene set enrichment, i.e., finding groups of genes (gene
sets) that are enriched, so that genes in the set are statisti-
cally significantly differentially expressed compared to the
rest of the genes. Two well-known methods for testing
the enrichment of gene sets include Gene Set Enrichment
Analysis (GSEA, [15]) and Parametric Analysis of Gene
Set Enrichment (PAGE, [6]). Originally, these methods
use gene sets that are defined based on prior biological
knowledge, e.g., published information about biochemical
pathways, coexpression in previous experiments or Gene
Ontology (GO) terms.

The RSD subgroup discovery approach combined with
gene set enrichment analysis inspired the development

Figure 2: Schematic representation of SEGS.

of the SEGS algorithm (Searching for Enriched Gene
Sets) [17], a specialized algorithm for semantic subgroup
discovery for microarray data analysis. SEGS employs
semantically annotated knowledge sources Gene Ontology
(GO), the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and ENTREZ interactions, as background know-
ledge for semantic subgroup discovery. Based on this back-
ground knowledge, SEGS automatically formulates bio-
logical hypotheses: rules which define groups of differ-
entially expressed genes. Finally, it estimates the rele-
vance/significance of the formulated hypotheses on experi-
mental microarray data. Compared to GSEA and PAGE,
SEGS does not only test existing gene sets (defined by
individual GO or KEGG terms), but constructs and tests
also new gene sets, constructed by the combination of
GO terms, KEGG terms, and also by taking into account
the gene-gene interaction data from ENTREZ. The SEGS
approach is outlined in Figure 2.

As it is infeasible to generate all the possible gene set
descriptions in the given hypothesis language and evaluate
each rule separately in the next step of the procedure, SEGS
uses the topology of GO and KEGG to search the hypoth-
esis space in a general-to-specific fashion to be able to
reduce the search. Moreover, SEGS includes the ranking
of genes (according to their differential expression based
on the input microarray experiment) into the gene set gen-
eration phase (as shown in Figure 2) and counts the number
of differentially expressed genes covered by each gener-
ated rule. If the number of covered differentially expressed
genes is lower than a predefined threshold, the rule is elim-
inated and not specialized further, thus pruning large parts
of the hypothesis space.

SEGS uses three statistical tests to evaluate the signifi-
cance of the newly generated gene sets: Fisher’s exact test,
the GSEA method [15] and the PAGE method [6]. It then
uses weights to combine the results of the three statistical
tests.

Consider the application domain described in [14,
5], where data instances are gene expression profiles
of patients belonging to two cancer classes, AML
(acute myeloid leukemia) and ALL (acute lymphoblastic
leukemia). Our goal is to uncover interesting patterns that
can help to better understand the dependencies between
the classes (cancer types) and the attributes (gene expres-
sions values). The rules, shown in Figure 3, were gener-
ated from data on gene expression profiles obtained by the
Affymetrix HU6800 microarray chip, containing probes
for 6,817 genes, for 73 instances of AML or ALL class
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Gene Set description ES
Enriched in ALL
1. ALL← int(Func(‘zinc ion binding’)& 0.60

Comp(‘chromosomal part’)&
Proc(‘interphase of mitotic cell cycle’))

2. ALL← Proc(‘DNA metabolism’) 0.59
3. ALL← int(Func(‘ATP binding’)& 0.55

Comp(‘chromosomal part’)&
Proc(‘DNA replication’))

Enriched in AML
1. AML← int(Func(‘metal ion binding’)& 0.54

Comp(‘cell surface’)&
2. AML← int(Comp(‘lysosome’)) 0.53
3. AML← Proc(‘inflammatory response’) 0.51

Figure 3: Enriched gene set descriptions in the AML-ALL
domain, together with their enrichment score (ES) [17].

labeled expression vectors. The rules are ranked according
to the enrichment score, measuring the enrichment of dif-
ferential expression of a set of genes, defined by the given
conjunction of GO, KEGG and/or ENTREZ interactions.

3.2 SegMine: Combining SEGS and
BioMine

The SegMine methodology [12], developed for exploratory
analysis of microarray data, is performed through semantic
subgroup discovery by SEGS, followed by link discovery
and visualization by Biomine [3], an integrated annotated
bioinformatics information resource of interlinked data.
The SegMine methodology, illustrated in Figure 4, consists
of gene ranking, hypothesis/rule generation by the SEGS
method for enriched gene set construction, rule clustering,
linking of the discovered gene sets to related biomedical
databases for link discovery with Biomine, and Biomine
sub-graph visualization.

The Biomine service is a valuable addition to SEGS,
complementing our semantic subgroup discovery tech-
nology by additional explanatory potential due to addi-
tional Biomine graph visualization. Biomine is used
through its web interface which allows for querying via
Biomine named entities, such as a set of GO terms,
resulting in a Biomine (sub)-graph, which can be visual-
ized for exploratory purposes. A sample Biomine graph
is shown in Figure 5, while the SegMine implementa-
tion in the Orange4WS workflow construction and exe-
cution platform [13] is shown in Figure 6. In [12], the
utility of the SegMine methodology was demonstrated in
two microarray data analysis applications: a well-known
dataset from a clinical trial in acute lymphoblastic leukemia
(ALL), and a dataset about the senescence in human mes-
enchymal stem cells (MSC). In the analysis of senescence
in human stem cells, the use of SegMine resulted in three
novel research hypotheses that can improve the under-
standing of the underlying mechanisms of senescence and
identification of candidate marker genes.

Figure 4: An overview of the SegMine methodology [12]
emphasizing its four main steps: (1) data preprocessing, (2)
search for differentially expressed gene sets, (3) clustering
of rules describing differentially expressed gene sets, and
(4) link discovery with graph visualization and exploration.

Figure 5: Biomine subgraph related to three genes from the
enriched gene set constructed by SEGS.
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Figure 6: A screenshot of Orange4WS running a workflow of SegMine components [12].

4 General purpose semantic data
mining

SEGS was the first special purpose semantic subgroup dis-
covery algorithm developed. Recently, we developed two
new general purpose semantic subgroup discovery systems:
SDM-SEGS and SDM-Aleph [18]. SDM-SEGS is based
on SEGS and can be used to discover subgroup descrip-
tions from ranked data as well as from labeled data with the
use of background knowledge in form of OWL ontologies.
SDM-Aleph is based on the ILP system Aleph.1 It was
designed to be used in a similar way as SDM-SEGS. Unlike
SDM-SEGS which is limited to four ontologies as input
and only one additional interacts relationship, in SDM-
Aleph any number of ontologies and additional relations
between the input examples can be specified, which is due
to the powerful underlying first-order logic formalism of
the ILP system Aleph. SDM-SEGS and SDM-Aleph are
implemented within a new semantic data mining toolkit,
named SDM-Toolkit [18]. SDM-Toolkit has been made
publicly available within the Orange4WS service-oriented
data mining environment [13]. In [18], we illustrate the
use of SDM-Toolkit tools for biomedical workflow con-
struction and their execution in Orange4WS on the same
two biomedical problem domains, ALL and hMSC, which
were used in the evaluation of the utility of SegMine [12].
A qualitative evaluation of SDM-SEGS and SDM-Aleph,
supported by experimental results and comparisons with
SEGS, showed that SEGS and SDM-SEGS are more appro-
priate for data analysis in biomedical domains where rule
specificity is desired, while SDM-Aleph is a more general
purpose system, resulting in more general rules of lower
precision.

Our recent work [19] also addresses semantic subgroup
discovery, but focuses on a problem of explaining patient
subgroups (e.g., similar patients, possibly all having a cer-
tain, yet unexplored cancer subtype) rather than explaining

1http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/

sets of differentially expressed genes characteristic for
patients of a given class (cancer type) as a whole. This
research is driven by a real-life problem of breast cancer
patient analysis, motivated by the experts’ assumption that
there are several subtypes of breast cancer.

5 Conclusion

This paper presents a success story of three generations of
data mining tools for biomedical research that use different
forms of background knowledge. The paper presents the
motivation and the evolution of ideas and techniques which
were successfully applied in the field of biomedicine. A
general-purpose semantic data mining toolkit is also pre-
sented, which offers numerous opportunities for applica-
tions where background knowledge in available in form of
ontologies. All the presented tools are freely available on-
line.

We envision further steps of development for semantic
data mining. First, we foresee the usage of linked data
as a general source of background knowledge used in
semantic data mining. Second, we expect that the mining
of knowledge encoded in ontologies will gain priority over
mining the empirical data, which will, we believe, become
a means of evaluation for the hypotheses generated from
background knowledge.

Acknowledgement

We acknowledge numerous collaborators who have signif-
icantly contributed to this work: Dragan Gamberger, Filip
Železny, Igor Trajkovski, Vid Podpečan, Igor Mozetič,
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N. Lavrač and S. Džeroski, editors, Relational Data
Mining, pages 262–286. Springer, 2001.
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