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Learning Relational Descriptions of Differentially
Expressed Gene Groups

Igor Trajkovski, Filip Železný, Nada Lavrač, and Jakub Tolar

Abstract— This paper presents a method that uses gene on-
tologies, together with the paradigm of relational subgroup dis-
covery, to find compactly described groups of genes differentially
expressed in specific cancers. The groups are described by means
of relational logic features, extracted from publicly available gene
ontology information, and are straightforwardly interpretable
by medical experts. We applied the proposed method to three
gene expression data sets with the following respective sets of
sample classes: (i) acute lymphoblastic leukemia (ALL) vs. acute
myeloid leukemia (AML), (ii) seven subtypes of ALL, and (iii)
fourteen different types of cancers. Significant number of dis-
covered groups of genes had a description which highlighted the
underlying biological process that is responsible for distinguishing
one class from the other classes. The quality of the discovered
descriptions was also verified by crossvalidation. We believe
that the presented approach will significantly contribute to the
application of relational machine learning to gene expression
analysis, given the expected increase in both the quality and
quantity of gene/protein annotations in the near future.

Index Terms— Learning in bioinformatics, Relational learning,
Learning from structured data, Inductive logic programming,
Scientific discovery, Microarray data analysis

I. INTRODUCTION

M ICROARRAYS are at the center of a revolution in
biotechnology, allowing researchers to simultaneously

monitor the expression of tens of thousands of genes. Inde-
pendent of the platform and the analysis methods used, the
result of a microarray experiment is, in most cases, a list of
genes found to be differentially expressed in different types
of tissues. A common challenge faced by the researchers is
to translate such gene lists into a better understanding of the
underlying biological phenomena.

Manual or semi-automated analysis of large-scale biolog-
ical data sets typically requires biological experts with vast
knowledge of many genes, to decipher the known biology
accounting for genes with correlated experimental patterns.
The goal is to identify the relevant “functions”, or the global
cellular activities, at work in the experiment. For example,
experts routinely scan gene expression clusters to see if any
of the clusters are explained by a known biological function.
Efficient interpretation of this data is challenging because the
number and diversity of genes exceed the ability of any single
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researcher to track the complex relationships hidden in the
data sets. However, much of the information relevant to the
data is contained in the publicly available gene ontologies
and annotations. Including this additional data as a direct
knowledge source for any algorithmic strategy may greatly
facilitate the analysis.

We present a method to identify groups of differentially ex-
pressed genes that have functional similarity in the background
knowledge formally represented with gene annotation terms
from the gene ontology. The input to our algorithm is a multi-
dimensional numerical data set, representing the expression of
the genes under different conditions (that define the classes of
examples), and an ontology used for producing background
knowledge about these genes. The output is a set of gene
groups whose expression is significantly different for one
class compared to the other classes. The features describe the
differentially expressed genes in terms of their functionality
and interactions with other genes. Medical experts are usually
not satisfied with a separate description of every important
gene, but want to know the processes that are controlled
by these genes. With our algorithm we are able to find
these processes and the cellular components where they are
“executed”, indicating the genes from the preselected list of
differentially expressed genes which are included in these
processes.

These goals can be achieved by using the methodology of
Relational Subgroup Discovery (RSD) [1]. With RSD we were
able to induce sets of rules characterizing the differentially ex-
pressed genes in terms of functional knowledge extracted from
the gene ontology and information about gene interactions.

The paper is organized as follows. In Section II we give
background information about the microarray technology and
gene expression analysis. Section III presents the fundamental
idea of our approach, and the steps taken in our analysis.
Section IV provides details of the RSD algorithm. Section
V presents the results of the experiments. In Section VI we
compare our approach with existing methodologies and draw
some conclusions of our work.

II. BACKGROUND

A. Measuring gene expression

The process of transcribing a gene’s DNA sequence into
the RNA that serves as a template for protein production is
known as gene expression. A gene’s expression level indicates
an approximate number of copies of the gene’s RNA produced
in a cell. This is considered to be correlated with the amount
of corresponding protein made.
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Fig. 1. The outcome of a microarray experiment is a gene expression matrix
that is a 2D matrix containing the expressions of genes per sample.

While the traditional technique for measuring gene expres-
sion is labor-intensive and produces an approximate quanti-
tative measure of expression, new technologies have greatly
improved the resolution and the scalability of gene expres-
sion monitoring. Expression chips (DNA chips, microarrays),
manufactured using technologies derived from computer-chip
production, can now measure the expression of thousands of
genes simultaneously, under different conditions. These condi-
tions may be different time points during a biological process,
such as the yeast cell cycle or drosophila development; direct
genetic manipulations on a population of cells such as gene
deletions; or they can be different tissue samples with some
common phenotype (such as different cancer specimens). A
typical gene expression data set is a matrix, with each row
representing a gene and each column representing a class
labeled sample, e.g. a patient diagnosed having a specific sort
of cancer. The value at each position in the matrix represents
the expression of a gene for the given sample (see Figure 1).

B. Analysis of gene expression data

Large scale gene expression data sets include thousands
of genes measured at dozens of conditions. The number
and diversity of genes make manual analysis difficult and
automatic analysis methods necessary. Initial efforts to analyze
these data sets began with the application of unsupervised ma-
chine learning, or clustering, to group genes according to the
similarity in gene expression [2]. Clustering allows for easier
manual examination of the data. In typical studies, researchers
examine the clusters to find those containing genes with
common biological properties, such as the common molecular
function or involvement in the same biological processes.
After commonalities have been identified (often manually)
it becomes possible to understand the global aspects of the
biological phenomena studied. As the community developed
interest in this area, additional novel clustering methods were
introduced and evaluated for gene expression data [3], [4].

The analysis of microarray gene expression data for various
tissue samples has enabled researchers to determine gene
expression profiles characteristic of the disease subtypes. The
groups of genes involved in these genetic profiles are rather
large and a deeper understanding of the functional distinction
between the disease subtypes might help not only to select

highly accurate “genetic signatures” of the various subtypes,
but hopefully also to select potential targets for drug design.
Most current approaches to microarray data analysis use
(supervised or unsupervised) machine learning algorithms to
deal with numerical expression data. While clustering methods
provide some insight into the data, they do not identify the
critical background biological information the researcher can
use to understand the significance of each cluster. However,
biological knowledge in terms of functional annotations of
genes is already available in public databases. Direct inclusion
of this knowledge source can greatly improve the analysis,
support (in term of user confidence) and explain the obtained
numerical results.

C. Gene ontologies

One of the most important tools for the representation and
processing of information about gene products and functions
is the Gene Ontology (GO)1. GO is being developed in parallel
with the work on a variety of other biological databases within
the umbrella project Open Biological Ontologies (OBO)2. It
provides a controlled vocabulary for the description of cellular
components, molecular functions, and biological processes.

As of June 2006, GO contains 1696 cellular component,
7429 molecular function and 10668 biological process terms.
Terms are organized in parent-child hierarchies (see Figure
2), indicating either that one term is more specific than
another (is a) or that the entity denoted by one term is part
of the entity denoted by another (part of). Typically, such
associations (or “annotations”) are first of all established by
automated means and later validated by a process of manual
verification which requires the annotator to have expertise both
in the biology of the genes and gene products and in the
structure and content of GO. The Gene Ontology, in spite of
its name, is not an ontology in the sense accepted by computer
scientists, in that it does not deal with axioms and formalized
definitions associated to terms. It is rather a taxonomy, or,
as the GO Consortium puts it, a “controlled vocabulary”
providing a practically useful framework for keeping track of
the biological annotations applied to gene products.

Recently, an automatic ontological analysis approach using
GO has been proposed to help in solving the task of inter-
preting the results of gene expression data analysis [5]. From
2003 to 2005, 13 other tools have been proposed for this type
of analysis and more tools continue to appear daily. Although
these tools use the same general approach, identifying sta-
tistically significant GO terms that cover a selected list of
genes, they differ greatly in many respects that influence in
an essential way the results of the analysis. A general idea
and comparison of these tools is presented in [6]. Another
approach to descriptive analysis of gene expression data is [7],
where a method is presented that uses text analysis to help
find meaningful gene expression patterns that correlate with
the underlying biology as described in the scientific literature.

1http://www.geneontology.org
2http://obo.sourceforge.net
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Fig. 2. The Gene Ontology provides a controlled vocabulary to describe
gene product attributes in any organism.

D. Relational logic analysis and related work

While the GO based tools reviewed above enable basic ana-
lysis such as identifying a set of statistically over-represented
GO terms associated with a given gene set, such analysis
may be insufficient to discover frequent yet more complex
ontological patterns. For example, a set of differentially ex-
pressed genes may be better characterized in terms of a
logical conjunction/disjunction of GO terms presence/absence
statements, rather than a simple list of frequent terms. More
generally, one should also take into account the GO terms
associated not only to the analyzed gene set, but also to other
genes that interact with some of the analyzed genes.

The formalism of relational logic used by the RSD algo-
rithm can capture such patterns [1], [8]. Paper [9] is related to
our work in that it also uses relational logic descriptions for
functional discrimination of genes. A principal difference from
our approach is however at least threefold. Firstly, [9] uses
the inductive logic programming system Progol to search for
relational ontological patterns (rules). The cover-set algorithm
used by Progol is arguably inappropriate for finding a set
of interesting gene subgroup descriptions as we explain later
in the paper. On the contrary, our approach is based on
the weighted covering algorithm more suitable for such a
defined task. Secondly and more importantly, the approach
in [9] assumes all genes in the analyzed gene set to be of
the same importance when forming the pattern descriptions.
This clearly ignores the fact that certain genes are more
“interesting” than others, e.g. their expression variance across
different conditions is larger. When constructing gene group
descriptions, our approach deliberately devotes more attention
to the “more important” genes than to those less important.
Lastly, unlike our work, [9] does not consider interactions
among genes or their inclusion in gene regulatory pathways
as relational properties exploitable for descriptive purposes.

Another recent paper [10] also uses relational logic for
learning from genomic, proteomic and related data sources,
including gene ontologies. The learning objective of [10] is
however rather unrelated to ours. Whereas we attempt to
compactly describe differentially expressed gene groups, [10]
aims to predict protein-protein interactions.

III. DESCRIPTIVE ANALYSIS OF GENE EXPRESSION DATA

The fundamental idea of this paper is outlined in Figure
3. First, we construct a set of differentially expressed genes,
GC(c), for every class c ∈ C. These sets can be constructed
in several ways. For example: GC(c) can be the set of k

(k > 0) most correlated genes with class c, for instance
computed by Pearson’s correlation. GC(c) can also be the
set of best k single gene predictors, using the recall values
from a microarray experiment (absent/present/marginal) as the
expression value of the gene. These predictors can acquire the
form such as:

If genei = present Then class = c

In our experiments GC(c) was constructed using a modified
version of the t-test statistics. Details about the selection
mechanism used in our experiments are presented in Section
V.

The second step aims at improving the interpretability of
GC . Informally, we do this by identifying subgroups of genes
in GC(c) (for each c ∈ C) which can be summarized in
a compact way. Put differently, for each ci ∈ C we search
for compact descriptions of gene subgroups with expression
strongly correlating (positively or negatively) with ci and
weakly with all cj ∈ C, j 6= i.

Searching for these groups of genes, together with their de-
scription, is defined as a separate supervised machine learning
task. We refer to it as the secondary mining task, as it aims to
mine from the outputs of the primary learning process in which
differentially expressed genes are searched. This secondary
task is, in a way, orthogonal to the primary discovery process
in that the original attributes (genes) now become training
examples, each of which has a class label “differentially
expressed” and “not differentially expressed”. To apply a dis-
covery algorithm, information about relevant features of these
examples are required. No such features (i.e., “attributes” of
the original attributes - genes) are usually present in the gene
expression microarray data sets themselves. However, this
information can be extracted from a public database of gene
annotations (we used the Entrez Gene database3 maintained
at the US National Center for Biotechnology Information).
For each gene we extracted its molecular functions, biological
processes and cellular components where its protein products
are located, and transformed this information into the gene’s
background knowledge encoded in relational logic in the form
of Prolog facts. Part of the knowledge for gene SRC, whose
Entrez GeneID is 6714, is presented here:

function(6714,’ATP binding’).
function(6714,’receptor activity’).
process(6714,’signal complex formation’).
process(6714,’protein kinase cascade’).
component(6714,’integral to membrane’).
...

Next, using GO, in the gene’s background knowledge
we also included the gene’s generalized annotations. For
example, if one gene is functionally annotated as: “zinc
ion binding”, in the background knowledge we also in-
cluded its more general functional annotations: transition
metal ion binding, metal ion binding, cation

3ftp://ftp.ncbi.nlm.nih.gov/gene/
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Fig. 3. An outline of the process of microarray data analysis using RSD. First, in microarray data, we search for differentially expressed genes. Using the
gene ontology information, gene annotation and gene interaction data, we produce background knowledge for differentially expressed genes on one hand, and
randomly chosen genes on the other hand. The background knowledge is represented in the form of Prolog facts. Next, the RSD algorithm finds characteristic
descriptions of the differentially expressed genes. Finally, the discovered descriptions can be straightforwardly interpreted and exploited by medical experts.

binding, ion binding and binding. In the gene’s
background knowledge we also included information about
the interactions of the genes, in the form of pairs of genes for
which there is an evidence that they can interact:

interaction(6714,155).
interaction(6714,1874).
interaction(6714,8751).
interaction(6714,302).
...

In traditional machine learning, examples are expected to
be described by a tuple of values corresponding to some
predefined, fixed set of attributes. Note that a gene annotation
does not straightforwardly correspond to a fixed attribute set,
as it has an inherently relational character and we need to
develop the relevant attributes on the basis of the pre-formed
relational background knowledge. For example, a gene may
be related to a variable number of cell processes, meaning it
can play a role in a variable number of regulatory pathways
etc. This imposes 1-to-many relations hard to elegantly capture
within an attribute set of a fixed size. Furthermore, a useful
piece of information about a gene g may, for instance, be
expressed by the following feature involving the background
knowledge of another gene:

gene g interacts with another gene whose functions (*)
include protein binding.

Going even further, the feature may not include only a single
interaction relation but rather consider entire chains of inter-
actions. Consequently, the task we are approaching is a case
of subgroup discovery from relational data. For this purpose
we employ the methodology of relational subgroup discovery
proposed in [1], [8] and implemented in the RSD4 algorithm.
Using RSD, we were able to discover knowledge such as:

Genes whose protein products are located in the nucleus,
interacting with genes involved in the process of transcription
regulation tend to be differentially expressed between acute

myeloid leukemia and acute lymphoblastic leukemia.

4http://labe.felk.cvut.cz/∼zelezny/rsd/rsd.pdf

IV. THE RSD ALGORITHM

The RSD algorithm proceeds in two steps. First, it con-
structs a set of relational features in the form of first-order
logic atom conjunctions. The entire set of features is then
viewed as an attribute set, where an attribute has the value true
for a gene (example) if the gene has the feature corresponding
to the attribute. As a result, by means of relational feature
construction we achieve the conversion of relational data into
attribute-value descriptions.5 In the second step, interesting
gene subgroups are searched, such that each subgroup is
represented as a conjunction of selected features. The sub-
group discovery algorithm employed in this second step is an
adaptation of the popular propositional rule learning algorithm
CN2 [13].

A. Relational feature construction

The feature construction component of RSD aims at gener-
ating a set of relational features in the form of relational logic
atom conjunctions. For example, the feature (*) exemplified
informally in the previous section has the relational logic form:

interaction(A,B),function(B,’protein binding’)

where upper cases denote variables, and a comma between
two logical literals denotes a conjunction.

The user specifies mode declarations which syntactically
constrain the resulting set of constructed features. Each mode
declaration defines a predicate that can appear in a feature,
and assigns to each of its arguments a type and a mode (either
input or output). Thus the following example declaration

mode(3, interaction(+gene,-gene))

states that predicate interaction can appear in the feature
with an input (+ sign) variable of type gene and an output (-
sign) variable of the same type. The first declaration argument
(number 3) stipulates that the predicate can appear in a single
feature at most 3 times with the same input variable; in other

5This process is known as propositionalization [11],[12].
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words, three interactants of a single gene can be addressed in
a feature.

In a feature, if two arguments have different types, they may
not hold the same variable. Also, literals in a feature must be
“linked”:

1) Every variable in an input argument of a literal must
appear in an output argument of some preceding literal
in the same feature, with the exception of the first
variable in the feature (the key variable).

2) Inversely, every output variable of a literal must appear
as an input variable of some subsequent literal.

Furthermore, the maximum length of a feature (number of
contained literals) is declared, along with further optional
syntactic constraints [1], [8].

Predicates with only variables in their arguments are not
sufficient to capture important gene’s properties. It is important
that features may also contain constants (such as ’protein

binding’). A distinguished predicate instantiate is used
to indicate variables which will be automatically substituted
by constants used in the training examples. For example, with
the following declaration

mode(2, function(+gene,-function))
mode(1, instantiate(+function))

RSD first generates a constant-free feature

interaction(A,B), function(B,C), instantiate(C)

and then replaces it with a set of features, in each of which
variable C is replaced by a constant and the instantiate

predicate is removed. An example feature set consists of the
following two features:

interaction(A,B), function(B,’protein binding’)

and

interaction(A,B), function(B,’binding’)

However, only such replacements for C are considered that
make the resulting feature hold true for at least a pre-specified
number of genes, according to a pre-specified minimal support
threshold of RSD.

Given a set of declarations, RSD proceeds in the manner
described above to produce an exhaustive set of features
satisfying the declarations. Technically, this is implemented
as an exhaustive depth-first backtrack search in the space
of all feature descriptions, equipped with certain pruning
mechanisms. Besides the language declarations, each feature
must also comply to the connectivity requirement, according to
which no feature may be decomposable into a conjunction of
two or more features. For example, the following expression
does not form an admissible feature:

interaction(A,B),function(B,’protein binding’),
interaction(A,C), component(C,’membrane’)

The reason is that it can be decomposed into two separate
features, consisting of the first two (last two, respectively)
literals. We do not construct such decomposable expressions,
as these are clearly redundant for the purpose of subsequent
search for rules with conjunctive antecedents. Note that de-
composable features may in general be made undecomposable
by adding a literal, such as by adding interaction(B,C) to
the expression exemplified above. It is primarily the concept

Fig. 4. Descriptions of discovered subgroups ideally cover just individuals
of the target class (subgroups 1 and 3), however they may cover also a few
individuals of other classes (subgroup 2).

of undecomposability that allows for extensive search space
pruning [1], [8] in the feature construction process.

Some examples of features constructed by RSD are listed
below:

f(7,A):-function(A,’kisspeptin rec. binding’).
f(8,A):-function(A,’phosphopant. binding’).
f(11,A):-process(A,’intestinal lipid catabol’).
f(14,A):-process(A,’neurite morphogenesis’).
f(19,A):-component(A,’nucleus’).
f(22,A):-interaction(A,B),

function(B,’mannokinase activity’).
f(24,A):-interaction(A,B),

function(B,’enzyme regulator act.’),
component(B,’membrane’).

f(84,A):-interaction(A,B),
process(A,’glycolate catabolism’),
component(B,’intrinsic to membrane’).

where the “head” of the feature definition formally indicates
the feature number and the key variable.

Finally, to evaluate the truth value of each feature for each
example for generating the attribute-value representation of
the relational data, the first-order logic resolution procedure is
used, provided by a standard Prolog language interpreter.

B. Subgroup Discovery

Subgroup discovery aims at finding population subgroups
that are statistically “most interesting”, e.g., are as large as
possible and have the most unusual statistical characteristics
with respect to the property of interest [14] (see Figure 4).

Notice an important aspect of the above definition: there
is a predefined property of interest, meaning that a subgroup
discovery task aims at characterizing population subgroups of
a given target class. This property indicates that standard clas-
sification rule learning algorithms could be used for solving
the task. However, while the goal of classification rule learning
is to generate predictive models in the form of rule sets that
discriminate between the target class and non-target classes,
subgroup discovery aims at discovering a set of individual
patterns (rules) characterizing the target class.

Rule learning typically involves two main procedures: the
search procedure that performs a search to find a single
rule (see Subsection 1 below) and the control procedure (the
covering algorithm) that repeatedly executes the search in
order to induce a set of rules (see Subsection 2).

1) Inducing a single subgroup describing rule: Our algo-
rithm RSD [1], [8] is based on an adaptation of the standard
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propositional rule learner CN2 [13]. Its search procedure used
in learning a single rule performs beam search, starting from
the empty conjunct, successively adding conditions (relational
features). In CN2, classification accuracy of a rule is used as
a heuristic function in the beam search. The accuracy6 of an
induced rule of the form H ← B (where H in the rule head is
the target class, and B is the rule body formed of a conjunction
of relational features) is equal to the conditional probability
of head H , given that body B is satisfied: p(H |B).

In RSD, the accuracy heuristic Acc(H ← B) = p(H |B) is
replaced by the weighted relative accuracy heuristic. Weighted
relative accuracy is a reformulation of one of the heuristics
used in MIDOS [14] aimed at balancing the size of a group
with its distributional unusualness [15]. It is defined as follows:

WRAcc(H ← B) = p(B) · (p(H |B)− p(H)). (1)

Weighted relative accuracy consists of two components: gener-
ality p(B), and relative accuracy p(H |B)−p(H). The second
term, relative accuracy, is the accuracy gain relative to fixed
rule H ← true. The latter rule predicts all instances to satisfy
H ; a rule is only interesting if it improves upon this “default”
accuracy. Another way of viewing relative accuracy is that
it measures the utility of connecting rule body B with rule
head H . Note that it is easy to obtain high relative accuracy
with very specific rules, i.e., rules with low generality p(B).
To this end, generality is used as a “weight” which trades
off generality of the rule (rule coverage p(B)) and relative
accuracy (p(H |B)− p(H)).

In the computation of Acc and WRAcc all probabilities are
estimated by relative frequencies7 as follows:

Acc(H ← B) = p(H |B) =
p(HB)

p(B)
=

n(HB)

n(B)
(2)

WRAcc(H ← B) =
n(B)

N

(

n(HB)

n(B)
−

n(H)

N

)

(3)

where N is the number of all the examples, n(B) the number
of examples covered by rule H ← B, n(H) the number of
examples of class H , and n(HB) the number of examples of
class H correctly classified by the rule (true positives).

2) Inducing a set of subgroup describing rules: In CN2,
for a given class in the rule head, the rule with the best value
of the heuristic function found in the beam search is kept.
The algorithm then removes all examples of the target class
satisfying the rule’s conditions (i.e., positive examples covered
by the rule) and invokes a new rule learning iteration on the
remaining training set. All negative examples (i.e., examples
that belong to other classes) remain in the training set.

In this classical covering algorithm, only the first few
induced rules may be of interest as subgroup descriptors
with sufficient coverage, since subsequently induced rules are
induced from biased example subsets, i.e., subsets including
only positive examples not covered by previously induced
rules. This bias constrains the population of individuals in
a way that is unnatural for the subgroup discovery process,

6In some contexts, this quantity is called precision.
7Alternatively, the Laplace [16] and the m-estimate [17] could also be used.

which is aimed at discovering characteristic properties of
subgroups of the target population.

In contrast, RSD uses the weighted covering algorithm,
which allows for discovering interesting subgroup properties in
the entire target population. The weighted covering algorithm
modifies the classical covering algorithm in such a way that
covered positive examples are not deleted from the set of
examples to be used to construct the next rule. Instead, in
each run of the covering loop, the algorithm stores with each
example a count that indicates how many times (with how
many induced rules) the example has been covered so far.

By default, initial weights of all examples ej are set to 1
(alternatively, as was the case in our experiments, the initial
weights of the examples may encode the apriori importance
of a given example). In subsequent iterations of the weighted
covering algorithm all target class examples weights decrease
according to the formula 1

i+1 , where i is the number of
constructed rules that cover example ej . In this way the target
class examples whose weights have not been decreased will
have a greater chance to be covered in the following iterations
of the weighted covering algorithm.

The combination of the weighted covering algorithm with
the weighted relative accuracy thus implies the use of the
following modified WRAcc heuristic:

WRAcc(H ← B) =
n′(B)

N ′

(

n′(HB)

n′(B)
−

n(H)

N

)

(4)

where N is the number of examples, N ′ the sum of the
weights of all examples, n(H) the number of examples of
class H , n′(B) the sum of the weights of all covered examples,
and n′(HB) the sum of the weights of all correctly covered
examples.

V. EXPERIMENTS

A. Materials and methods

We apply the proposed methodology on three classification
problems from gene expression data, with the aim to describe
the genes that are usually used by the classifiers, the differen-
tially expressed genes selected as the target class.

The first problem was introduced in [18] and aims at
distinguishing between samples of ALL and AML from gene
expression profiles obtained by the Affymetrix HU6800 mi-
croarray chip, containing probes for 6817 genes. The data
contains 73 class-labeled samples of expression vectors. The
second problem was described in [19] and aims at distinguish-
ing different subtypes of ALL (6 recognized subtypes plus
a separate class “other” containing the remaining samples).
The data contains 132 class-labeled samples obtained by
Affymetrix HG-U133 set of microarrays, containing 22283
probes. The third problem was defined in [20]. Here one
tries to distinguish among 14 classes of cancers from gene
expression profiles obtained by the Affymetrix Hu6800 and
Hu35KsubA microarray chip, containing probes for 16,063
genes. The data set contains 198 class-labeled samples. Note
that this paper does not address the learning task of discrimi-
nating between the classes. Instead, for the given target class
we aim at finding the most characteristic description of its
differentially expressed genes.
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To access the annotation data for every gene considered,
it was necessary to obtain unique gene identifiers from the
microarray probe identifiers available in the original data. We
achieved this by script-based querying of the Affymetrix site8

for translating probe ID’s into unique gene ID’s. Knowing
the gene identifiers, information about gene annotations and
gene interactions can be extracted from the Entrez gene
information database9. We developed a program script10 in the
Python language, which extracts gene annotations and gene
interactions from this database, and produces their structured,
relational logic representations which can be used as input to
RSD.

For all three data sets, and for each class c we first
extracted a set of differentially expressed genes GC(c). In our
experiments we used t-test score T (g, c) for selecting differ-
entially expressed genes. t-test is a test of the null hypothesis
that the means of two normally distributed populations are
equal. Higher |T (g, c)| means higher probability which in turn
means that mean gene expression is different between different
classes.

T (g, c) is computed by the following formula:

T (g, c) =
µ1(g)− µ2(g)
√

σ1(g)
N1

+ σ2(g)
N2

(5)

where N1 = |c|, N2 = |C \c|, [µ1(g), σ1(g)] and [µ2(g), σ2(g)]
denote the means and standard deviations of the logarithm of
the expression levels of gene g for the samples in class c and
samples in C \ c, respectively.

T (g, c) reflects the difference between the classes relative
to the standard deviation within the classes. Large values of
|T (g, c)| indicate a strong correlation between the expression
of gene g and class c, while the sign of T (g, c) being positive
(negative) corresponds to g being highly (less) expressed in
class c than in the other classes. Unlike a standard Pearson’s
correlation coefficient, T (g, c) is not confined to the range
[−1, +1]. In order to avoid situations illustrated in Figure 5,
where genes B and C would have similar values of |T (g, c)|
but where C is not significantly differentially expressed, we
dictate one more condition for a gene to be selected: |µ1(g)−
µ2(g))| > 1. Thereby we ensure that selected genes have at
least twofold difference in their average expression for the
given class.

For all three problems and all classes we selected the 50
most differentially expressed (highest t-score ranking) genes
and the same number of randomly chosen non-differentially
expressed genes. The specific number of selected genes is
a matter of trade-off. Including a high number of examples
in the training set is in general preferable for learning.
However, extending the training set to relatively low-scoring
genes decreases the overall quality of the training set. A full
quantification of this trade-off is out of the scope of this study,
where we adhere to 50 examples of each class. This is a
usual number of selected genes in the context of microarray

8www.affymetrix.com/analysis/netaffx/
9ftp://ftp.ncbi.nlm.nih.gov/gene/
10This script is available on request to the first author.

Fig. 5. Expression of three genes (A, B and C) for five patients of class
1 and five patients of class 2. Perfect class distinction can be achieved by
idealized gene A, in which the expression level is uniformly low in class
1 and uniformly high in class 2. A more realistic case is gene B which is
also useful for class distinction. We do not use gene C for class distinction
as we are interested in genes that have significant difference in their mean
expression between classes.

TABLE I

AVERAGE, MAXIMAL AND MINIMAL VALUE OF {|T (g, c)|, g ∈ GC(c)}

FOR EACH PROBLEM AND CLASS c.

TASK CLASS AVG MAX MIN

ALL-AML ALL 6.74 11.09 5.31
AML 6.74 11.09 5.31

SUBTYPES BCR 5.95 10.30 4.65
OF ALL E2A 11.68 38.80 8.46

HD50 6.09 8.56 5.21
MLL 8.71 13.15 6.85
T ALL 16.70 27.12 12.66
TEL 9.69 17.59 7.34

MULTI BREAST 6.53 8.42 5.86
CLASS PROSTATE 6.05 11.90 4.84

LUNG 5.04 8.56 4.25
COLORECTAL 5.71 14.83 4.42
LYMPHOMA 8.73 14.69 7.32
BLADDER 5.91 10.27 5.07
MELANOMA 6.53 11.28 5.71
UTERUS 5.07 7.49 4.46
LEUKEMIA 11.55 17.02 9.78
RENAL 4.65 6.62 4.06
PANCREAS 5.22 7.92 4.32
OVARY 4.06 6.33 3.59
MESOTHELIOMA 4.81 9.51 4.61
CNS 11.99 23.06 9.47

data classification with support vector machines or voting
algorithms [18].

The average, maximal and minimal values of |T (g, c)| for
the selected differentially expressed genes for each prob-
lem/class are listed in Table I. In general, higher numbers mean
that the class is easier to distinguish from the other classes on
the basis of the gene signature.

The usage of the gene t-test score T (g, c) is twofold. In
the first part of the analysis it is used for the selection of
differentially expressed genes as described above. Secondly,
it acts as the initial weight for each example-gene in the
subgroup discovery procedure where we try to characterize
these differentially expressed genes. In this secondary mining
task, RSD will thus prefer to group genes with large weights.
As a consequence, such important genes are typically covered
by more than one reported subgroup description, each time
with an alternative description.
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B. Example Result

To illustrate the straightforward interpretability of the in-
duced subgroup descriptions, we use as an example the best-
scoring gene subgroup discovered by RSD for the CNS
(central nervous system) cancer class from the 14-class cancer
problem. A group of genes, geneGroup(A), differentially
expressed between CNS on one hand and the other classes,
was defined by RSD through the conjunction of two relational
logic features:

interaction(A,B), process(B,’phosphorylation’)

and

interaction(A,B), process(B,’negative regulation of

apoptosis’), component(B,’intracellular

membrane-bound organelle’)

This gene group, defined by the interaction with genes in-
volved in phosphorylation, negative regulation of apoptosis
and intracellular localization, contains 7 differentially ex-
pressed genes and none of the non-differentially expressed
genes used as the negative examples by the algorithm. The
gene group members are brain specific genes and genes active
in cellular survival. The former includes glial fibrillar astro-
cytic protein [GFAP, 2670] and reticulon 4 [neurite growth
factor, 57142] exhibited positive expression scores as would
be predicted in brain derived cancers. The latter, cell death
genes caspase 4 [837] and tumor necrosis factor receptor type
I associated death domain protein [TRADD, 8717] are both
associated with decreased expression, also an expected finding,
as lower levels of these cell death/pro-apoptotic genes are
associated with uncontrolled cellular growth in malignancy
and are one of the most prominent features of cancers.

Of note, these observations support the validity of our
method (as they fit biological expectations based on scientific
and clinical investigations unrelated to ours) and thus give
credibility to findings related to the remaining genes in the
subgroup, of which little is known in brain cancers. These
include glycogen synthase kinase 3 beta [2932] and nuclear
receptor corepressor 2 [9612]. Glycogen synthase kinase 3
beta is a master switch of multiple processes involved in
cellular biology by definition exercising its regulatory effects
by phosphorylation. Specifically it is critical for cell migration,
proliferation (including pathological cellular proliferation in
multiple human cancers) and, interestingly, it has in fact
been previously reported to be functionally connected to brain
protein tau [21]. To our knowledge, however, nothing is known
of its role on brain tumors. The role of the nuclear receptor
corepressor 2 (or silencing mediator for thyroid hormone
receptor, SMRT) has been described for breast cancer, prostate
cancer and in impaired response to differentiation signaling
in hematopoietic cells. As their role in brain cancer is not
known and based on our data their expression is indeed
significantly increased in brain tumors (when compared to
other malignancies) the nuclear receptor corepressor 2 and
glycogen synthase kinase 3 beta represent good candidate
genes for further investigations in etiology of brain cancer.

TABLE II

PRECISION, RECALL AND AUC FIGURES OF FOUND SUBGROUPS, FOR THE

SET OF ALL/AML, SUBTYPES OF ALL AND MULTI-CLASS-CANCER

DIFFERENTIALLY EXPRESSED GENES, OBTAINED THROUGH 5-FOLD

CROSS-VALIDATION.

TASK DATA PRE REC AUC

ALL-AML Train 100(± 0)% 16% 65%
Test 85(± 6)% 13% 60%

SUBTYPES Train 95(± 4)% 17% 63%
OF ALL Test 78(± 10)% 12% 61%
MULTI Train 94(± 6)% 14% 59%
CLASS Test 75(± 12)% 12% 57%

C. Statistical validation

Here we present a statistical validation of the proposed
methodology for discovering descriptions of differentially ex-
pressed gene groups. Specifically we wish to determine if the
high descriptive capacity pertaining to the incorporation of the
expressive relational logic language incurs a risk of descriptive
overfitting, i.e., a risk of discovering subgroups whose bias
toward differential expression is only due to chance.

We thus aim at measuring the discrepancy of the quality
of discovered subgroups on the training data set on one hand
and an independent test set on the other hand. We will do this
through the standard 5-fold stratified cross-validation regime.

The specific qualities measured for each set of subgroups
produced for a given class are average precision (PRE),
recall (REC) and area under ROC (AUC) values among all
subgroups in the subgroup set.

Table II11 shows the PRE and REC values results for
the three respective problem domains. Overall, the results
demonstrate an acceptable decay from the training to the
testing set in terms of both PRE and REC, suggesting that
the discovered subgroup descriptions indeed capture the rele-
vant gene properties. In terms of total coverage, in average,
RSD covered more then 2

3 of the preselected differentially
expressed genes, while 1

3 of the preselected genes were not
included in any group. A possible interpretation is that they
are not functionally connected with the other genes and their
initial selection through the t-test was due to chance. This
information can evidently be back-translated into the gene
selection procedure and used as a gene selection heuristic.
This approach is out of the scope of this paper but represents
the next step in our future work.

The risk of descriptive overfitting suggested by the results
of Table II is due to two reasons: first, the imperfections in
the data and second, the high expressiveness of the relational
logic language.

Concerning the first reason, the existing gene annotations
databases are currently rather coarse-grained in that high-
confidence classification of genes into low-level (i.e. specific)
ontological classes is rarely available. A second source of input
imperfectness is the fact that functions, locations and involved

11For the first problem we had one set of differentially expressed genes,
where for the second (third) problem we had 6 (14) sets of differentially
expressed genes and equal number of learning tasks, one for each class, where
results of each subtask were averaged.
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TABLE III

PRECISION OF DISCOVERED DIFFERENTIALLY EXPRESSED GENE GROUP

DESCRIPTIONS, FOR THREE SCENARIOS WHERE PART OF THE

BACKGROUND KNOWLEDGE OR GENE-WEIGHT INFORMATION WAS

REMOVED.

TASK ORIG -INTERACTION -GO -WEIGHTS

ALL-AML 85(± 6)% 44(± 12)% 72(± 13)% 75(± 8)%
SUBTYPES 78(± 10)% 52(± 13)% 74(± 16)% 71(± 12)%
OF ALL
MULTI 75(± 12)% 45(± 16)% 56(± 14)% 73(± 14)%
CLASS

processed are known for only a subset of genes. Furthermore,
most annotation databases are built by curators who manually
review the existing literature. It is thus possible that certain
known facts get temporarily overlooked. For instance, [6]
found references in literature published in the early 90s, for 65
functional annotations that are not yet included in the current
functional annotation databases.

Secondly, the language expressivity allows for forming
rather complex rules, involving both gene-ontological terms
and gene-interaction relations. As such they are possibly prone
to capturing noise in data rather than genuine biological
principles.

Despite the two described factors, the overfitting effect
manifests itself to an acceptable extent and the rule quality
measured on independent testing sets is still relatively high.
Moreover, some of the actual discovered patterns also lead
to biologically plausible interpretations as demonstrated in
Section V-B.

D. Analyzing Individual Components of the Methodology

We further experimented with different settings of our
algorithm in order to investigate the influence of different
ingredients of the approach on the precision of the found
descriptions. In addition to the original setting (ORIG), we
performed experiments with three alternative settings: without
gene-interaction information, without GO term generalization,
and without incorporating gene t-test scores as the initial
weights in the RSD’s weighted covering algorithm for sub-
group discovery (thus initializing all weights to 1). In Table
III we present the test-set results averaged in 5-fold crossvali-
dation. Table III shows that all the three ingredients exhibit a
strong positive influence on the results, with interaction data
being the strongest factor.

VI. DISCUSSION

In this paper we presented a method that uses gene on-
tologies, together with the paradigm of relational subgroup
discovery, to help find patterns of expression for genes with a
common biological function that correlate with the underlying
biology responsible for class differentiation. Our methodology
proposes to first select a set of important differentially ex-
pressed genes for all classes and then find compact, relational
descriptions of subgroups among these genes.

It is noteworthy that the latter descriptive “post-processing”
step is a machine learning task, in which the curse of di-
mensionality usually ascribed to microarray data classification,
actually turns into an advantage. This is because, in traditional
microarray data mining configurations, the high number of
genes results in a high number of attributes usually con-
fronted with a relatively small number of expression samples,
thus forming grounds for overfitting. In our approach, on
the contrary, genes correspond to examples and thus their
abundance is beneficial. Furthermore, the dimensionality of
the secondary attributes (relational features of genes extracted
from gene annotations) can be conveniently controlled via
suitable constraints of the language grammar used for the
automatic construction of the gene features.

A further remark concerns the fact that genes are frequently
associated to multiple functions, i.e. they may under some
conditions exhibit a behavior of genes with one function while
in other conditions a different aspect of their function may
be important. Here the subgroup discovery methodology is
effective at selecting a specific function important for the
classification. Indeed, one given gene can be included in
multiple subgroup descriptions (this was e.g. the case of genes
with id’s 51592 and 115426 in the breast cancer class), each
emphasizing the different biological process critical to the
explanation of the underlying biology responsible for observed
experimental results.

Yet another aspect of the proposed method is of interest,
following from the illustrative example of a discovery result
provided in Section V-B. Here the discovered subgroup con-
tains four genes whose differential expression (for the CNS
cancer class) is well in accordance with the biological state of
the art. The group is described using the features shared by
the genes, rather than through plain gene list as in traditional
approaches. As a consequence, the group also includes further
genes sharing the features, whose connection to brain cancer
has not yet been described, yet closer analysis reveals evidence
that such association is indeed plausible. We believe that this
“generalization” aspect of the proposed methodology may
contribute to discovering new marker genes by proposing
candidate genes for further experimental evaluation.

We have assessed the quality of the induced descriptions
by evaluating them on independent test sets using 5-fold
crossvalidation. The results show a clear advantage of using
all the complementary sources of background knowledge in
the description generation procedure (GO ontology, gene in-
teractions as well as degree of differential expression of genes
represented by gene weights), as shown in Table III.

We believe that the presented approach can significantly
contribute to the application of relational machine learning to
gene expression analysis. Despite the demonstrated benefits
of the methodology, the precision and recall evaluation of
descriptors in Table II suggests that there is still room for
improvement. This is to be achieved through the expected
increase in both the quality and quantity of gene/protein
annotations in the near future.
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