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a Jožef Stefan Institute, Ljubljana, Slovenia
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Inductive Logic Programming (ILP) and Relational Data Mining (RDM) address the task of inducing mod-
els or patterns from multi-relational data. One of the established approaches to RDM is propositionaliza-
tion, characterized by transforming a relational database into a single-table representation. This paper
presents a propositionalization technique called wordification which can be seen as a transformation of
a relational database into a corpus of text documents. Wordification constructs simple, easy to
understand features, acting as words in the transformed Bag-Of-Words representation. This paper
presents the wordification methodology, together with an experimental comparison of several proposi-
tionalization approaches on seven relational datasets. The main advantages of the approach are: simple
implementation, accuracy comparable to competitive methods, and greater scalability, as it performs
several times faster on all experimental databases. Furthermore, the wordification methodology and
the evaluation procedure are implemented as executable workflows in the web-based data mining
platform ClowdFlows. The implemented workflows include also several other ILP and RDM algorithms,
as well as the utility components that were added to the platform to enable access to these techniques
to a wider research audience.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Standard propositional data mining algorithms, included in
established data mining tools like Weka (Witten, Frank, & Hall,
2011), induce models or patterns learned from a single data table.
On the other hand, the aim of Inductive Logic Programming (ILP)
and Relational Data Mining (RDM) is to induce models or patterns
from multi-relational data (De Raedt, 2008; Džeroski & Lavrač,
2001; Lavrač & Džeroski, 1994; Muggleton, 1992). Most types of
propositional models and patterns have corresponding relational
counterparts, such as relational classification rules, relational
regression trees or relational association rules.

For multi-relational databases in which data instances are
clearly identifiable (the so-called individual-centered representa-
tion (Flach & Lachiche, 1999), characterized by one-to-many
relationships among the target table and other data tables), various
techniques can be used for transforming a multi-relational data-
base into a propositional single-table format (Krogel et al., 2003).
After performing such a transformation (Lavrač, Džeroski, &
Grobelnik, 1991), named propositionalization (Kramer, Pfahringer,
& Helma, 1998), standard propositional learners can be used,
including decision tree and classification rule learners.

Inspired by text mining, this paper presents a propositionaliza-
tion approach to Relational Data Mining, called wordification.
Unlike other propositionalization techniques (Kramer et al.,
1998; Kuželka & Železný, 2011; Lavrač et al., 1991; Železný &
Lavrač, 2006), which first construct complex relational features
(constructed as a chain of joins of one or more tables related to
the target table), used as attributes in the resulting tabular data
representation, wordification generates much simpler features
with the aim of achieving greater scalability.

Wordification can be viewed as a transformation of a relational
database into a set of feature vectors, where each original instance
is transformed into a-kind-of ‘document’ represented as a
Bag-Of-Words (BOW) vector of weights of simple features, which
can be interpreted as ‘words’ in the transformed BOW space. The
‘words’ constructed by wordification correspond to individual
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1 http://www.webstepbook.com/supplements/databases/imdb.sql.
2 http://lisp.vse.cz/pkdd99/Challenge/berka.htm.
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attribute–values of the target table and of the related tables, subse-
quently weighted by their Term Frequency-Inverse Document
Frequency (TF-IDF) value (Jones, 1972; Salton & Buckley, 1988)
(requiring real-valued attributes to be discretized first).
Alternatively, instead of TF-IDF, simpler schemes can be used such
as term frequency (TF) ‘word’ count, or the binary scheme indicat-
ing just the presence/absence of a ‘word’ in the ‘document’.

To intuitively phrase the main idea of wordification, take two
simple examples illustrating the wordification data preprocessing
step in class-labeled data, where each structured data instance is
transformed into a tuple of simple features, which are counts/
weights of individual attribute–value pairs. Take the well-known
relational domain of East–West Trains (Michie, Muggleton, Page,
& Srinivasan, 1994) with cars containing different loads: one of
the train’s features in the BOW representation is the count/weight
of rectangular loads it carries, no matter in which cars these loads
are stored. Or in the standard Mutagenesis domain (Srinivasan,
Muggleton, King, & Sternberg, 1994), a molecule may prove to be
toxic if it contains a lot of atoms characterized by the property
atom type = lead, no matter how these atoms are bonded in the
molecule. The main hypothesis of the wordification approach is
that the use of this simple representation bias is suitable for
achieving good results in classification tasks. Moreover, when
using a binary scheme, this representation bias allows for simple
and very intuitive interpretation in descriptive induction tasks,
such as association rule learning from unlabeled multi-relational
data.

Wordification suffers from some loss of information, compared
to propositionalization methods which construct complex first-
order features (which get values true or false for a given individual)
as a chain of joins of one or more tables related to the target table.
Nevertheless, despite some information loss, wordification has
numerous advantages. Due to the simplicity of features, the gener-
ated hypotheses are easily interpretable by domain experts. The
feature construction step in wordification is very efficient, there-
fore it can scale well for large relational databases. As wordification
constructs each ‘document’ independently from the other ‘docu-
ments’, a large main table can be divided into smaller batches of
examples, which can be propositionalized in parallel. Next, wordi-
fication can use TF or TF-IDF word weighting to capture the impor-
tance of a given feature (attribute value) of a relation in an
aggregate manner, while feature dependence is modeled by con-
structing a-kind-of word ‘n-grams’ as conjuncts of a predefined
number of simple features. Finally, the wordification approach
has the advantage of using techniques developed in the text min-
ing community, such as efficient document clustering or word
cloud visualization, which can now be effectively exploited in mul-
ti-relational data mining.

This paper shows that the developed wordification technique is
simple, considerably more efficient and at least as accurate as the
comparable state-of-the-art propositionalization methods. This
paper extends our previous research (Perovšek, Vavpetič, &
Lavrač, 2012, 2013) in many ways. The related work is more exten-
sively covered. The improvements to the methodology include fea-
ture filtering by frequency, performance optimization (indexing by
value), new options regarding feature weighting (next to TF-IDF,
we added TF and binary), and a parallel version of the algorithm.
The methodology description is now more detailed, including the
formal wordification framework, the wordification algorithm
pseudo code as well as time and space complexity analysis. The
experimental evaluation has been substantially extended to
include a comparison of three different term weighting schemes,
additional propositionalization algorithms RelF (Kuželka &
Železný, 2011) and Aleph (Srinivasan, 2007), as well as an addi-
tional classifier (SVM), which were applied to an extended set of
experimental relational datasets. Such exhaustive experimentation
has enabled us to statistically validate the experimental results by
using the Friedman test and the Nemenyi post hoc test on the
seven benchmark problems from the five relational domains (two
of which have two database variants): IMDB,1 Carcinogenesis
(Srinivasan, King, Muggleton, & Sternberg, 1997), Financial2 and
two variants of Trains (Michie et al., 1994) and Mutagenesis
(Srinivasan et al., 1994). Further experiments were done to analyze
the effects of feature weighting, pruning and n-gram construction.
In addition to the two experimental workflows developed in the
web-based data mining platform ClowdFlows (Kranjc, Podpečan, &
Lavrač, 2012), one workflow developed for learning and another
for results evaluation and visualization, this paper introduces
another wordification workflow applicable in association rule learn-
ing tasks from binarized features. The implemented workflows,
which are available online through ClowdFlows, allow for methodol-
ogy reuse and experiment repeatability. As a side-product of work-
flow development, the competing propositionalization algorithms
used in experimental comparisons are also made available through
ClowdFlows and can therefore be easily reused in combination with
numerous pre-existing ClowdFlows components for data discretiza-
tion, learning, visualization and evaluation, including a large number
of Weka (Witten et al., 2011) and Orange (Demšar, Zupan, Leban, &
Curk, 2004) components. Making selected RDM algorithms handy to
use in real-life data analytics may therefore contribute to improved
accessibility and popularity of Relational Data Mining.

The paper is organized as follows. Section 2 describes the back-
ground and the related work. Section 3 gives an informal overview
of the wordification methodology, while Section 4 presents the for-
malism and the details of the developed wordification algorithm.
The implementation of the methodology as a workflow in the
ClowdFlows platform is described in Section 5. Section 6 presents
the evaluation methodology implementation and the experimental
results. Section 7 illustrates the utility of wordification in a
descriptive induction setting of learning association rules from
two real-life domains, using data from a subset of the IMDB movies
database and from a database of traffic accidents. Section 8 con-
cludes the paper by presenting the plans for further work.
2. Background and related work

Inductive Logic Programming (ILP) and Relational Data Mining
(RDM) algorithms are characterized by the ability to use back-
ground knowledge in learning relational models or patterns
(Džeroski & Lavrač, 2001; De Raedt, 2008; Lavrač & Džeroski,
1994; Muggleton, 1992), as by taking into account additional rela-
tions among the data objects the performance of data mining algo-
rithms can be significantly improved.

Propositionalization (Kramer et al., 1998; Lavrač et al., 1991) is
an approach to ILP and RDM, which offers a way to transform a
relational database into a propositional single-table format. In con-
trast to methods that directly induce relational patterns or models,
such as Aleph (Srinivasan, 2007) and Progol (Muggleton, 1995),
propositionalization algorithms transform a relational problem
into a form which can be solved by standard machine learning or
data mining algorithms. Consequently, learning with proposition-
alization techniques is divided into two self-contained phases:
(1) relational data transformation into a single-table data format
and (2) selecting and applying a propositional learner on the trans-
formed data table. As an advantage, propositionalization is not lim-
ited to specific data mining tasks such as classification, which is
usually the case with ILP and RDM methods that directly induce
models from relational data.

http://www.webstepbook.com/supplements/databases/imdb.sql
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The transformation to a single-table format can be achieved for
the so-called individual-centered relational databases (Flach &
Lachiche, 1999), i.e., databases that have a clear notion of an indi-
vidual. The East–West Trains challenge (Michie et al., 1994), where
the task is to classify the Trains as East-bound or West-bound, is a
well-known domain in which individuals are clearly identified:
each train is a single individual related with one or more cars that
have different characteristics.

Most of the related work involves propositionalization through
first-order feature construction (Kramer et al., 1998; Kuželka &
Železný, 2011; Lavrač et al., 1991; Železný & Lavrač, 2006), where
the algorithms construct complex first-order features, which then
act as binary attributes in the new propositional representation
of examples. One of the first propositionalization algorithms,
LINUS (Lavrač et al., 1991), generates features that do not allow
recursion and newly introduced variables. An improvement of
LINUS, named SINUS (Lavrač & Flach, 2001), incorporates more
advanced feature construction techniques inspired by feature con-
struction implemented in 1BC (Flach & Lachiche, 1999). RSD
(Železný & Lavrač, 2006) is a relational subgroup discovery algo-
rithm composed of two main steps: the propositionalization step
and the subgroup discovery step, where the output of the proposi-
tionalization step can be used also as input to other propositional
learners. RSD effectively produces an exhaustive list of first-order
features that comply with the user-defined mode constraints, sim-
ilar to those of Progol (Muggleton, 1995) and Aleph (Srinivasan,
2007). Furthermore, RSD features satisfy the connectivity require-
ment, which imposes that no constructed feature can be decom-
posed into a conjunction of two or more features.

RELAGGS (Krogel & Wrobel, 2001), which stands for relational
aggregation, is a propositionalization approach, which uses the
input relational database schema as a basis for a declarative bias
and aims to use optimization techniques usually used in relational
databases (e.g., indexes). Furthermore, the approach employs
aggregation functions in order to summarize non-target relations
with respect to the individuals in the target table.

An early experimental comparison of propositionalization tech-
niques was reported in Krogel et al. (2003), where RSD, SINUS and
RELAGGS algorithms were compared.

Other means of propositionalization include stochastic proposi-
tionalization (Kramer et al., 1998), which employs a search strat-
egy similar to random mutation hill-climbing: the algorithm
iterates over generations of individuals, which are added and
removed with a probability proportional to the fitness of individu-
als, where the fitness function used is based on the Minimum
Description Length (MDL) principle.

Safarii3 is a commercial multi-relation data mining tool. Safarii,
extensively described in Knobbe (2005), offers a unique pattern lan-
guage that merges ILP-style structural descriptions as well as aggre-
gations. Furthermore, Safarii comes with a tool called ProSafarii,
which offers several preprocessing utilities, including propositional-
ization via aggregation.

Ceci and Appice (2006) investigate spatial classification using
two techniques: a propositionalization approach which constructs
features using spatial association rules to produce an attribute–
value representation. They compare the approach to a structural
approach using an extended Naive Bayes classifier. They report
an advantage of the structural alternative in terms of accuracy,
while the propositional approach performs faster. Ceci, Appice,
and Malerba (2008) present two emerging patterns based classi-
fiers that work in the multi-relational setting: one uses a heuristic
evaluation function to classify objects, while the other is based on a
probabilistic evaluation. The main result of the study is that both
3 http://www.kiminkii.com/safarii.html.
approaches perform better than associative classification to which
they were compared.

Kuželka and Železný (2011) developed RelF, which constructs a
set of tree-like relational features by combining smaller conjunc-
tive blocks. The novelty is that RelF preserves the monotonicity
of feature reducibility and redundancy (instead of the typical
monotonicity of frequency), which allows the algorithm to scale
far better than other state-of-the-art propositionalization
algorithms.

An approach that is related to propositionalization is presented
by Guo and Viktor (2008). The authors propose a strategy of multi-
relational learning where they neither upgrade a propositional
learner to work with multiple relations or propositionalize the
relations. Instead, their approach learns from multiple views (fea-
ture sets) of a RDB and then integrates the individual view learners
to construct a final model. Their approach exhibits comparable
classification accuracies compared to related approaches, and a
faster runtime.

Recently, a propositionalization technique called Bottom Clause
Propositionalization (BCP) was introduced by França, Zaverucha,
and d’Avila Garcez (2014). It was integrated with C-IL2P (Garcez
et al., 1999); the combined system, named CILP++, achieves accu-
racy comparable to Aleph, while being faster. Compared to RSD,
BCP is better in terms of accuracy when using a neural network
and similar when using C4.5.
3. Informal description of the wordification approach

This section provides an informal description of the proposed
approach, where wordification is illustrated on a simplified variant
of the well-known East–West Trains problem (Michie et al., 1994).

The transformation from a relational database representation
into a Bag-Of-Words feature vector representation is illustrated
in Fig. 1, where the input to wordification is a relational database,
and the output is a set of feature vectors, which can be viewed as a
corpus of text documents represented in the Bag-Of-Words (BOW)
vector format. Each text document represents an individual entry
of the main data table. A document is described by a set of words
(or features), where a word is constructed as a combination of the
table name, name of the attribute and its discrete (or discretized)
value4:

½table name� ½attribute name� ½value�: ð1Þ

Such constructs are called word-items or witems or simply words in
the rest of the paper. Note that values of every non-discrete attri-
bute need to be discretized beforehand in order to be able to repre-
sent them as word-items. For each individual, the word-items are
first generated for the main table and then for each entry from
the related tables, and finally joined together according to the rela-
tional schema of the database.5 In the described transformation
there is some loss of information as a consequence of building the
document for each instance (each individual row in the main table)
by concatenating all word-items from multiple instances (rows) of
the connected tables into a single document. To overcome this loss,
we extended the document construction step of the initial wordifica-
tion methodology by concatenating to the document also n-grams of
word-items, constructed as conjunctions of several word-items.
These concatenations of elementary word-items represent conjunc-
tions of features occurring together in individual instances (rows of
joined tables). Technically, n-gram construction is performed by tak-
ing every combination of length k of word-items from the set of all
4 See Line 4 in Algorithm 2 presented in Section 4.3.
5 See Line 10 in Algorithm 2 presented in Section 4.3.

http://www.kiminkii.com/safarii.html


Fig. 1. The transformation from a relational database representation into a Bag-Of-
Words feature vector representation. For each individual entry of the main table
one Bag-Of-Words (BOW) vector di of weights of ‘words’ is constructed, where
‘words’ correspond to the features (attribute values) of the main table and the
related tables.
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word-items corresponding to the given individual, and concatenat-
ing them as follows:

½witem1� ½witem2� . . . ½witemk�; ð2Þ

where 1 6 k 6 n and—as mentioned earlier—each word-item is a
combination of the table name, name of the attribute and its dis-
crete value. The witems are concatenated in a predetermined order,
each using the ‘‘ ’’ concatenation symbol.

In the rest of this section, for simplicity, we refer to individuals
as documents, to features as words, and to the resulting represen-
tation as the Bag-Of-Words (BOW) representation. For a given
word w in document d from corpus D, the TF-IDF measure is
defined as follows:

tfidfðw; dÞ ¼ tfðw;dÞ � log
jDj

jfd 2 D : w 2 dgj ; ð3Þ

where tfð�Þ represents the number of times word w appears in
document d. In other words, a word with a high TF-IDF value will
be considered important for the given individual provided that it
is frequent within this document and not frequent in the entire
corpus. Consequently, the weight of a word provides a strong
indication of how relevant is the feature for the given individual.
The TF-IDF weights can then be used either for filtering out words
with low importance or using them directly by a propositional
learner.

In addition to the TF-IDF weigthing scheme, the implementa-
tion of wordification (described in detail in Section 5) includes also
the term frequency (TF) and the binary (0/1) weighting schemes. A
comparison of the three schemes can be found in the Appendix A
Fig. 2. Example input for wordification in the East–West Trains domain.

Fig. 3. The database from Fig. 2 in the Bag
(see Table A.6). Given that different weighting schemes do not per-
form significantly differently on the classification tasks used in our
experiments, in the rest of the paper we use the TF-IDF scheme
since this form of weighting is prevalent in text mining
applications.

The wordification approach is illustrated on a modified and sub-
stantially simplified version of the well-known East–West Trains
domain (Michie et al., 1994), where the input database consists
of just two tables shown in Fig. 2, where we have only one East-
bound and one West-bound train, each with just two cars with cer-
tain properties. Note that in the experimental section we use the
standard version of the East–West Trains domain.

The TRAIN table is the main table and the Trains are the individ-
uals. We want to learn a classifier to determine the direction of an
unseen train. For this purpose the direction attribute is not prepro-
cessed and is only appended to the resulting feature vector (list of
words).

First, the corresponding two documents (one for each train t1
and t5) are generated, as shown in Fig. 3. After this, the documents
are transformed into the Bag-Of-Words representation by calculat-
ing the TF-IDF values for each word of each document (using Eq.
(3)) with the class attribute column appended to the transformed
Bag-Of-Words table, as shown in Fig. 4. For simplicity, only uni-
grams and bigrams are shown in this example.
4. Wordification methodology

This section formally describes the wordification methodology
by presenting the input data model and input language bias, the
relational database representation, followed by the presentation
of the pseudo-code and the worst-case complexity analysis of the
wordification algorithm.
4.1. Data model

A data model describes the structure of the data. It can be
expressed as an entity-relationship (ER) diagram. The ER diagram,
illustrated in Fig. 5, shows three relations appearing in the original
East–West Trains problem (in addition to the TRAIN and CAR rela-
tionship, it includes also the LOAD relationship, which was skipped
for simplicity in Fig. 2, which contains just the TRAIN and CAR rela-
tional tables). The boxes in the ER diagram indicate entities, which
are individuals or parts of individuals. Here, the Train entity is the
individual, each Car is part of a train, and each Load is part of a car.
The ovals denote attributes of entities. The diamonds indicate rela-
tionships between entities. There is a one-to-many relationship from
Train to Car, indicating that each train can have an arbitrary num-
ber of cars but each car is contained in exactly one train; and a one-
to-one relationship between Car and Load, indicating that each car
has exactly one load and each load is part of exactly one car.
-Of-Words document representation.



Fig. 4. The transformed database (consisting of TF-IDF values, which are zero if the term appears in all documents) from Fig. 2 using the wordification approach. This final
output can be given as an input to a propositional classifier.

Fig. 5. Entity-relationship diagram for the East–West challenge.
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Entity-relationship diagrams can be used to choose a proper
logical representation for the data. If we store the data in a
relational database the most obvious representation is to have a
separate table for each entity in the domain, with relationships
being expressed by foreign keys.6 This is not the only possibility:
for instance, since the relationship between Car and Load is one-to-
one, both entities could be combined in a single table, while entities
linked by a one-to-many relationship cannot be combined without
either introducing significant redundancy or significant loss of infor-
mation, e.g., introduced through aggregate attributes. Note that one-
to-many relationships distinguish relational learning and Inductive
Logic Programming from propositional learning.

In wordification, we use the entity-relationship diagram to
define types of objects in the domain, where each entity will
correspond to a distinct type. The data model constitutes a
language bias that can be used to restrict the hypothesis space
and guide the search. In most problems, only individuals
and their parts exist as entities, which means that the entity-
relationship model has a tree-structure with the individual
entity at the root and only one-to-one or one-to-many relations
in the downward direction. Representations with this restriction
are called individual-centered representations. This restriction
determines the language bias, constraining the relational database
input to wordification.

4.2. Formal setting

The framework, established in this section, defines a learning
setting which is very similar to the standard propositionalization
problem setting. As in every propositionalization approach to
Relational Data Mining, a two-step approach is implemented: (1)
in the first propositionalization step the data is transformed from
a relational database format to a tabular format, and (2) the tabular
data is used as input for learning models or patterns by a selected
6 In the context of relational databases, a foreign key is a field in a relational table
that matches a candidate key of another table. The foreign key can be used to cross-
reference tables.
propositional learner, having its own hypothesis language bias
(e.g., decision trees or propositional classification rules). The for-
mal framework described below focuses only on step (1) of the
two-step wordification methodology. For simplicity, the formaliza-
tion describes the setting using only unigram features.

Input. The input to wordification is a relational database (RDB),
given as a set of relations fR1; . . . ;Rng and a set of foreign-key con-
nections between the relations denoted by Ri ! Rj, where Ri has a
foreign-key pointing to relation Rj. The foreign-key connections
correspond to the relationships in the entity-relationship diagram.
For example, the train attribute in the CAR relation is a foreign-
key referring to trainID in TRAIN. It defines the CAR! TRAIN

connection; as expected, it is a many-to-one connection from
CAR to TRAIN.

A n-ary relation Ri is formally defined as a set of tuples: a subset
of the Cartesian product of mi domains: Ri �

Qmi
j¼1Dij ¼

Di1 � Di2 � . . .� Dimi
, where a domain (or a type) is a specification

of the valid set of values for the corresponding argument.

Dij ¼ fv ij1
;v ij2

; . . . ;v ijkij
g

Note that for wordification we require that each domain Dij must
have a finite number of unique values kij, thus discretization of con-
tinuous domains is needed.

A further requirement is that the RDB must be individual-cen-
tered. This means that a target relation RT 2 RDB must exist, such
that it does not have any foreign keys:

9= i : RT ! Ri; Ri 2 RDB

Output. Having established the data model, the individual-cen-
tered data representation language bias and the relational database
representation of input data, the formal output (a transformed sin-
gle-relation representation RT 0 ) of the wordification methodology
can be defined as follows:

RT 0 �
Y
i;j;k

DT 0ijk
¼
Y
i;j;k

domainðRi;Dij ;v ijk
Þ; Ri!

�
RT

or in other words, one domain in the resulting relation RT 0 is defined
for each relation Ri (that is connected by following the foreign-key

path, denoted by !� to RT ), and each of its domains Dij as well as
domain values v ijk

. These domains have the property

DT 0ijk
¼ Rþ0

since they are determined by the TF-IDF formula. This final output
relation (table) can be given as an input to any propositional
learner.
4.3. Wordification algorithm

This section presents the wordification methodology by
describing in detail the individual transformation steps in
Algorithms 1 and 2.
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Algorithm 1. WordificationðT; p; kÞ

Algorithm 2. WordifyðT; ex; kÞ

The algorithm starts recursive document construction on the
instances of the main table (Lines 3–7 in Algorithm 1). First it cre-
ates word-items for the attributes of the target table (Lines 2–6 in
Algorithm 2), which is followed by concatenations of the word-
items and results of the recursive search through examples of the
connecting tables (Lines 8–16 in Algorithm 2). As this document
construction step is done independently for each example of the
main table, this allows simultaneous search along the tree of con-
nected tables. In order to perform concurrent propositionalization,
Lines 3–7 in Algorithm 1 need to be run in parallel. A common
obstacle in parallel computing is memory synchronization between
the different subtasks, which is not the case here as concurrent pro-
cesses in our implementation of wordification only need to share a
cached list of subtrees. This list stores the results of subtree word
concatenations in order to visit every subtree only once.

As wordification can produce a large number of features
(words), especially when the maximal number of n-grams per
word-items is large, we perform pruning of words that occur in
less than a predefined percentage (5% on default) of documents.
This reduces the size of trees by removing sections of the tree that
is expected to provide little power for instance classification.

The constructed features are simple, and as we do not explicitly
use existential variables in the new features (words), we instead
rely on the Term Frequency-Inverse Document Frequency (TF-
IDF) measure to implicitly capture the importance of a word for
a given individual. In the context of text mining, TF-IDF value
reflects how representative is a certain feature (word) for a given
individual (document).

4.4. Time and space complexity

This section covers the worst-case complexity analysis of the
wordification algorithm. Let t be the number of tables in a
database. To simplify the analysis, we assume that each table is
connected with exactly one other table in a one-to-many relation.
Let mi and ni be the number of rows and the number of attributes



Fig. 6. Clowdflows wordification workflow with additional analyses after the wordification process. This workflow is publicly available at http://clowdflows.org/workflow/
1455/. The abbreviations on the input and output stubs (which are not important for understanding the workflow) are as follows: con connection, ctx context, odt Orange data
table, lot list of Orange data tables, str string, arf ARFF file, ins instances, lrn learner, cla classifier.

7 A public installation of ClowdFlows is accessible at http://clowdflows.org.
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in table i, respectively. Further, let m ¼maxðm1;m2; . . . ;mtÞ and
n ¼maxðn1;n2; . . . ;ntÞ. The maximal number of rows is generally
much higher than the number of attributes and the number of
tables in a relational database: t � n� m. Let k be the maximal
number of n-grams per word.

Time complexity. The upper-bound time complexity for the
propositionalization step of the wordification methodology when
each word is constructed from one witem (k ¼ 1) is
Oðm � n �mt�1Þ ¼ Oðn �mtÞ. When we use words that are combina-
tions of up to 1 6 k 6 n witems (Lines 3–5 in Algorithm 2) the

complexity of the algorithm is O mt �
Pk

i¼1
n
i

� �� �
. As

limk!n
Pk

i¼1
n
i

� �
¼ 2n � 1, the worst-case time complexity is there-

fore Oð2n �mtÞ.
Space complexity. The space complexity for the wordification

algorithm using unigram features (k ¼ 1) is Oðm � t � nÞ. When we
increase the maximal word length (number of witems per word)
the feature space of the algorithm also increases exponentially.
When the maximal word length is equal to the maximal number

of attributes, the space complexity is O m � t �
Pk

i¼1
n
i

� �� �
.

Following a similar reasoning as in the time complexity analysis,
the worst case space complexity of the algorithm is therefore
Oðm � t � 2nÞ.

When k! n both time and space complexity are in its worst
cases exponential in the number of attributes, but as evidenced from
the experiments in Section 6, good performance can be achieved
with k ¼ 1 or k ¼ 2, in which case the space complexity is linear
Oðm � t � nÞ and the time complexity is polynomial Oðn �mtÞ. Since t
is usually small, the approach can perform orders of magnitude
faster than its competitors, as demonstrated in Section 6.

5. Implementation

This section describes the implementation of the wordification
methodology in the ClowdFlows platform. We briefly present the
platform with its distinguishing features including the ILP module,
followed by a description of the wordification workflow and its
components.

5.1. The ClowdFlows platform

The ClowdFlows platform (Kranjc et al., 2012) is an open-
source, web-based data mining platform that supports the
construction and execution of scientific workflows. ClowdFlows
differs from comparable platforms by its web based architecture.
During run-time the ClowdFlows platform resides on a server (or
on a cluster of machines) while its graphical user interface that
allows workflow construction is served as a web application
accessible from any modern web browser. ClowdFlows is
essentially a cloud-based web application that can be accessed
and controlled from anywhere while the processing is performed
in a cloud of computing nodes.7

The ClowdFlows platform is written in Python using the Django
framework. Its graphical user interface is implemented in
JavaScript and features simple operations that allow workflow con-
struction: adding workflow components (widgets) on a canvas and
creating connections between the components to form executable
workflows.

The platform has the following distinguishing features: an
implementation of a visual programming paradigm, a web-service
consumption module, a real-time processing module for mining
data streams, the ability to easily share and publicize workflows
constructed in ClowdFlows, and an ever growing roster of reusable
workflow components and entire workflows.

Following a modular design, workflow components in
ClowdFlows are organized into packages which allows for easier
distributed development. ClowdFlows is easily extensible by add-
ing new packages and workflow components by writing simple
or complex Python functions. Workflow components of several
types also allow graphical user interaction during runtime, visual-
ization of results by implementing views in JavaScript, HTML or
any other format that can be displayed in a web browser (e.g.,
Flash, Java Applet). The ClowdFlows packages include Weka algo-
rithms (Witten et al., 2011), Orange algorithms (Demšar et al.,
2004), text mining, as well as different ILP and RDM algorithms.

The current ILP module includes components, such as the pop-
ular ILP system Aleph (Srinivasan, 2007), as well as RSD (Železný &
Lavrač, 2006), SDM (Vavpetič & Lavrač, 2013) and RelF (Kuželka &
Železný, 2011). Aleph is an ILP toolkit on its own, with a wide range
of functionalities: from decision tree learning to feature generation
and first-order rule induction. We have extended the ClowdFlows
ILP module with the implementation of the wordification compo-
nent, which together with the existing components from different
modules of the ClowdFlows platform forms the entire workflow of
the wordification methodology, as can be seen in Fig. 6. Along with
other components in the ILP module, wordification components
can be used to construct diverse RDM workflows. As completed
workflows, data, and results can also be made public by the author
of the workflow, the platform can serve as an easy-to-access inte-
gration platform for various RDM workflows. Each public workflow
is assigned a unique URL that can be accessed by anyone to either
repeat the experiment, or use the workflow as a template to design
another workflow.
5.2. Wordification workflow

This section describes the main components of the wordifica-
tion workflow, which is shown in Fig. 6. The implementation

http://clowdflows.org/workflow/1455/
http://clowdflows.org/workflow/1455/
http://clowdflows.org


Table 1
Table properties of the experimental data.

# Rows # Attributes

Trains
Cars 63 9 (10)
Trains 20 2

Carcinogenesis
Atom 9064 5
canc 329 2
sbond_1 13,562 4
sbond_2 926 4
sbond_3 12 4
sbond_7 4134 4

Mutagenesis 42
Atoms 1001 5
Bonds 1066 5
Drugs 42 7
Ring_atom 1785 3
Ring_strucs 279 3
Rings 259 2

Mutagenesis 188
Atoms 4893 5
Bonds 5243 5
Drugs 188 7
Ring_atom 9330 3
Ring_strucs 1433 3
Rings 1317 2

IMDB
Actors 7118 4
Directors 130 3
Directors_genres 1123 4
Movies 166 4
Movies_directors 180 3
Movies_genres 408 3
Roles 7738 4
Financial
Accounts 4500 4
Cards 892 4
Clients 5369 4
Disps 5369 4
Districts 77 16
Loans 682 7
Orders 6471 6
tkeys 234 2
Trans 1,056,320 10

Table 2
Majority classifier performance for each dataset.

Domain CA [%]

Trains 50.00
Mutagenesis 42 69.05
Mutagenesis 188 66.50
IMDB 73.49
Carcinogenesis 55.32
Financial 86.75
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allows the user to provide as input a relational database by con-
necting to a MySQL database server. First, the user is required to
select the target table from the initial relational database, which
will later represent the main table in the wordification component
of the workflow. Second, the user is able to discretize each table
using one of the various discretization techniques provided.
These discretized tables are used by the wordification widget,
where the transformation from the relational tables to a corpus
of documents is performed. The workflow components are
described in more detail below.

MySQL Connect. Since relational data is often stored in SQL data-
bases, we use the MySQL package to access the training data by
connecting to a MySQL database server. The MySQL Connect wid-
get is used for entering information required to connect to a data-
base (e.g., user credentials, database address, database name, etc.)
in order to retrieve the training data from a MySQL database server
and automatically construct the background knowledge and the
training examples.

Database Context. This widget enables a selection of tables and
columns that will be used in the next steps of the methodology.
The information is carried to the connected widgets through the
so-called database context objects. These objects also contain the
detected table relationships. In case that the input relational data-
base does not have predefined primary and foreign keys between
the tables, the user is given an option for simple table connection
search through the names of the attributes.

Dataset Discretization. The sole task of this widget is to convert
continuous attributes to categorical, by discretizing the continuous
attributes. Dataset Discretization widget supports three discretiza-
tion methods: using equal-width intervals, using equal-frequency
intervals, and class-aware discretization proposed by Fayyad and
Irani (1993) that uses MDL and entropy to find the best cut-off
points. Dataset Discretization widget can take as input either a
single data set or a list of multiple datasets. In the latter case,
discretization of all continuous attributes of every dataset is
performed.

Wordification. The wordification widget transforms the rela-
tional database to a corpus of documents for the main table. As
an input it takes three arguments: the target (main) table, a list
of additional tables and a database context, which contains the
relations between the tables. The widget first indexes the examples
of every table by their primary and foreign keys’ values. This step is
required for performance optimization of data retrieval operations
when searching for connecting instances from different (con-
nected) tables in the word-item concatenation step. Next, recursive
document construction for every individual is performed. The
algorithm starts on every example of the main table: it creates
word-items for its attributes, followed by concatenations of the
word-items and results of the recursive search through the
connecting tables. When searching along the tree of connected
tables, the algorithm stores the results of subtree word concatena-
tions for every instance. Consequently, the algorithm iterates
over every subtree only once. The user can run the widget with
different parameters: maximal number of n-grams per word, as
well as the pruning threshold parameter. The wordification widget
produces two outputs: a set of generated word documents and an
arff table with calculated TF-IDF values for every example of the
main table.

Word Cloud. A set of generated word documents can be dis-
played using word cloud visualization, enabling improved domain
understanding.

Data Mining. After the wordification step the user can perform
various types of analysis, depending on the task at hand (classifica-
tion, clustering, etc). In the example workflow shown in Fig. 6, the
arff output is used as input to build and display a J48 decision tree.

6. Experiments

This section presents the evaluation of the wordification
methodology. After describing the relational databases used in this
study, we describe the experiments performed on these datasets
and provide a comparison of wordification to other propositional-
ization techniques. In comparison with the experimental setting
described in Perovšek, Vavpetič, Cestnik, and Lavrač (2013), a lar-
ger number of datasets is used, and very favorable results are
obtained by using decision tree learner J48, compared to relatively
poor results reported in previous work, where the Naive Bayesian
classifier assuming feature independence was used. In addition to
the J48 tree learner, we also tested the LibSVM learner.



Fig. 7. Experiments on the wordification propositionalization step. Left: Size of the feature space in correlation with the number witems per word. Right: Classification
accuracies in leave-one-out cross-validation (using the J48 decision tree learner with default parameter setting) as a function of the maximum number of n-grams per word.
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Let us first present the five relational databases used in the
experiments: Trains (in two variants), Carcinogenesis,
Mutagenensis with 42 and 188 examples, IMDB, and Financial.
Table 1 lists the characteristics of the datasets. All the datasets
can be downloaded from a web page,8 making them easily reusable
in other experiments.

Trains. The well-known East–West Trains challenge is an ILP
problem of predicting whether a train is East-bound or West-
bound. A train contains a variable number of cars that have
different shapes and carry different loads. We have considered
two versions of the data for our experiments: the original dataset
from the East–West Trains challenge and a modified dataset
where every car also has its position as an additional attribute. In
both datasets we have considered East-bound Trains as positive
examples.

Carcinogenesis. The problem addressed by Srinivasan et al.
(1997) is to predict carcinogenicity of a diverse set of chemical
compounds. The dataset was obtained by testing different chemi-
cals on rodents, where each trial would take several years and hun-
dreds of animals. The dataset consists of 329 compounds, of which
182 are carcinogens.

Mutagenesis In this task the goal is to predict mutagenicity of
aromatic and heteroaromatic nitro compounds (Debnath, Lopez
de Compadre, Debnath, Shusterman, & Hansch, 1991). Predicting
mutagenicity is an important task as it is very relevant to the pre-
diction of carcinogenesis. The compounds from the data are known
to be more structurally heterogeneous than in any other ILP data-
set of chemical structures. The database contains 230 compounds
of which 138 have positive levels of mutagenicity and are labeled
as ‘active’. Others have class value ‘inactive’ and are considered
to be negative examples. We took the datasets of the original
Debnath paper (Debnath et al., 1991), where the data was split into
two subsets: a 188 compound dataset and a smaller dataset with
42 compounds.

IMDB The complete IMDB database is publicly available in the
SQL format. This database contains tables of movies, actors, movie
genres, directors, and director genres. The database used in our
experiments consists only of the movies whose titles and years
of production exist on the IMDB’s top 250 and bottom 100 chart.9

The database therefore consists of 166 movies, along with all of their
actors, genres and directors. Movies present in the IMDB’s top 250
chart were considered as positive examples, while those in the bot-
tom 100 were regarded as negative.
8 http://kt.ijs.si/janez_kranjc/ilp_datasets/.
9 As of July 2, 2012.
Financial. This is a publicly available dataset, which was artifi-
cially constructed as part of the PKDD’99 Discovery Challenge.
The classification task addressed is the prediction of successful
loans. The dataset consists of 8 tables describing clients of a bank,
their accounts, transactions, permanent orders, granted loans and
issued credit cards.

Table 2 presents the performance of the majority classifier for
each of the described datasets. This should serve as a baseline for
the classification results reported in the following subsections.

6.1. Evaluation of feature construction and filtering

The experiments, enabling the analysis of the feature genera-
tion step of wordification were performed on the original East–
West Trains challenge dataset using different parameter settings:
using elementary word-items and complex word-items con-
structed from up to 5-grams of witems.

The left plot in Fig. 7 shows that the size of the feature space in
the non-pruned version of wordification increases exponentially as
the maximal number of witems per word increases. Note that
wordification also implements a pruning technique where words
that occur in less than a predefined percentage of documents are
pruned. As shown in Fig. 7, using higher thresholds for feature fil-
tering drastically reduces the dimensionality of the data, resulting
in more efficient learning.

We have also applied different wordification settings in the
classification task on the Trains dataset. The classification accura-
cies using the J48 decision tree of leave-one-out cross-validation
for different parameters are shown on the right side of Fig. 7 (the
reason for using leave-one-out instead of the standard 10-fold
cross-validation setting is a very small number of instances in
the Trains dataset). The results show that using larger n-grams of
witems only marginally improves the classification accuracies,
but results in longer run-times of the propositionalization step
because of a larger feature space. In this specific domain, pruning
performs favorably in terms of classification accuracy, though as
the experiments in the Appendix A show (Table A.7), this observa-
tion is only applicable to small domains, while for larger domains
with more potential witem combinations this observation does not
hold.

6.2. Comparative evaluation of propositionalization techniques

This section describes the experiments performed in the evalu-
ation of different propositionalization approaches on binary classi-
fication tasks, using the datasets from the five relational domains.

http://kt.ijs.si/janez_kranjc/ilp_datasets/


Fig. 9. The cross-validation subprocess from Fig. 8. This workflow gets a training set (input trn) and a test set (input tst) as input and is executed for each fold. There are two
Wordification widgets in the workflows: one responsible for constructing the features on the Trains set and the other on the test set. The connection between the two widgets
is needed for transferring the IDF weights learned on the training set, which are used for feature construction on the test set. The results of each step are collected by the cv
output widget. Other widget input and output abbreviations are not important for understanding the workflow.

Fig. 8. Evaluation workflow for evaluating and comparing Wordification, Aleph, RSD, and RelF, implemented in the ClowdFlows data mining platform. The abbreviations on
the input and output stubs are as follows: con connection, ctx context, dat full dataset for cross-validation, cvf number of cross-validation folds, sed random seed, lrn/lea
learner instance, res cross-validation results, sta classification statistics, evr evaluation results.
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Fig. 8 shows the full experimental workflow (from connecting to a
relational database management server to visualizing the experi-
mental results and evaluation). This evaluation workflow is avail-
able online10 in the ClowdFlows platform, which enables ILP
researchers to reuse the developed workflow and its components
in future experimentation.

The first step of the evaluation methodology is to read the rela-
tional data, stored in an SQL database, using the MySQL package
widgets. Data then enters the cross-validation subprocess (Fig. 9),
where the following steps are repeated for each fold (we used
10-fold cross-validation). First, discretization of the training fold
of the relational database is performed. We have arbitrarily
selected equi-distance discretization with 3 intervals of values to
discretize the continuous attributes of the experimental relational
datasets, such that none of the techniques was given an advantage.
Then a propositionalization technique is applied to the training
10 http://clowdflows.org/workflow/4018/.
data and the results are formatted in a way to be used by the
Weka algorithms. The J48 decision tree and the LibSVM learners
were selected with their default parameter settings to perform bin-
ary classification.

The test set is handled as follows. First, the data is discretized to
the intervals determined on the training set. Second, the features
produced by the given propositionalization approach on the train-
ing set are evaluated on the test set to produce a propositional rep-
resentation of the test data. Note that this process is slightly
different for wordification, since the features do not have to be
evaluated. We do however need the IDF values calculated on the
training set. Finally, these test examples are classified by the clas-
sifiers trained on the training data. The results of each step are then
collected to be returned at the end by the cross-validation
subprocess.

Every propositionalization algorithm was run with its default
settings. A non-parallel version of wordification was run using only
the elementary words (maximal number of witems per word was
set to 1) and without pruning, as none of our datasets required this.

http://clowdflows.org/workflow/4018/


Table 3
Classifier evaluation on different databases. The bolded items indicate the best
results.

Domain Algorithm J48 LibSVM Time
[s]

CA
[%]

AUC CA
[%]

AUC

Trains without
position

Wordification 50.00 0.50 50.00 0.50 0.11
RelF 65.00 0.65 80.00 0.80 1.04
RSD 65.00 0.65 75.00 0.75 0.53
Aleph –
Featurize

60.00 0.60 65.00 0.65 0.40

Trains Wordification 95.00 0.95 50.00 0.50 0.12
RelF 75.00 0.75 75.00 0.75 1.06
RSD 60.00 0.60 80.00 0.80 0.47
Aleph –
Featurize

55.00 0.55 70.00 0.70 0.38

Mutagenesis 42 Wordification 97.62 0.96 78.57 0.65 0.39
RelF 76.19 0.68 76.19 0.62 2.11
RSD 97.62 0.96 69.05 0.50 2.63
Aleph –
Featurize

69.05 0.50 69.05 0.50 2.07

Mutagenesis 188 Wordification 68.62 0.55 81.91 0.78 1.65
RelF 75.00 0.68 68.62 0.54 7.76
RSD 68.09 0.54 71.28 0.58 10.10
Aleph –
Featurize

60.11 0.68 60.11 0.68 19.27

IMDB Wordification 81.93 0.75 73.49 0.50 1.23
RelF 69.88 0.66 73.49 0.50 32.49
RSD 74.70 0.59 73.49 0.50 4.33
Aleph –
Featurize

73.49 0.50 73.49 0.50 4.96

Carcinogenesis Wordification 62.31 0.61 60.79 0.58 1.79
RelF 60.18 0.59 56.23 0.52 16.44
RSD 60.49 0.59 56.23 0.52 9.29
Aleph –
Featurize

55.32 0.50 55.32 0.50 104.70

Financial Wordification 86.75 0.50 86.75 0.50 4.65
RelF 97.85 0.92 86.70 0.50 260.93
RSD 86.75 0.50 79,06 0.50 533.68
Aleph -
Featurize

86.75 0.50 86.75 0.50 525.86

6452 M. Perovšek et al. / Expert Systems with Applications 42 (2015) 6442–6456
RSD was specified to construct features with a maximum length
of a feature body of 8. None of the constructed features were dis-
carded as the minimum example coverage of the algorithm was
set to 1.

Aleph was run in the feature construction mode (named
AlephFeaturize in the evaluation workflow) with coverage as the
evaluation function and maximal clause length of 4. The minimal
number of positive examples was set to 1 and the maximal number
of false positives to 0.

RelF, the most relevant of the algorithms in the TreeLiker soft-
ware (Kuželka & Železný, 2011), was run in the default setting as
well, but it is not clear from the documentation what exactly are
the default parameter values. RelF expects a feature template from
Fig. 10. Critical distance diagram for the reported classification accuracy (left; not en
significant differences for a ¼ 0:05) results. The numbers in parentheses are the average
the user. In this case, we constructed relatively simple templates
(enabling features with depth 1), since constructing and selecting
more complex templates is out of scope for the analysis in this
paper. It should be noted that templates more finely tuned to a par-
ticular domain could yield significantly better results. RelF also
supports continuous attributes, but since in our experiments all
approaches were given a discretized dataset, this feature could
not be exploited.
6.3. Results comparison

The results of the experiments on multiple datasets, presented
in Table 3, show the classification accuracy and the ROC AUC
obtained by the J48 and LibSVM learners (when applied on the data
obtained as a result of propositionalization approaches), as well as
the run-times needed for propositionalization. The run-time per-
formance for each algorithm was done by measuring the time an
algorithm took to propositionalize the full database in each
domain. The results show that the wordification methodology
achieves scores comparable to the state-of-the-art propositional-
ization algorithms RSD and RelF, as well as compared to proposi-
tionalization performed by using features constructed by Aleph,
while the run-time required for transforming the database into
its propositional form is much faster.

In terms of classification accuracy obtained by the J48 classifier,
wordification performs favorably compared to other propositional-
ization techniques, except on the Trains dataset (without the car’s
position attribute) and the Financial dataset. Poor performance on
the Trains dataset can be explained by examining the J48 tree in
the wordified Trains dataset with the position attribute, where
the J48 classifier puts the cars_position_3 attribute into the root
of the decision tree. Because of the absence of this attribute in
the first dataset and the usage of only unigram words, the decision
tree failed to find a clear distinction between the positive and neg-
ative examples (this problem can be solved by using bigrams of
witems). Similar results were obtained using the LibSVM classifier
where wordification achieved the best results on every dataset
except for the two variants of the Trains data.

From the point of view of run-times, wordification is clearly the
most efficient system, as it outperforms other techniques on every
dataset. The true value of the wordification methodology, its low
time-complexity, shows even more drastically on larger datasets,
such as Carcinogenesis and Financial datasets, where it achieves
comparable classification results in up to 100-times faster manner
(compared to RSD or Aleph feature construction).

In order to statistically compare classification accuracies of
multiple propositionalization approaches (separately for each of
the classifiers) on multiple datasets, we applied the Friedman test
(Friedman, 1937) using significance level a ¼ 0:05 and the corre-
sponding Nemenyi post hoc test (Nemenyi, 1963). This approach
is used as an alternative to the t-test, which is proven to be
ough evidence to prove that any algorithm performs better) and run-time (right;
ranks.



Table 4
Table properties of the experimental data.

# Rows # Attributes

IMDB
Movies 166 4
Roles 7738 2
Actors 7118 4
Movie_genres 408 2
Movie_directors 180 2
Directors 130 3
Director_genres 243 3

Accidents
Accident 102,756 10
Person 201,534 10

Table 5
Document properties after applying the wordification methodology.

Domain Individual # Examples # Words # Words after filtering

IMDB Movie 166 7453 3234
Accidents Accident 102,759 186 79

Fig. 11. The VIPER visualization showing evaluations of the standard J48 algorithm after applying propositionalizaton techniques. In the Trains dataset (left), ‘East’ was
selected as the target class, while in the IMDB dataset (right) positive class was selected as the target.
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inappropriate for testing multiple algorithms on multiple datasets
(Demšar, 2006).

The Friedman test ranks the algorithms for each dataset, the
best performing algorithm getting the rank of 1, the second best
rank 2, etc. In the case of ties, average ranks are assigned. The
Friedman test then compares the average ranks of the algorithms.
The null-hypothesis states that all the algorithms are equivalent
and so their ranks should be equal. If the null-hypothesis is
rejected, we can proceed with a post hoc test, in our case the
Nemenyi test. The Nemenyi test is used when we want to compare
multiple algorithms to each other. The performance of the algo-
rithms is significantly different if the average ranks differ by at
least the critical distance (CD), as defined by Demšar (2006). This
test can be visualized compactly with a critical distance diagram;
see Fig. 10 for classification accuracy (CA) and run-time, when
using J48 as the selected classifier (omitting AUC due to similar
results obtained as for CA).

The described statistical test was performed using J48 for the
three reported measures: classification accuracy, AUC and run-
time. The validation yielded the following. For classification
accuracy and AUC, there is not enough evidence to prove that
any propositionalization algorithm on average performs better
than the others (Fig. 10 left, for significance level a ¼ 0:05), even
though wordification achieves the best results on 5 out of 7 bench-
marks. This is due to the fact that the test takes into account the
order of all algorithms, not only one versus the others.

We repeated the same statistical analysis for the LibSVM
results, where the conclusion ended up the same. For classification
accuracy and AUC, there is not enough evidence to prove that any
propositionalization algorithm on average performs better than
the others, even though wordification also achieves the best results
on 5 out of 7 benchmarks.

For run-time, the results are statistically significant in favor of
wordification; see the critical distance diagram in the right part
of Fig. 10. The diagram tells us that the wordification approach per-
forms statistically significantly faster than other approaches, under
the significance level a ¼ 0:05. Other approaches fall within the
same critical distance and no statistically significant difference
was detected.

As shown in Fig. 8, the results of the Cross Validation widget
(precision, recall, F-score) are connected to the input of the
VIPER (Visual Performance Evaluation) widget. VIPER is an alterna-
tive evaluation visualization (Sluban, Gamberger, & Lavrač, 2014),
implemented in the ClowdFlows data mining platform, which dis-
plays the results as points in the two dimensional precision-recall
space (for the selected target class). Fig. 11 presents the VIPER
performance visualization, evaluating J48 and LibSVM results after
applying wordification, RSD, RelF and Aleph feature construction as
propositionalizaton techniques. The results are presented in the
so-called precision-recall space, where each point represents
the result of an algorithm. Points closer to the upper-right corner
have higher precision and recall values. F-measure values are
presented as isolines (contour lines) in the precision-recall
space, which allows a simple comparison of algorithm
performances.

From the results shown in Fig. 11 we can conclude that in terms
of precision and recall J48 achieves best results using the wordifi-
cation propositionalization. Using the wordification methodology,
not only a higher percentage of positive examples was retrieved
(higher recall score), but also a slightly higher percentage of cor-
rectly classified examples of the target class (higher precision
score) compared to other propositionalization techniques.



Fig. 12. Clowdflows wordification workflow used for feature construction before applying association rule learning. This workflow is publicly available at http://clowdflows.
org/workflow/3969/. The abbreviations (not important for understanding the workflow) on the input and output stubs are as follows: con connection, ctx context, odt Orange
data table, lot list of Orange data tables, str string, arf ARFF file, ins instances, lrn learner, cla classifier.

Fig. 14. Examples of interesting association rules discovered in the accidents
database.

Fig. 13. Examples of interesting association rules discovered in the IMDB database.

11 http://www.webstepbook.com/supplements/databases/imdb.sql.
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7. Applications

This section presents results of association rule learning exper-
iments on two real-life relational databases: a collection of best
and worst movies from the Internet Movie DataBase (IMDB) and
a database of Slovenian traffic accidents. Tables 4 and 5 list the
characteristics of both databases.

The preprocessing procedure was performed on the two data-
bases as follows. First, the wordification step was applied. As
shown in Fig. 12, we used ClowdFlows to read the relational data
from the MySQL database, discretize continuous attributes and
apply the propositionalization step. Due to lack of support for asso-
ciation rule learning in the ClowdFlows platform, the results of the
wordification feature construction step were saved as an ARFF file
and imported into RapidMiner (Mierswa, Wurst, Klinkenberg,
Scholz, & Euler, 2006). Using RapidMiner we first removed
irrelevant features (which have the same value across all the
examples), which resulted in the reduction of the features to less
than half of the original (see Table 5). In order to prepare the data
for association rule mining, we also binarized the data: after
experimenting with different TF-IDF thresholds, features with a
higher TF-IDF weight than 0.06 were assigned the value true and
false otherwise.
7.1. IMDB database

The complete IMDB database is publicly available in the SQL
format.11 This database contains tables of movies, actors, movie gen-
res, directors, director genres.

The evaluation database used in our experiments consists only
of the movies whose titles and years of production exist on
IMDB’s top 250 and bottom 100 chart. The database therefore
consisted of 166 movies, along with all of their actors, genres
and directors. Movies present in the IMDB’s top 250 chart were
added an additional label goodMovie, while those in the bottom
100 were marked as badMovie. Additionally, attribute age was
discretized; a movie was marked as old if it was made before
1950, fairlyNew if it was produced between 1950 and 2000 and
new otherwise.

After preprocessing the dataset using the wordification
methodology, we performed association rule learning. Frequent
itemsets were generated using RapidMiner’s FP-growth imple-
mentation (Mierswa et al., 2006). Next, association rules for
the resulting frequent itemsets were produced. Among all the
discovered rules, several interesting rules were found. Fig. 13
presents some of the interesting rules selected by the expert.
The first rule states that if the movie’s genre is thriller and is
directed by Alfred Hitchcock, who is also known for drama
movies, then the movie is considered to be good. The second
rule we have selected concludes that if the movie is good and
Robert De Niro acts in it, than it must be a drama. The third
interesting rule shows that Alfred Hitchcock acts only in the
movies he also directs. The last rule concludes that if Ted
Grossman acts in a good adventure movie, then the director is
Steven Spielberg. Note that Ted Grossman usually plays the role
of a stunt coordinator or performer.

http://clowdflows.org/workflow/3969/
http://clowdflows.org/workflow/3969/
http://www.webstepbook.com/supplements/databases/imdb.sql
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7.2. Traffic accident database

The second dataset consists of all accidents that happened in
Slovenia’s capital Ljubljana between years 1995 and 2005. The data
is publicly accessible from the national police department web-
site.12 The database contains the information about accidents along
with all the accident’s participants.

The data already contained discretized attributes, so further dis-
cretization was not needed. Similarly to the IMDB database, pre-
processing using wordification methodology, FP-growth itemset
mining and association rule mining were performed. Fig. 14 pre-
sents some of the interesting rules found in the Slovenian traffic
accidents dataset.

The first rule indicates that if the traffic is rare and the accident
happened in a parking lot, then no injuries occurred. The second
rule implies that whenever a motorcycle is involved in an accident,
a male person is involved.
Table A.6
Evaluation of different feature weighting techniques. The bolded items indicate the
best results.

Domain Weighting J48-accuracy [%] J48-AUC

Trains without position TF-IDF 50.00 0.50
TF 85.00 0.85
Binary 35.00 0.35

Trains TF-IDF 95.00 0.95
TF 80.00 0.80
Binary 70.00 0.70

Mutagenesis 42 TF-IDF 97.62 0.96
TF 97.62 0.96
Binary 97.62 0.96

Mutagenesis 188 TF-IDF 68.62 0.55
TF 68.09 0.54
Binary 68.62 0.55

IMDB TF-IDF 81.93 0.75
TF 81.93 0.75
Binary 81.93 0.75

Carcinogenesis TF-IDF 62.31 0.61
TF 62.61 0.61
Binary 62.92 0.62

Financial TF-IDF 86.75 0.50
8. Conclusions

This paper presents the propositionalization technique called
wordification, which aims at constructing a propositional table
using simple and easy to understand features. This methodol-
ogy is inspired by text mining and can be seen as a transfor-
mation of a relational database into a corpus of documents,
where document ‘words’ are constructed from attribute values
by concatenating each table name, attribute name and value
(called word-item or witem in this paper) into a single
named-entity. As is typical for propositionalization methods,
after the wordification step any propositional data mining algo-
rithm can be applied.

As shown in the experiments on seven standard ILP datasets,
the proposed wordification approach using the J48 and LibSVM
classifiers performs favorably (in terms of accuracy and efficiency),
compared to state-of-the-art propositionalization algorithms (RSD,
RelF) as well as compared to propositionalization performed by
using features constructed by Aleph. In addition, the proposed
approach has the advantage of producing easy to understand
hypotheses, using much simpler features than RSD and other sys-
tems, which construct complex logical features as conjunctions
of first-order literals. It is interesting to observe that in wordifica-
tion feature simplicity is compensated by the mechanism of fea-
ture weighting, inherited from text mining, which successfully
compensates for the loss of information compared to complex
relational features constructed by other propositionalization
algorithms. In our experiments we also considered feature
construction using n-grams. However, our preliminary experi-
ments indicate that in larger domains this technique should be
coupled with feature selection algorithms, which we plan to
address in our further work.

Other advantages of wordification, to be explored in further
work, include the capacity to perform clustering on relational data-
bases; while this can be achieved also with other propositionaliza-
tion approaches, wordification may successfully exploit document
similarity measures and word clouds as easily understandable
means of cluster visualization.

The implementation of the entire experimental workflow (from
connecting to a relational database management server to visualiz-
ing the experimental results and evaluation) in the web-based data
mining platform ClowdFlows is another major contribution, which
will enable ILP researchers to reuse the developed software in
future experimentation. To the best of our knowledge, this is the
only workflow-based implementation of ILP algorithms in a
12 http://www.policija.si/index.php/statistika/prometna-varnost.
platform accessible through a web browser, enabling simple work-
flow adaptation to the user’s needs. Adding of new ILP algorithms
to the platform is also possible by exposing the algorithm as a web
service. This may significantly contribute to the accessibility and
popularity of ILP and RDM methods in the future.

In terms of reusability of the workflows, accessible by a single
click on a web page where the workflow is exposed, the
ClowdFlows implementation of propositionalization algorithms
is a significant step towards making the ILP legacy accessible
to the research community in a systematic and user-friendly
way. An additional building block in this vision is the incorpora-
tion of the VIPER visual performance evaluation engine, which
enables algorithm comparison in terms of precision and recall,
simplifying the experimental comparisons and results
interpretation.

In future work, we will address other problem settings (such as
clustering) and use the approach for solving real-life relational
problems. Moreover, we plan to use the approach in a more elab-
orate scenario of mining heterogeneous data sources, involving a
mixture of information from databases and text corpora. We will
also further investigate the strength of n-gram construction and
feature weighting, as used in the text mining community, in propo-
sitional and Relational Data Mining, as our results indicate that
these mechanisms may successfully be used to compensate for
the loss of information compared to constructing complex logical
features.
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Appendix A

Tables A.6 and A.7.
TF 86.75 0.50
Binary 86.75 0.50

http://www.policija.si/index.php/statistika/prometna-varnost


Table A.7
Evaluation of different number of witems. The bolded items indicate the best results.

Domain k J48-Accuracy [%] J48-AUC Time [s]

Trains without position 1 50.00 0.50 0.12
2 75.00 0.75 0.15
3 75.00 0.75 0.20

Trains 1 95.00 0.95 0.12
2 75.00 0.75 0.16
3 70.00 0.70 0.22

Mutagenesis 42 1 97.62 0.96 0.65
2 97.62 0.96 0.83
3 92.86 0.88 0.88

Mutagenesis 188 1 68.62 0.55 1.25
2 68.62 0.55 2.26
3 66.49 0.50 2.68

IMDB 1 73.49 0.50 0.16
2 73.49 0.50 0.20
3 73.49 0.50 0.25

Carcinogenesis 1 56.84 0.56 5.31
2 51.67 0.51 6.65
3 52.58 0.51 7.04

Financial 1 86.75 0.50 4.11
2 86.75 0.50 4.24
3 86.75 0.50 4.38
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